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Abstract

Measurement on sets with a specific geometric shape can be of interest for many important applications

(e.g., measurement along the isotherms in structural engineering). The properties of optimal designs for

estimating the parameters of shifted Ornstein-Uhlenbeck sheets are investigated when the processes are

observed on monotonic sets. For Ornstein-Uhlenbeck sheets monotonic sets relate well to the notion of

non-reversibility. Substantial differences are demonstrated between the cases when one is interested only in

trend parameters and when the whole parameter set is of interest. The theoretical results are illustrated

by simulated examples from the field of structure engineering. From the design point of view the most

interesting finding of the paper is the possible loss of efficiency of the regular grid design compared to the

optimal monotonic design.
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1. Introduction

Measurement on sets with a specific geometric shape is of interest for many important applications,

e.g., measurement along the isotherms. Starting with the fundamental work of Hoel (1958), the central

importance of equidistant designs for the estimation of parameters of correlated processes has been realized.

Hoel (1958) compared the efficiencies of equally spaced designs for one-dimensional polynomial models

for several design regions and correlation structures. In this context by a design we mean a set ξ =

{x1, x2, . . . , xn} of locations where the investigated process is observed. A comparison in a multi-dimensional

setup including correlations can be found, e.g., in Herzberg and Huda (1981). Later Kisělák and Stehĺık

(2008) proved that equidistant design is optimal for estimating the unknown mean parameter of an Ornstein-

Uhlenbeck (OU) process, whereas Zagoraiou and Baldi Antognini (2009) also studied shifted stationary OU
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processes. However, in all above mentioned papers on optimal design for OU processes the design regions

were intervals of the real line, but a one-dimensional interval is naturally a directed set induced by the total

ordering of the real numbers. Obviously, there is a big difference in geometry between a plane and a line

and thus OU sheets sampled on two-dimensional intervals provide much more delicate design strategies.

In the present work we derive optimal exact designs for parameters of a shifted OU sheet measured in

the points constituting a monotonic set. A monotonic set can be defined in arbitrary Hilbert space H,

with real or complex scalars. For x, y ∈ H, we denote by 〈x, y〉 the real part of the inner product. A set

E ⊂ H × H is called monotonic (see Minty (1963) and references therein) if for all (x1, y1), (x2, y2) ∈ E

we have 〈x1 − x2, y1 − y2〉 ≥ 0. A practical example of such a set are measurements on isotherms of a

stationary temperature field with several applications in thermal slab modelling (see, e.g., Babiak et al.

(2005)). Another important example in which monotonic measurements appear is motivated by measuring

of methane adsorption (Lee and Weber, 1969) where keeping all measurements at isotherm decreases the

problems connected to stability. Here we consider the following version of a monotonic set:

Condition D The potential design points
{

(s1, t1), (s2, t2), . . . , (sn, tn)
}
⊂ X , n ∈ N, where X denotes a

compact design space, satisfy 0 < s1 < s2 < . . . < sn and 0 < t1 < t2 < . . . < tn.

We remark that the same observation scheme is used in Baran et al. (2013) where the authors deal with

prediction of OU sheets and derive optimal designs with respect to integrated mean square prediction error

and entropy criteria. Condition D relates the geometry of the underlying set of points to the Markovian

properties of OU sheets and corresponding Fisher information matrices. This geometry has direct connection

with the interpretation of OU sheet diffusion. Standard diffusion is non-reversible, and the heat partial

differential equation is not time-reversible. Thus, in some realistic physical situations we cannot step back

in time. In thermodynamics, a reversible process is a process that can be “reversed” by means of infinitesimal

changes in some property of the system without entropy production (i.e., dissipation of energy, see, e.g.,

Sears and Salinger (1986)). There exists a “reversible diffusion”, which is a specific example of a reversible

stochastic process, having an elegant characterization due to Kolmogorov (1937). Thus, statistician shall

decide, whether the process to be modelled is reversible. If not, for estimating parameters of an OU sheet

it is better to consider a design satisfying Condition D. We understand that this does not necessarily cover

all applications, but it is interesting for some of them.

We do not claim that monotonic set designs should be used routinely in engineering practice. The aim

of our paper is merely to show that for an OU sheet, in some scenarios, monotonic curve could provide

better efficiency than simple grid designs. Therefore, the experimenter is advised to integrate carefully the

monotonic set design into his/her portfolio of candidate designs – especially in cases when there is a strong

intuition/justification of the Markovian nature of the process. Being more particular, it is often overseen

in practice, that information increases with the number of points only in the case of independence (or
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specific form of dependence). Thus, general filling designs, generated without further caution, may increase

the variance instead of information. For a classical example see, e.g., Smit (1961). Another discussion of

designing for correlated processes in the context of space filling and its limitations can be found in Müller

and Stehĺık (2009) and Pronzato and Müller (2012).

