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Abstract

It is known that a system which exhibits a half filled lowest flat band and the localized one-

particle Wannier states on the flat band satisfy the connectivity conditions, is always ferromagnetic.

Without the connectivity conditions on the flat band, the system is non-magnetic. We show that

this is not always true. The reason is connected to a peculiar behavior of the band situated just

above the flat band.
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Flat bands represent a real driving force nowadays since they appear in a broad class of

subjects of large interest, as quantum Hall effect [1], spin-quantum Hall effect [2], topological

phases [2, 3], bose condensations [4], highly frustrated systems [5], delocalization effects [6]

or symmetry broken ordered phases [7]. Among the ordered phases connected to flat bands,

the flat band ferromagnetism [7, 8] is the most important, providing a leading mechanism –

especially in organic or frustrated materials – for the emergence of ferromagnetism in condi-

tions in which magnetic atoms are completely missing from the system. In the mechanism

of flat band ferromagnetism (on the lowest half filled bare flat band), it is known that the

system defined on a lattice (or graph) which can be described by a Hubbard type of model,

is ferromagnetic for any arbitrary small on-site Coulomb repulsion U > 0, if and only if

the corresponding one-particle localized Wannier states are in contact with each other, i.e.,

the connectivity condition is satisfied for the bare flat band. If however, the connectivity

condition for the localized one-particle states on the flat band is not satisfied, hence the

spins of the individual electrons localized on the bare flat band are unable to correlate, the

system will remain paramagnetic.

Several extensions of the original flat band ferromagnetism mechanism have been worked

out. For example, ferromagnetism in the vicinity of flat bands [9], or due to non-lowest

energy bare flat bands [10], or on effective flat bands created by interaction in conditions

in which bare flat bands are not present [11–13] and even in cases when large number of

non-interacting sites are present in the system [14].

In this Letter we revisit the flat band ferromagnetism phenomenon and demonstrate

rigorously, that even if the connectivity conditions are not satisfied for the one-particle

localized Wannier states on the bare lowest flat band, ferromagnetism is able to appear in

the system. This is caused by an often possible peculiar behavior of the dispersive band

situated just above the lowest flat band, which enforces the connectivity as will be detailed

below.

The technique we apply is based on positive semidefinite operator properties which al-

lowed us to work out exact results in systems and models where exact results were unheard

of before, such as: periodic Anderson model in one [15], two [16], or three [17] dimensions;

disordered and interacting systems in two dimensions [18]; emergence of stripes and droplets

in 2D [19]; delocalization effect caused by the on-site Coulomb interaction in 2D [6]; exact

results of non-integrable quadrilateral [10] or pentagon [11, 12] chains.
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The best way to explain this new effect is through the concrete example of pentagon

chains. We are studying pentagon chains because they are the building blocks of a wide

class of conducting polymers [20] and are a fascinating class of materials with a wide range

of applications [21]. These pentagon chain polymers have been explored and utilized inten-

sively in the past [22]. In particular, polythiophene was studied in the search for plastic

ferromagnets and, more generally, for ferromagnetism in systems made entirely of nonmag-

netic elements. Just recently [11, 14] we proved that ferromagnetism does exist in these

class of polymers with the use of the positive semidefinite operators.

Hereafter, using the same technique, we study another class of pentagon chain polymers,

namely the poly(3-alkylthiophene) [23] which has not been studied before at all. The pen-

tagon chain is formed by blocks (see, Fig. 1) described by a Hubbard model containing on

each sites the on-site Coulomb repulsion U > 0. The non-interacting part of the Hamiltonian

is:

Ĥ0 =
∑

σ

Nc
∑

i=1

{[tcĉ†i+r6,σ
ĉi+a,σ + tnĉ

†
i+r4,σ

ĉi+r5,σ

+ t1(ĉ
†
i+r2,σ

ĉi+r4,σ + ĉ†i+r2,σ
ĉi+r5,σ) + t(ĉ†i+r2,σ

ĉi,σ

+ ĉ†i+r6,σ
ĉi+r2,σ + ĉ†i,σĉi+r4,σ + ĉ†i+r5,σ

ĉi+r6,σ) +H.c.]