The paper is organized as follows. In this section we introduce the model to be studied and our notations.

We also deal with an example which motivates the present study, namely, a design experiment for measuring

on isotherms of a stationary thermal field. Sections 2, 3, and 4 deal with the optimal designs for the

estimation of parameters of our model. We demonstrate the substantial differences between the cases when

one is interested only in the trend parameter and when the whole parameter set is of interest. Section 5

contains an application, whereas to maintain the continuity of the explanation, the proofs are given in the

Appendix.

1.1. Statistical Model

Consider the stationary process

Y (s, t) = θ + ε(s, t) (1.1)

with design points taken from a compact design space X = [a1, b1] × [a2, b2], where b1 > a1 and b2 > a2

and ε(s, t), s, t ∈ R, is a stationary Ornstein-Uhlenbeck sheet, that is a zero mean Gaussian process with

covariance structure

E ε(s1, t1)ε(s2, t2) =
σ̃2

4αβ
exp

(
− α|t1 − t2| − β|s1 − s2|

)
, (1.2)

where α > 0, β > 0, σ̃ > 0. We remark that ε(s, t) can also be represented as

ε(s, t) =
σ̃

2
√
αβ

e−αt−βsW
(
e2αt, e2βs

)
,

where W(s, t), s, t ∈ R, is a standard Brownian sheet (Baran et al., 2003; Baran and Sikolya, 2012), i.e., a

centered Gaussian random field with covariances EW(s1, t1)W(s2, t2) = min(s1, s2) ·min(t1, t2). Covariance

structure (1.2) implies that for d = (d, δ), d ≥ 0, δ ≥ 0, the variogram 2γ(d) := Var
(
ε(s1, t1)− ε(s2, t2)

)
=

σ̃2

2αβ

(
1 − e−αd−βδ

)
, where now |s1 − s2| = d, |t1 − t2| = δ, and the correlation between two measurements

depends on the distance through the semivariogram γ(d).

In order to apply the usual approach for design in spatial modeling (Kisělák and Stehĺık, 2008) we

introduce σ := σ̃/(2
√
αβ) and instead of (1.2) we investigate

E ε(s1, t1)ε(s2, t2) = σ2 exp
(
− α|t1 − t2| − β|s1 − s2|

)
, (1.3)

where σ is considered as a nuisance parameter. In an uncorrelated model the parameter σ influences neither

the estimation of the mean value parameters, nor the optimal design. In the present paper we assume σ to

be known but a valuable direction for the future research will be the investigation of models with unknown
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nuisance parameter σ. Moreover, the assumption of known σ is reasonable when α and β are known as well.

For most of the realistic situations, where the parameters of the correlation structure are not known, there

is no optimal design, as we show, e.g., in Sections 3 and 4. However, we think that all recent developments

on optimal design strategies for estimation of parameters should mostly be considered as benchmarks in

more realistic setups for optimal design (e.g., like geometric progression ones, as discussed in Section 4, or in

Zagoraiou and Baldi Antognini (2009) for a one-dimensional design space). These benchmarks should always

be confronted directly with a subject science, e.g., with methane modelling with the help of the modified

Arrhenius model in Rodŕıguez-Dı́az et al. (2012). Nevertheless, form (1.3) of the covariance structure is more

suitable for statistical applications, while (1.2) fits better to probabilistic modelling. Further, we require

Condition D to be hold on the design points because under this condition we may use the construction of

Kisělák and Stehĺık (2008) to obtain the inverse of the covariance matrix of observations which is tridiagonal.

Moreover, in case of an equidistant design the covariance matrix is Toeplitz.

Here we consider D-optimality, which corresponds to the maximization of objective function Φ(M) :=

det(M), the determinant of the standard Fisher information matrix. This criterion, “plugged” from the

widely developed uncorrelated setup, offers considerable potential for automatic implementation, although

further development is needed before it can be applied routinely in practice. Theoretical justifications for

using Fisher information for D-optimal designing under correlation can be found in Abt and Welch (1998)

and Pázman (2007). The concept of uniform designs has now gained popularity and proved to be very

successful in industrial applications and in computer experiments (Müller and Stehĺık, 2009; Santner et al.,

2003). It has become standard practice to select the design points such as to cover the available space

as uniformly as possible, e.g., to apply the so called space-filling designs. In higher dimensions there are

several ways to produce such designs. In this paper we illustrate that for the OU sheet the design satisfying

monotonicity Condition D could be possibly superior to the space filling grid designs. The idea of choosing

a monotonic set is mainly motivated by Markovian properties of the OU sheet.

1.2. Motivating example: measurement of a stationary thermal field

Temperature distribution calculations during the process of designing a building is a necessary part of

testing the critical places at the building envelope. The aim is to increase the minimal surface temperature,

and to predict the possible thermal bridges which are possible locations of mould growth in the building.

Figure 1a displays the composition of materials of the 2D section of a thermal bridge within the building

construction. Data are taken from Minárová (2005), where a finite element method for computation of

the temperature field is applied using software package ANSYS. Figure 1b illustrates the isotherms of the

thermal field which fit well to measurements forming a monotonic set satisfying Condition D.

Data points in which we measure the temperature are plotted on Figure 2. We assume that the covariance

parameters α and β are given and we are interested in the estimation of the trend parameter θ of the model
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(a) (b)

Figure 1: 2D section of a fragment of the building envelope near the thermal bridge (Minárová, 2005). (a) Composition of a

material; (b) Isoterms of the thermal field.

(1.1). Table 1 lists the relative efficiency, the information Mθ gained in the data points and the optimal

information gain (maxMθ) of the data from Figure 2 for three choices of known correlation parameters

α, β. Here Mθ is evaluated on the given observations and maxMθ is the theoretical maximal value reachable

at the given number of points, trajectory length and given values of parameters. Obviously, the relative

efficiency of the given data points varies with these parameters.

2. Estimation of trend parameter only

Assume first that parameters α, β and σ of the covariance structure (1.3) of the OU sheet ε are given and

we are interested in the estimation of the trend parameter θ. In this case the Fisher information on θ based

on observations
{
Y (si, ti), i = 1, 2, . . . , n

}
equals Mθ(n) = 1>nC

−1(n, r)1n, where 1n is the column vector

of ones of length n, r = (α, β)>, and C(n, r) is the covariance matrix of the observations (Pázman, 2007;

Xia et al., 2006). Further, let di := si+1− si and δi := ti+1− ti, i = 1, 2, . . . , n−1, be the distances between

two adjacent design points. With the help of this representation one can prove the following theorem.

Correlation Parameters Mθ maxMθ Efficiency (Mθ/maxMθ)

α = 1, β = 1 1.4816 1.4817 0.990

α = 1, β = 10 4.9726 5.0813 0.978

α = 10, β = 1 2.2124 2.2129 0.999

Table 1: Efficiency depending on correlation parameters.
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Figure 2: Observation points on Isotherms.

Theorem 1. Consider the model (1.1) with covariance structure (1.3) observed in points
{

(si, ti), i =

1, 2, . . . , n
}

satisfying Condition D and assume that the only parameter of interest is the trend parameter θ.

In this case, the equidistant design satisfying αd1 + βδ1 = αd2 + βδ2 = . . . = αdn−1 + βδn−1 is optimal for

estimation of θ.

According to Theorem 1 the optimality holds for αdi + βδi = λ
n−1 , where λ is the “skewed size” of the

design region, i.e., λ := α
∑n−1
i=1 di+β

∑n−1
i=1 δi and

∑n−1
i=1 di < b1−a1,

∑n−1
i=1 δi < b2−a2. Several situations

may appear in practice. As now we consider the covariance parameters α, β to be fixed and make inference

only on the unknown trend parameter θ, from the proof of Theorem 1 we obtain

Mθ(n) = 1 +

n−1∑
i=1

1− qi
1 + qi

, (2.1)

where qi := exp(−αdi − βδi). Thus, for an optimal design we have

Mθ(n) = Mθ(n;λ) = 1 + (n− 1)
1− exp(−λ/(n− 1))

1 + exp(−λ/(n− 1))
,

which is an increasing function of both the number of design points n and the “skewed size” λ. Further,

Mθ(n;λ) → λ/2 + 1 as n → ∞ and Mθ(n;λ) → n as λ → ∞, which values are bounds for information

increase in experiments.

To illustrate the latter fact let us consider the design region X = [0, 1]2 and a four-point design, and

assume that the correlation parameters are α = β = 1. As a comparison we consider a regular grid design

which puts the four points into the vertices of the rectangle X (this design does not satisfy Condition D).

The information corresponding to this latter design is Mθ = 2.13. Having the same design region we cannot

reach such an efficiency, because λ = 2 and Mθ(n;λ) < λ/2 + 1. Indeed, the maximal information gain can
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be Mθ(4; 2) = 1.965 which gives us an efficiency of 0.919. If we allow the growth of the design region, e.g.

X = [0, x]2, for a four-point design, under the above conditions we obtain Mθ = 4
1+exp(−2x)+exp(−x) → 4 for

x→∞ at a regular grid design with vertices.