+ ǫ0n̂i+r2,σ + ǫ1(n̂i+r4,σ + n̂i+r5,σ)

+ ǫ2(n̂i,σ + n̂i+r6,σ)}, (1)

where Nc represents the number of cells. The sites inside the unit cell constructed at the

lattice site i are placed at i + rn, where n = 2, 3, ...6 represents the in-cell notation of sites,

1

t t
tc

tn

t1 t1

4 5

ε1

3 6

2

ε 0

ε2ε
i

2

i+a

ε1

tt

FIG. 1: The unit cell defined at the lattice site i of the pentagon chain under consideration. The

numbers are representing the in-cell notation of sites, t, t1, ǫm, m=0,1,2 are the hopping matrix

elements and the on-site one particle potentials present in Ĥ0, while a is the Bravais vector.

3



the n = 1 value denotes the i + a site where a is the Bravais vector, and for mathematical

convenience r3 = 0 is considered. The one-particle on-site potentials are denoted by ǫ0

on the site i + r2; ǫ1 on sites i + r4 i + r5; while on the sites i and i + r6 (hence also on

i + a in the next cell) by ǫ2. The nearest neighbor hopping matrix elements are t4,5 = tn

on the lower horizontal bond of the cell; t6,1 = tc on the horizontal external connecting

bond of the cell, and t3,4 = t5,6 = t2,3 = t6,2 = t on the circumference of the pentagon. In

the poly(3-alkylthiophene) polymers there is also a next-nearest neighbor hopping, denoted

by t1, because at the site n = 2 there is always a bigger atom present relative to sites

n = 3, 4, 5, 6. Note that we have m = 5 sites per unit cell, hence 5 sub-lattices are present

providing 5 bands in the system.

The full Hamiltonian is Ĥ = Ĥ0 + ĤU , where the interacting part is given by ĤU =
∑Nc

i=1

∑6
n=2 Ui+rnn̂i+rn,↑n̂i+rn,↓, Uj = U > 0 for all j.

In order to find the band structure of Ĥ0 we Fourier transform the Fermi operators from

the Hamiltonian via ĉi+rn,σ = (1/
√
Nc)

∑Nc

k=1 e
−ikie−ikrn ĉn,k,σ, where k is directed along the

line of the chain, and one has |k| = k = 2mπ/(aNc), m = 0, 1, 2, ..., Nc − 1, |a| = a being

the lattice constant. After this step, the non-interacting part of the Hamiltonian becomes

Ĥ0 =
∑

σ

Nc
∑

k=1

(ĉ†2,k,σ, ĉ
†
3,k,σ, ..., ĉ

†
6,k,σ)M̃















ĉ2,k,σ

ĉ3,k,σ

.....

ĉ6,k,σ















, (2)

where the 5× 5 matrix M̃ is:

M̃ =





















ǫ0 te+i kb
2 t1e

ik( b
2
−b2) t1e

−ik( b
2
−b2) te−i kb

2

te−i kb
2 ǫ2 te−ikb2 0 tce

ikb′

t1e
−ik( b

2
−b2) te+ikb2 ǫ1 tne

−ikb1 0

t1e
ik( b

2
−b2) 0 tne

+ikb1 ǫ1 te−ikb2

te+i kb
2 tce

−ikb′ 0 t”e+ikb2 ǫ2





















.

Here distances bα are expressed by the unit vector u directed along k, obtaining b1 =

|r5 − r4|, b2 = |(r4 − r3)u|, b′ = |a− r6|, b = |r6 − r3|, a = b+ b′, and b = b1 + 2b2. The band

structure in obtained by diagonalizing M̃ .
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This yields Ek = ǫ from the equation 0 = A+B cos(ak), where

A = [(ǫ0 − ǫ)(ǫ2 − ǫ)− 2t2]

× [(ǫ1 − ǫ)2(ǫ2 − ǫ)− t2(ǫ1 − ǫ)− t2n(ǫ2 − ǫ)]

+ 2[t2 − t1(ǫ2 − ǫ)]

× [(ǫ1 − ǫ)(ǫ2 − ǫ)t1 + tnt
2 − t1t

2 − (ǫ2 − ǫ)t1tn]

+ t t1{t
[

(ǫ1 − ǫ)(ǫ2 − ǫ)− t2
]

+ t[(ǫ1 − ǫ)(ǫ2 − ǫ)− t2
]

}

− t2(ǫ0 − ǫ)
[

(ǫ1 − ǫ)(ǫ2 − ǫ)− t2]