3. Estimation of covariance parameters only

Assume now that we are interested only in the estimation of the parameters α and β of the OU sheet.

According to the results of Pázman (2007) and Xia et al. (2006) the Fisher information matrix on r = (α, β)>

has the form

Mr(n) =

 Mα(n) Mα,β(n)

Mα,β(n) Mβ(n)

 , (3.1)

where

Mα(n) :=
1

2
tr

{
C−1(n, r)

∂C(n, r)

∂α
C−1(n, r)

∂C(n, r)

∂α

}
,

Mβ(n) :=
1

2
tr

{
C−1(n, r)

∂C(n, r)

∂β
C−1(n, r)

∂C(n, r)

∂β

}
,

Mα,β(n) :=
1

2
tr

{
C−1(n, r)

∂C(n, r)

∂α
C−1(n, r)

∂C(n, r)

∂β

}
,

and C(n, r) denotes the covariance matrix of the observations
{
Y (si, ti), i = 1, 2, . . . , n

}
. Note, that here

Mα(n) and Mβ(n) are Fisher information on parameters α and β, respectively, taking the other parameter

as a nuisance.

The following theorem gives the exact form of Mr(n) for the model (1.1).

Theorem 2. Consider the model (1.1) with covariance structure (1.3) observed in points
{

(si, ti), i =

1, 2, . . . , n
}

satisfying Condition D. Then

Mα(n) =

n−1∑
i=1

d2i q
2
i (1 + q2i )

(1− q2i )2
, Mβ(n) =

n−1∑
i=1

δ2i q
2
i (1 + q2i )

(1− q2i )2
, Mα,β(n) =

n−1∑
i=1

diδiq
2
i (1 + q2i )

(1− q2i )2
, (3.2)

where di, δi and qi denote the same quantities as in the previous section, i.e. di := si+1 − si, δi := ti+1 − ti
and qi := exp(−αdi − βδi), i = 1, 2, . . . , n− 1.

Using Theorem 2 one can formulate the following statement on the optimal design for the parameters of

the covariance structure of the OU sheet.

Theorem 3. The design which is optimal for estimation of the covariance parameters α, β does not exist

within the class of admissible designs.
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4. Estimation of all parameters

Consider now the most general case, when both α, β and θ are unknown and the Fisher information ma-

trix on these parameters equals M(n) =

Mθ(n) 0

0 Mr(n)

 , where Mθ(n) and Mr(n) are Fisher information

matrices on θ and r = (α, β)>, respectively, see (2.1) and (3.1).

Theorem 4. The design which is optimal for estimation of the covariance parameters α, β and of the trend

parameter θ does not exist within the class of admissible designs.

Loosely speaking, the optimal designs for the trend have the tendency to move the design points as far as

possible, while the optimal designs for the covariance structure have the tendency to shrink the set of design

points. However, we can choose a compromise between estimating the trend and correlation parameters.

Therefore, similarly to Zagoraiou and Baldi Antognini (2009), we may consider the so-called geometric

progression design, which is generated by the vectors of distances

dn,r1 := (k, kr1, kr
2
1, . . . , kr

n−2
1 ), δn,r2 := (`, `r2, `r

2
2, . . . , `r

n−2
2 ),

where 0 < r1, r2 ≤ 1.

Assume
∑n−1
i=1 di = 1 and

∑n−1
i=1 δi = 1, for r1 = 1, r2 = 1 both constants k and ` are equal to (n− 1)−1,

while for r1 < 1 and r2 < 1 we get k = 1−r1
1−rn−1

1

and ` = 1−r2
1−rn−1

2

, respectively. The tuning parameters r1, r2

can be varied according to the desired efficiency for the estimation of the trend or correlation parameters.

Note, that case r1 = 1, r2 = 1 corresponds to the equidistant design, which we have proved to be

optimal for estimation of the trend parameter, whereas for r1 → 0, r2 → 0, vectors dn,r1 and δn,r2 tend to

the best design for the estimation of α and β. The following theorem describes the behaviors of Mθ(n) and

det
(
Mr(n)

)
as functions of the tuning parameters r1 and r2.

Theorem 5. For any fixed n > 2, α > 0, β > 0, the information Mθ(n) of the trend is increasing with

respect to r1, r2, while the determinant of the Fisher information Mr(n) of covariance parameters has a

global minimum at r1 = r2.

We remark that the first statement of Theorem 5 is a straightforward extension of the corresponding

part of Theorem 5.1 of Zagoraiou and Baldi Antognini (2009). Further, observe that Theorem 5 obviously

implies that the total information det
(
M(n)

)
has the same behavior as det

(
Mr(n)

)
, that is it has a global

minimum at r1 = r2.

5. Application to Deterioration of highways

Typically, engineers are using regular grids for estimation of the parameters of a random field. E.g., in

Mohapl (1997) the deterioration of a highway in New York state is investigated where data were collected
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in four successive years at distances of 0.2 miles from each other forming a 4 × 16 table, Based on these

data the author estimated the parameters of the underlying stochastic process. What is the efficiency of

such a design? The design region has the natural form [0, 4] × [0, 3.2] and the number of observed points

is 64. In the case α = β = 1 design satisfying Condition D and having 64 points in such a region has

Mθ(64, 7.2) = 4.596.

Now, let us have 16 time coordinates uniformly generated from time region [0, 4] and 16 location coor-

dinates generated from space region [0, 3.2]. Then for time points

1.35, 3.66, 1.86, 0.996, 0.89, 1.56, 3.37, 2.189, 0.5157, 2.58, 0.058, 0.32, 0.58, 1.4, 0.36, 1.82

and lengths

0.64, 0.37, 1.2, 0.91, 1.34, 2.82, 2.56, 2.44, 0.257, 2.568, 2.223, 0.66, 2.298, 2.814, 2.75, 1.61

we obtain Mθ = 5.2 in the case both parameters α and β are equal to 1. According to Section 2 the

maximal information gain with Condition D for n = 64, λ = 5.12 equals 3.56, thus the relative efficiency is

0.68. However, there is an open question, how to estimate parameters in case of this particular setting of

points, which is far not trivial. Since the observations form a Gaussian random vector, one can derive the

likelihood function and find the ML estimates at least numerically. For a regular grid design Ying (1993)

proved consistency and asymptotic normality of the ML estimators, but according to the authors best

knowledge this is the only result in this direction. The problem is that in the general case the dependence

of the likelihood function on the parameters and design points is too complicated to find its asymptotic

properties.

When one uses regular grids of Mohapl (1997), then the following situation occurs: time is measured

in 16 equispaced moments starting from 0, until 3.75 by 0.25, while the deterioration of the highway is

measured in 16 points (by 0.2 miles). Then Mθ = 4.32 (in the case α = β = 1) with relative efficiency of

0.827. Table 2 is revealing an interesting fact, that regular grid design (with 256 = 162 points) has a lost

of efficiency with respect to the optimal design satisfying Condition D with the same number of points in

the same design region. This loss can be substantial depending on the values the correlation parameters. A

simulation comparison between monotonic and Latin hypercube designs (LHS) has been made by Stehĺık

et al. (2014). For a specific setup, e.g., α = 1, β = 10, σ = 1 and a small number of design points, i.e.,

n < 15, D-optimal designs have better efficiency than both implementations of LHS designs (i.e., S-optimal

and Euclidean distance) and factorial design. However, for n > 15 the LHS and factorial designs are more

efficient.
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6. Appendix

6.1. Proof of Theorem 1

According to the notations of Section 2 let di := ti+1 − ti, δi := si+1 − si and qi := exp(−αdi − βδi).

Similarly to the results of Kisělák and Stehĺık (2008) we have

C(n, r) =



1 q1 q1q2 q1q2q3 . . . . . .
∏n−1
i=1 qi

q1 1 q2 q2q3 . . . . . .
∏n−1
i=2 qi

q1q2 q2 1 q3 . . . . . .
∏n−1
i=3 qi

q1q2q3 q2q3 q3 1 . . . . . .
...

...
...

...
...

. . .
...

...
...

...
...

. . . qn−1∏n−1
i=1 qi

∏n−1
i=2 qi

∏n−1
i=3 qi . . . . . . qn−1 1


(6.1)

and

C−1(n, r) =



1
1−q21

q1
q21−1

0 0 . . . . . . 0

q1
q21−1

V2
q2
q22−1

0 . . . . . . 0

0 q2
q22−1

V3
q3
q23−1

. . . . . . 0

0 0 q3
q23−1

V4 . . . . . .
...

...
...

...
...

. . .
...

...
...

...
... Vn−1

qn−1

q2n−1−1

0 0 0 . . . . . . qn−1

q2n−1−1
1

1−q2n−1



, (6.2)
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where Vk :=
1−q2kq

2
k−1

(q2k−1)(q
2
k−1−1)

= 1
1−q2k

+
q2k−1

1−q2k−1
, k = 2, . . . , n−1. Hence, for Mθ(n) = 1>nC

−1(n, r)1n we obtain

Mθ(n) =
1−2q1
1−q21

+
1

1−q2n−1
+

n−1∑
i=2

(
2qi
q2i −1

+
1−q2i q2i−1

(q2i −1)(q2i−1−1)

)
= 1 +

n−1∑
i=1

1−qi
1+qi

. (6.3)

Now, consider reformulation

Mθ(n) = 1 +

n−1∑
i=1

g
(
αdi + βδi

)
, where g(x) :=

1− exp(−x)

1 + exp(−x)
.