+ 2t21t
2
c

[

(ǫ1 − ǫ)− tn
]

− (ǫ0 − ǫ)t2c
[

(ǫ1 − ǫ)2 − t2n
]

,

(3)

and

B = 2{t2tc[(ǫ1 − ǫ)2 − t2n] + 2t tct1[tnt− t(ǫ1 − ǫ)]

− t2tc
[

tn(ǫ0 − ǫ)− t21
]

}. (4)

From this the flat band condition is obtained when simultaneously A = 0 and B = 0:

ǫ0 = 2(ǫ1 − tn) +
(t1 − ǫ1 + tn)

2

tn
,

ǫ2 =
t2

ǫ1 − tn
+

t2c(ǫ1 − tn)

ǫ2(ǫ1 − tn)− t2
. (5)

In order to place the flat band in lowest position, supplementary conditions must be imposed,

which can written as

ǫ0, ǫ1, ǫ2 > 0, tn > 0,

ǫ1 − tn > 0, ǫ2(ǫ1 − tn)− t2 > 0. (6)

The ground state on the lowest flat band can be easily constructed by transforming the

starting Hamiltonian in positive semidefinite form. In the case of m = 5 sub-lattices, the

use of m − 1 = 4 block operators for this transformation always lead to transformation

conditions which provide a flat band [13]. In the present case the used four block operators

as linear combinations of fermionic operators acting on the sites of the block, are defined for
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each unit cell on three triangles and a bond as follows

Â1,i,σ = a1,2ĉi+r2,σ + a1,3ĉi+r3,σ + a1,4ĉi+r4,σ,

Â2,i,σ = a2,2ĉi+r2,σ + a2,4ĉi+r4,σ + a2,5ĉi+r5,σ,

Â3,i,σ = a3,2ĉi+r2,σ + a3,5ĉi+r5,σ + a3,6ĉi+r6,σ,

Â4,i,σ = a4,6ĉi+r6,σ + a4,1ĉi+a,σ, (7)

where the coefficients ai,j denote the numerical prefactor of the Fermi operator from the

block operator i at the site rj. The transformation in positive semidefinite form leads to

Ĥ = ĤA + ĤU , ĤA =
∑

σ

Nc
∑

i=1

4
∑

α=1

Â†
α,i,σÂα,i,σ. (8)

The matching equations are (note that periodic boundary conditions are used):

tn = a∗2,4a2,5, tc = a∗4,6a4,1,

t = a∗1,2a1,3 = a∗3,6a3,2 = a∗1,3a1,4 = a∗3,5a3,6,

t1 = a∗2,2a2,5 + a∗3,2a3,5 = a∗2,2a2,4 + a∗1,2a1,4,

ǫ0 = |a1,2|2 + |a3,2|2 + |a2,2|2,

ǫ1 = |a1,4|2 + |a2,4|2 = |a2,5|2 + |a3,5|2,

ǫ2 = |a1,3|2 + |a4,1|2 = |a3,6|2 + |a4,6|2. (9)

The equations (9) lead to the solution

a1,2 = a1,4 = a3,2 = a3,5 = sign(t)
√
ǫ1 − tne

iφ1 ,

a1,3 = a3,6 =
|t|√

ǫ1 − tn
eiφ1 ,

a2,4 = a2,5 =
√
tne

iφ2 , a2,2 =
t1 − ǫ1 + tn√

tn
eiφ2 ,

a4,1 =

√

ǫ2(ǫ1 − tn)− t2

ǫ1 − tn
eiφ3 ,

a4,6 = tc

√

ǫ1 − tn
ǫ2(ǫ1 − tn)− t2

eiφ3 , (10)

where φα, α = 1, 2, 3 are arbitrary phases. The conditions under which (9) has solutions,

and that the obtained flat band is in the lowest position coincide to the conditions in (5,6).
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Once the block operators from (7) are worked out, the ground state can be easily con-

structed from the new block operators B̂†
αi,σi

defined on all lattice sites i as

B̂†
αi,σi

=
Nc
∑

j=1

6
∑

n=2

xj,nĉ
†
j+rn,σi

. (11)

Here, αi is an index denoting linearly independent B̂† operators. The requirement for the

B̂†
αi,σi

operators is: i) to satisfy for all values of all indices the anti-commutation relations

{Ân,i′,σ′ , B̂†
αi,σi

} = 0, (12)

and ii) the product
∏

i B̂
†
αi,σi

|0〉, where |0〉 is the bare vacuum, must not introduce double

occupancy in the system. In this case, at half filling lowest flat band the ground state

becomes

|Ψg〉 =
Nc
∏

i=1

B̂†
αi,σi

|0〉. (13)

This indeed satisfies property i) since the relation ĤA|Ψg〉 = 0 is satisfied, and due to the

property ii), also ĤU |Ψg〉 = 0 holds. The uniqueness proof can be easily done, for example,

on the line of [12].