As g(x) is a concave function of x, by Proposition C1 of Marshall and Olkin (1979), Mθ(n) is a Schur-

concave function of αdi +βδi, i = 1, 2, . . . , n− 1. In this way Mθ(n) attains its maximum when αdi +βδi =

λ/(n − 1), i = 1, 2, . . . , n − 1, where λ is the “skewed size” of the design rectangle. Hence, an equidistant

design is the D-optimal for the parameter θ. �

6.2. Proof of Theorem 2

By symmetry it suffices to prove

Mα(n) =
1

2
tr

{
C−1(n, r)

∂C(n, r)

∂α
C−1(n, r)

∂C(n, r)

∂α

}
=

n−1∑
i=1

d2i q
2
i (1 + q2i )

(1− q2i )2
. (6.4)

For n = 2 equation (6.4) holds trivially. Assume also that (6.4) is true for some n and we are going to show

it for n+ 1. Let 0k,` be the k × ` matrix of zeros and let

∆(n) :=
(
− (d1 + d2 + . . .+ dn)q1q2 . . . qn,−(d2 + d3 . . .+ dn)q2q3 . . . qn, . . . ,−dnqn

)>
.

With the help of representation (6.1) one can easily see that

∂C(n+ 1, r)

∂α
=

 ∂C(n, r)

∂α
∆(n)

∆>(n) 0

 ,
whereas (6.2) implies

C−1(n+ 1, r) =

[
C−1(n, r) 0n,1

01,n 0

]
+

[
Λ1,1(n) Λ1,2(n)

Λ>1,2(n) (1− q2n)−1

]
,

where

Λ1,1(n) :=

 0n−1,n−1 0n−1,1

01,n−1
q2n

1− q2n

 and Λ1,2(n) :=

 0n−1,1

− qn
1− q2n

 .
In this way

C−1(n+ 1, r)
∂C(n+ 1, r)

∂α
=

C−1(n, r)
∂C(n, r)

∂α
C−1(n, r)∆(n)

01,n 0

+

[
K1,1(n) K1,2(n)

K2,1(n) K2,2(n)

]
,
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with

K1,1(n) :=

 0n−1,n

− qn
1− q2n

(
∆>(n)− (qn∆>(n− 1), 0)

)  , K1,2(n) :=

 0n−1,1

− dnq
3
n

1− q2n

 ,
K2,1(n) :=

1

1− q2n

(
∆>(n)− (qn∆>(n− 1), 0)

)
, K2,2(n) :=

dnq
2
n

1− q2n
.

Hence,

Mα(n+ 1) =Mα(n) + tr

{
C−1(n, r)

∂C(n, r)

∂α
K1,1(n)

}
(6.5)

+ tr
{
C−1(n, r)∆(n)K2,1(n)

}
+

1

2
tr
{
K2

1,1(n)
}

+K2,1(n)K1,2(n)+
1

2
K2

2,2(n).

After long but straightforward calculations one can obtain

tr

{
C−1(n, r)

∂C(n, r)

∂α
K1,1(n)

}
= 0, tr

{
C−1(n, r)∆(n)K2,1(n)

}
=

d2nq
2
n

1− q2n
,

tr
{
K2

1,1(n)
}

= K2,1(n)K1,2(n) = K2
2,2(n) =

d2nq
4
n

(1− q2n)2
,

so (6.5) implies

Mα(n+ 1) = Mα(n) +
d2nq

2
n(1 + q2n)

(1− q2n)2
,

which completes the proof. �

6.3. Proof of Theorem 3

Consider first the case when we are interested in the estimation of one of the parameters α or β and

other parameters are considered as nuisance. If α is the parameter of interest then according to (3.2) the

Fisher information on α equals Mα(n) =
∑n−1
i=1 F (di, δi), where

F (d, δ) :=
d2q2(1 + q2)

(1− q2)2
≥ 0, with q := exp

(
− αd− βδ

)
.

Due to the separation of the different data points in the expression of Mα(n) it suffices to consider the

properties of the function F (d, δ) for d, δ ≥ 0, dδ 6= 0. Obviously,

∂F (d, δ)

∂d
=

2dq2
(
(1− q4)− αd(1 + 3q2)

)
(1− q2)3

and
∂F (d, δ)

∂δ
=
−2βd2q2(1 + 3q2)

(1− q2)3
, (6.6)

so the critical points of F (d, δ) are (0, δ), δ > 0. However, at these points the determinant of the Hessian

is zero and for δ > 0 we have F (0, δ) = 0. Moreover, short calculation shows that if dδ 6= 0 then F (d, δ) <

1/(2α2) and lim d,δ→0 F (d, δ) = 1/(2α2). Hence, the supremum of F is reached at d = δ = 0, but in our

context, di 6= 0, δi 6= 0 for i = 1, 2, . . . , n− 1.

A similar result can be obtained in the case when β is the parameter of interest.
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Now, consider the case when both α and β are unknown. According to (3.1) and (3.2) the corresponding

objective function to be maximized is

Φ(d1, . . . , dn−1, δ1, . . . , δn−1) =det
(
Mr(n)

)
=

n−1∑
i=1

n−1∑
j=1

(d2i δ
2
j−diδidjδj)

q2i (1+q2i )

(1−q2i )2
q2j (1+q2j )

(1−q2j )2

=

n−1∑
i=2

i−1∑
j=1

(diδj − djδi)2
q2i (1 + q2i )

(1− q2i )2
q2j (1 + q2j )

(1− q2j )2
≥ 0. (6.7)

Obviously, for an equidistant design, where d1 = . . . = dn−1 and δ1 = . . . = δn−1, the above function equals

0, that is this design cannot be optimal. Further,

∂Φ

∂d1
=

2q21(1 + q21)

(1− q21)2
(
d1M̃β(1)− δ1M̃α,β(1)

)
− 2αq21(1 + 3q21)

(1− q21)3
(
d21Mβ(1) + δ21M̃α(1)− 2d1δ1M̃α,β(1)

)
, (6.8)

∂Φ

∂δ1
=

2q21(1 + q21)

(1− q21)2
(
δ1M̃α(1)− d1M̃α,β(1)

)
− 2βq21(1 + 3q21)

(1− q21)3
(
d21M̃β(1) + δ21M̃α(1)− 2d1δ1M̃α,β(1)

)
,

where M̃α(k), M̃β(k) and M̃α,β(k), k = 1, 2, . . . , n − 2, are the elements of the Fisher information matrix

on r = (α, β)> corresponding to observations
{
Y (si, ti), i = k, k + 1, . . . , n

}
(see (3.1)), that is

M̃α(k)=

n−1∑
i=k+1

d2i q
2
i (1+q2i )

(1−q2i )2
, M̃β(k)=

n−1∑
i=k+1

δ2i q
2
i (1+q2i )

(1−q2i )2
, M̃α,β(k)=

n−1∑
i=k+1

diδiq
2
i (1+q2i )

(1−q2i )2
,

whereas for i = 2, 3, . . . , n− 1 we have

∂Φ

∂di
=

2q2i (1 + q2i )

(1− q2i )2
(
diMβ(i)− δiMα,β(i)

)
− 2αq2i (1 + 3q2i )

(1− q2i )3
(
d2iMβ(i) + δ2iMα(i)− 2diδiMα,β(i)

)
, (6.9)

∂Φ

∂δi
=

2q2i (1 + q2i )

(1− q2i )2
(
δiMα(i)− diMα,β(i)

)
− 2βq2i (1 + 3q2i )

(1− q2i )3
(
d2iMβ(i) + δ2iMα(i)− 2diδiMα,β(i)

)
.

Solving recursively the equations (6.9) under the assumption diδi 6= 0, i = 1, 2, . . . , n − 1, for the critical

points of Φ we obtain relations

di
d1

=
δi
δ1

=: ci > 0, that is di = cid1, δi = ciδ1, i = 1, 2, . . . , n− 1. (6.10)

These solutions also solve (6.8) and short calculations show that for all d1, δ1, c1, . . . , cn−1 > 0 we have

Φ(d1, c1d1, . . . , cn−1d1, δ1, c1δ1, . . . , cn−1δ1) = 0. Hence, critical points determined by (6.10) are minimum

points of Φ. In this way, the maximum of the function Φ(d1, . . . , dn−1, δ1, . . . , δn−1) can only be attained at

the boundary points, but in our context, di /∈ {0, b1 − a1} and δi /∈ {0, b2 − a2}. �

6.4. Proof of Theorem 4

As det
(
M(n)

)
= Mθ(n) det

(
Mr(n)

)
= Mθ(n)Φ, according to (6.3) and (6.7), for unknown parameters

α, β and θ the objective function to be maximized is

Ψ(d1, . . . , dn−1, δ1, . . . , δn−1) =

(
2

1 + q1
+

n−1∑
i=2

1− qi
1 + qi

)
(6.11)

×

n−1∑
i=2

i−1∑
j=1

(diδj − djδi)2
q2i (1 + q2i )

(1− q2i )2
q2j (1 + q2j )

(1− q2j )2

 .
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For d1 = . . . = dn−1 and δ1 = . . . = δn−1, we have Φ(d1, . . . , dn−1, δ1, . . . , δn−1) = 0, thus an equispaced

design cannot be optimal.