On the bare flat band the one-particle states are given by |φi,σi
〉 = B̂†

αi,σi
|0〉. Usually

these are localized states because the solutions of (12) provide B̂†
αi,σi

operators which act

only on the sites of a finite block.

The connectivity conditions exist if the neighboring B̂†
αi,σi

operators are in contact with

each other at least on one site. If this property however is missing, the localized one-particle

states on the flat band are called “disconnected”, i.e., do not satisfying the connectivity

condition.

There is a great difference between the physical properties of the ground state (13) with

connectivity, or without connectivity conditions. This is because when connectivity exists,

the B̂†
αi,σi

operators are in contact with each other. Thus, in order to not have double occu-

pancy (condition ii) under (11)), i.e., to avoid the increase in energy caused by the Hubbard

interaction, the system must fix the spin index of all operators in (13). Consequently the

system becomes ferromagnetic. This is the flat band ferromagnetism phase. Contrary to

this, when the connectivity condition does not exist and the different B̂†
αi,σi

operators are not

in contact with each other, the spin on individual B̂†
αi,σi

operators can remain arbitrary. This

7



is due to the fact that, double occupancy does not occur and hence the Hubbard interaction

is completely avoided. In this case the |Ψg〉 ground state from (13) becomes paramagnetic.

In the present case non-connected B̂†
αi,σi

block operators can appear as defined on internal

triangle blocks in each cell, as depicted in Fig.2. If such a type of solution of (12) exists, it

must exist for all j lattice sites

x2 = xj,2 6= 0, x4 = xj,4 6= 0,

x5 = xj,5 6= 0, xj,n=3,6 = 0. (14)

In this case the B̂†
αi,σi

operators become

B̂†
i,σi

= B̂†
αi,σi

= x2ĉ
†
i+r2,σi

+ x4ĉ
†
i+r4,σi

+ x2ĉ
†
i+r2,σi

. (15)

In order to satisfy (14,15), the equation (12) gives the system of equations

a1,2x2 + a1,4x4 = 0,

a3,2x2 + a3,5x5 = 0,

a2,2x2 + a2,4x4 + a2,5x5 = 0, (16)

which provides x2, x4, x5 6= 0 nontrivial solution only if

t1 = ǫ1 + |tn|. (17)

i i+a
13 6

A1

A2

A
A

3

4
2

4 5

x
4

x
5

x2

FIG. 2: The block on which the block operator B̂†
αi,σi

is defined at the lattice site i when connectivity

not exists. The block is presented with thick lines, has the form of a triangle, and it contains (see

circles) the sites (2,4,5). The coefficients x2, x4, x5 are the prefactors [see (11)] of the sites present

in the block.
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The relation (17) becomes a supplementary condition leading to the non-connectivity of

the localized one-particle states on the flat band. It can be easily checked that when (17)

is satisfied, and x2, x4, x5 6= 0 holds, we automatically have xj,3 = xj,6 = 0, consequently,

connected solutions do not exist.

We further note, that when the condition (17) is satisfied (and given by (6), the inequality

tn > 0 holds), Eq.(5) which represents the flat band condition, becomes

ǫ0 = 2(ǫ1 − tn) + 4tn, ǫ2 =
t2

ǫ1 − tn
+ |tc|. (18)

In summary, when (6,17,18) are all satisfied, the lowest flat band with one-particle localized

states that extends over triangles that do not connect with each other in each unit cell (see

Fig.2), the connectivity condition is not satisfied. In this conditions, at half filling lowest

flat band, the ground state must be of the form (see (13,15))

|Ψg〉 =
N=Nc
∏

i=1

B̂†
i,σi

|0〉, (19)

Here, σi in each cell is arbitrary, i.e. the ground state is non-magnetic [24].