Further,
∂Ψ

∂di
= Mθ(n)

∂Φ

∂di
− 2αqi

(1 + qi)2
Φ and

∂Ψ

∂δi
= Mθ(n)

∂Φ

∂δi
− 2βqi

(1 + qi)2
Φ,

where the expressions for ∂Φ/∂di and ∂Φ/∂δi are given by (6.10). Solving the above equations for the critical

points of Ψ we obtain the relations (6.10). However, we have Ψ(d1, c1d1, . . . , cn−1d1, δ1, c1δ1, . . . , cn−1δ1) = 0,

thus the function Ψ attains its minimum at the points determined by (6.10). �

6.5. Proof of Theorem 5

Consider first Mθ(n) and according to (2.1)

Mθ(n) = Mθ(n; r1, r2) = 1 +

n−1∑
i=1

f
(
di(r1), δi(r2)

)
, where f(d, δ) =

eαd+βδ − 1

eαd+βδ + 1
.

Obviously, for r1 = 1, r2 = 1, the geometric progression design corresponds to the equidistant design, which

is optimal for the estimation of the trend parameter. For 0 < r1, r2 < 1 one has to prove

∂Mθ(n; r1, r2)

∂r1
=

n−1∑
i=1

∂f(di(r1), δi(r2))

∂d

∂di(r1)

∂r1
>0,

∂Mθ(n; r1, r2)

∂r2
=

n−1∑
i=1

∂f(di(r1), δi(r2))

∂δ

∂δi(r2)

∂r2
>0.

Now,
∂f(d, δ)

∂d
=

2αeαd+βδ

(eαd+βδ + 1)2
> 0,

which, as a function of αd + βδ, is strictly decreasing. In this way we can use the arguments of Proof of

Theorem 5.1 of Zagoraiou and Baldi Antognini (2009), where a one-dimensional OU process is investigated.

From di(r) = δi(r) = (1−r)ri−1

1−rn−1 , i > 1, we obtain d1(r1) > . . . > dn−1(r1) and δ1(r2) > . . . > δn−1(r2) which

implies

0 <
∂f
(
d1(r1), δ1(r2)

)
∂d

< . . . <
∂f
(
dn−1(r1), δn−1(r2)

)
∂d

.

Further,

∂di(r1)

∂r1
=

ri1
(r1 − rn1 )2

(
(rn−11 (n− i)− rn1 (n− i− 1) + i− 1− r1i

)
, i = 1, 2, . . . , n− 1,

and due to
∑n−1
i=1 di(r1) = 1, 0 < r1 ≤ 1, we have

∑n−1
i=1

∂di(r1)
∂r1

= 0. Now, let j be the smallest integer such

that ∂di(r1)
∂r1

≥ 0 for i = j, . . . , n − 1, and according to Zagoraiou and Baldi Antognini (2009) such integer

exists. Then

n−1∑
i=1

∂f(di(r1), δi(r2))

∂d

∂di(r1)

∂r1
=

j−1∑
i=1

∂f(di(r1), δi(r2))

∂d

∂di(r1)

∂r1

+

n−1∑
j=1

∂f(di(r1), δi(r2))

∂d

∂di(r1)

∂r1
>
∂f(dj(r1), δj(r2))

∂d

n−1∑
i=1

∂di(r1)

∂r1
= 0.
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The positivity of the other partial derivative of Mθ(n; r1, r2) can be proved exactly in the same way.

Finally, the second statement of the theorem is a direct consequence of (6.7), since if r1 = r2 then for

all i = 2, 3, . . . , n− 1 and j = 1, 2, . . . , i− 1 we have di(r1)δj(r2)− dj(r1)δi(r2) = 0. �
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Stehĺık M, Helperstorfer Ch, Hermann P (2014) On Class of Semicontinuous Covariances for Regression and Risk, unpublished

technical report.

15



Zagoraiou M, Baldi Antognini A (2009) Optimal designs for parameter estimation of the Ornstein-Uhlenbeck process. Appl

Stoch Models Bus Ind 25:583–600

Xia G, Miranda ML, Gelfand AE (2006) Approximately optimal spatial design approaches for environmental health data.

Environmetrics 17:363–385

Ying Z (1993) Maximum likelihood estimation of parameters under a spatial sampling scheme. Ann Statist 21:1567–1590

16