However, the physical ground state is not of the form (19), i.e., the wave vector (19) does

not span the kernel of (8), consequently the uniqueness of (19) as the ground state of the

Hamiltonian given in (8) cannot be demonstrated.

The reason why the ground state from (19) is not the true ground sate is as follows. The

number Nc of linearly independent operators B̂†
i,σi

which were deduced from (12) when the

non-connectivity condition (17) holds, are not forming the complete set of solutions of (12).

That is, there exists another linearly independent B̂†
σ operator satisfying (12) when (17)

together with (6) and (18) holds. This operator is extended, and is not related to the states

in the lowest flat band. At tc > 0 it has the form

B̂†
1,σ =

∑

i

[a(ĉ†i+r4,σ
− ĉ†i+r5,σ

)

+b(ĉ†i+r6,σ
− ĉ†i+r1,σ

)], (20)

while at tc < 0 it can be expressed as

B̂†
2,σ =

∑

i

(−1)i[a(ĉ†i+r4,σ
− ĉ†i+r5,σ

)

+b(ĉ†i+r6,σ
+ ĉ†i+r1,σ

)], (21)

9



where in the last relation i = |i|/|a| is an integer number which represents the length of the

vector i in lattice constant units. In both cases, b/a = a3,5/a3,6 = a1,4/a1,3 holds for the

numerical prefactors in (20,21). We point out that in the process of computing these results,

when (6,17,18) holds, a4,1 = a4,6/sign(tc) =
√

|tc|eiφ3 is obtained. For example, a sketch of

the B̂†
1,σ operator is shown in Fig.3.

The study of the eigenvectors of M̃ shows that the one-particle extended states |φγ〉 =
B̂†

γ,σ|0〉, γ = 1, 2 are the ka = 0 (for γ = 1, note that in this case tc > 0), and ka = π (for

γ = 2, case in which tc < 0) eigenstates of the dispersive band situated just above the flat

band. Since these can be obtained from (12), it points to the fact that these states have

energy equal to the flat band. In other terms, for tc > 0, the dispersive band situated just

above the flat band is in contact with the flat band at k = 0, while for tc < 0 at ka = π. A

sketch at tc > 0 is shown in Fig.4.

Following these considerations, the physical ground state becomes as follows. We use, for

example, the tc > 0 case (at tc < 0 the operator B̂†
1,σ has to be replaced in all equations by

B̂†
2,σ). In these conditions, at N = Nc + 1 number of electrons we obtain

|Ψg(Nc + 1)〉 = B̂†
1,σ

Nc
∏

i=1

B̂†
i,σ|0〉. (22)

Note that the σ index is fixed. This is because B̂†
1,σ, given by the upper dispersive band,

enforces the connectivity by being in contact with all operators B̂†
i,σ. Consequently, the

ground state is ferromagnetic, even if the one-particle localized states on the flat band does

not satisfy the connectivity condition. Note that atNc >> 1, the experimental concentration

connected to (22) in fact corresponds to the half filled lowest band.

−b−b−b

a −a a −a a −a a −a

........ b bb

FIG. 3: The infinite block providing the extended operator B̂†
1,σ being present in all cells at tc > 0.

The black dots denote the sites present in the block, while the coefficients represent the numerical

prefactors of the creation operators acting on the given site.
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At N = Nc number of electrons we obtain the following structure for |Ψg〉:

|Ψg(Nc)〉 =

Nc+1
∑

i=1

bi [B̂
†(1, σ1)B

†(2, σ2) . . .

× B̂†(i− 1, σi−1)B
†(i+ 1, σi+1) . . .

× B̂†(Nc, σNc
)B̂†(Nc + 1, σNc+1)]|0〉, (23)

where we have denoted in order, the operators B̂†
1,σ, B̂

†
i1,σ

, B̂†
i2,σ

, ...B̂†
iNc

,σ, by the operators

present in the set S = [B̂†(1, σ), B̂†(2, σ), ..., B̂†(Nc + 1, σ)]. Note that the sum in (23)

contains Nc + 1 terms. All terms contain a product of Nc operators taken from the set S,
such that an arbitrary operator with index i from S is missing. The numerical prefactor bi

holds the index of the missing operator. Note that only the first term from (23) does not

satisfy the connectivity condition (hence it has a product of Nc operators with arbitrary

spin projection). For all other Nc terms i > 1 in (23), containing each a product of Nc

operators taken from S, one has σ1 = σ2 = ... = σNc+1 = σ, so the spin projection is fixed.

This is enforced by the connectivity condition effective in the i > 1 terms, introduced by

the B̂†
1,σ operator present in all these contributions. Since only one term from Nc+1 in (23)

E

ka1 2 3

0

6

8

4

2

0

FIG. 4: The band structure of Ĥ0 taken at t = 1, tn = 1.2, tc = 1.3, ǫ1 = 1.5, when the conditions

(6,17,18) are satisfied. Since tc > 0, the dispersive band placed just above the flat band is in

contact with the flat band at k = 0. Note that the energy is an even function of ka, hence only

the ka > 0 part of the band structure is plotted.
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has arbitrary spin projections, the ground state |Ψg(Nc)〉 represents also a ferromagnetic

state at Nc >> 1 [25], where N = Nc corresponds exactly to the half filled lowest band.

(Note that, there are no physical reasons why huge differences should be in a realistic cases

between the magnitudes of different |bi| contributions.)
At the electron number N < Nc the ground state becomes of the form

|Ψg(N < Nc)〉 =
∑

D

α(i1,i2,...,iN )[B̂
†(i1, σi1)

× B̂†(i2, σi2) . . . B̂
†(iN , σiN )]|0〉, (24)

where D = {i1, i2, ..., iN} is the set of all possible combinations of the integers (i1, i2, ..., iN)

labeling the components of S. In this expression the sum has p1 = CN
Nc+1 terms [26], and from

these only p2 = CN−1
Nc

contributions have connectivity conditions, where p2/p1 = N/(Nc+1).

Hence, with decreasing N < Nc and increasing Nc the ferromagnetism disappears below the

half filled lowest band. The analysis of this crossover exceeds the frame of the present Letter

and will be discussed elsewhere.

We mention that the ground states from (22,23,24) being constructed at the mentioned

N with the complete set of solutions of (12) are unique since span the kernel of (8). The

results remain valid even if only sites i + r4 or i + r5 are only interacting (hence 80 % of

sites are non-interacting in the system). We further note that stability studies made for flat

band ferromagnetism before not include the here presented case [27].

In conclusions, in a system in which there is a lowest bare flat band of one-particle

localized states which do not satisfy the connectivity condition, the flat band ferromegnetism

does not work and the ground state of the half filled lowest band is not a ferromagnet.

Contrary to this, we rigorously proved that, in some circumstances ferromagnetism is still

possible. The reason for this is that the dispersive band which appears just above the lowest

flat band can be forced to be in contact with the lowest flat band. This contact point

represents a particular extended one particle state which belongs to the dispersive band,

but which has the energy of the one particle states from the flat band. This state being

extended, will introduce the connectivity condition, enforcing a ferromagnetic state. We

showed that this phenomenon exists in a class of pentagon chains in which the conditions

leading to the lowest flat band containing the non-connected localized one-particle states,

automatically leads to one contact point with the dispersive band situated just above the

flat band.
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We underline that this is not a rare effect. Indeed, for a kinetic Hamiltonian Ĥ0 with

several hopping matrix elements tν and one particle potentials ǫν , the bare band energies ǫ

can be obtained usually from a relation of the type A({ǫ, tν , ǫν}) + B({ǫ, tν , ǫν}) coska = 0

[28], and the minimum distance (i.e. gap) between the lowest and the second band can be

denoted by ∆({tν , ǫν}). Choosing zero energy scale, the presence of a bare flat band means

A({0, tν , ǫν}) = B({0, tν , ǫν}) = 0, the placement of the flat band in the lowest position

representing a supplementary condition F ({tν, ǫν}) = 0. Furthermore, the presence of a

contact point between the lowest flat band and the dispersive band situated just above can

be simply given by ∆({tν , ǫν}) = 0. These four equations (i.e. A = 0, B = 0, F = 0,∆ = 0)

always provide solutions where the number of Hamiltonian parameters in Ĥ0 – as in realistic

cases (e.g., in the studied poly(3-alkylthiophene) polymer pentagon chain case is seven) – is

high.
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[18] Z. Gulácsi, Phys. Rev. B. 69, 054204 (2004).
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