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A six-dimentional distribution function F is constructed from the one-matrix of a non-interacting
system. For double occupied orbitals and real one-matrix, the Fisher information IF constructed
from the distribution function F is proportional to the non-interacting kinetic energy Ts. A local
six-dimensional wave-vector q is defined that establishes a link between the Shannon and Fisher
information and the local kinetic energy. Illustrative examples for Coulomb systems are presented.

I. INTRODUCTION

The link between information theory and quantum mechanical kinetic energy was first established by Sears, Parr
and Dinur [1] three decades ago. They derived an expression for the kinetic energy

T =
1

8
In +

1

8

∫

n(r)̃if (r)dr, (1)

where the first term is proportional to Fisher information [2]

In =

∫ |∇n|2
n

dr (2)

constructed from the electron density n

n(r) = N

∫

|Ψ(r, σ1, r2, σ2, ..., rN , σN )|2dσ1dr2dσ2...drNdσN , (3)

and in the second term ĩf is a Fisher information density

ĩf (1) =

∫

[∇1f(2, ..., N |1)]2
f(2, ..., N |1) d2...dN (4)

associated with the conditional density f(2, ..., N |1) = |Ψ|2/n(r). Ψ is the wave function. (They normalized the
one-particle density to 1. In this paper n is normalized to N as is usually done in density functional theory. That is
why we applied a different factor in Eq. (1).) The first term in Eq. (1) is the full Weizsäcker kinetic energy TW [3].

The relationship between the Fisher information and the kinetic energy has been discussed in several papers [4–
8, 10, 11]. Ghiringhelli, Hamilton and Delle Site [13] proposed that the second term in Eq. (1) is proportional to the
Shannon information [14].

Sn = −
∫

n(r) lnn(r)dr, (5)

constructed from the electron density n. Uncertainty-type lower bound to the Shannon information sum [15] to
the entropy sum in complementary spaces was formulated by Gadre [16, 17]. The upper and lower bounds for the
configuration and momentum space entropies were expressed with the kinetic energy [18].

The relationship between the Fisher and Shannon information has been studied by several authors [11, 12, 19].
Fisher information can be defined using pair density [20] and generalized pair density functions [21], as well, leading
to interesting relation to the kinetic energy. Generalized Weizsäcker functionals, that is, Fisher information obtained
from two-electron, three-electron distribution functions have recently been studied by Chakraborty and Ayers [22].
They found that higher-order Weizsäcker functionals fail in approximating the total kinetic energy.
In Section 2 we show, that one can construct a six-dimentional distribution function F from the one-matrix of the

non-interacting system. In case we have double occupied orbitals and real one-matrix, the Fisher information IF
constructed from the distribution function F is proportional to the non-interacting kinetic energy Ts. In Section 3
a local six-dimensional wave-vector q is defined that establishes a link between the Shannon and Fisher information
and the local kinetic energy. Section 4 presents illustrations for Coulomb systems and discussion.
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II. FISHER AND SHANNON INFORMATION FROM IDEMPOTENT ONE-MATRIX

Consider a non-interacting system with the wave function Φ. The one-matrix is defined as

γ(r, r′) = N

∫

Φ∗(r′, σ1, r2, σ2, ..., rN , σN )Φ(r, σ1, r2, σ2, ..., rN , σN )dσ1dr2dσ2...drNdσN , (6)

where N is the number of electrons. If we have double occupied orbitals φi, the one-matrix can also be written as

γ(r, r′) = 2

N/2
∑

i=1

φ∗

i (r
′)φi(r). (7)

For orthonormal orbitals we obtain that the one-matrix is idempotent:

∫

γ(r, r2)γ(r2, r
′)dr2 = 2γ(r, r′). (8)

Define now a six-dimensional probability density as

F (r, r′) =
1

2N
|γ(r, r′)|2. (9)

F is normalized to 1 as
∫

F (r, r′)drdr′ =
1

2N

∫

γ(r′, r)γ(r, r′)drdr′ =
1

N

∫

γ(r, r)dr = 1. (10)

Introducing the six-dimensional vector R = r, r′ the Shannon and the Fisher information are defined as

SF =

∫

sF (R)dR (11)

and

IF =

∫

iF (r, r
′)drdr′ =

∫

iF (R)dR, (12)

where

sF = −F (R) lnF (R) (13)

and

iF (R) =
|∇RF (R)|2

F (R)
(14)

are the Shannon and the Fisher information densities.
For real one-matrix, the Fisher information IF is proportional to the non-interacting kinetic energy Ts. Keeping in

mind that the non-interacting kinetic energy Ts can be written as

Ts =
1

2

∫

∇r1∇r2γ(r1, r2)|r2=r1
dr1 (15)

the idempotency condition (7) leads to

Ts =
1

4

∫

∇r1∇r2γ(r1, r3)γ(r3, r2)|r2=r1
dr1dr3

=
1

4

∫

∇r1γ(r1, r3)∇r1γ(r3, r1)dr1dr3

=
1

8

∫

[

(∇r1γ(r1, r3))
2
+ (∇r3γ(r1, r3))

2

]

dr1dr3. (16)
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Using the six-dimensional vector R the non-interacting kinetic energy Ts takes the form

Ts =

∫

τs(R)dR, (17)

where

τs(R) =
1

8
[∇Rγ(R)]

2
(18)

is the local kinetic energy. Comparing Eqs. (9), (12),(17) and (18) we are led to the relation between the Fisher
information IF and the non-interacting kinetic energy Ts:

IF =
16

N
Ts (19)

and the corresponding local quantities:

iF =
16

N
τs. (20)

On the other hand, it is known that the moments of the density F (〈Ra〉 =
∫

RaF (R)dR) are related with the
Fisher information as [23]

IF ≥ (β +D − 1)2
〈rβ−1〉2
〈r2β〉 , β ≥ max {−D + 1,−1} (21)

where D is the dimension of the system. So if we take D = 6 and β = 1 we can write

IF ≥ 62

〈R2〉 . (22)

Now, using equations (3) and (19) we obtain a bound between the non-interacting kinetic energy and the magnetic
susceptibility

Ts ≥
32

23
N2

〈r2〉 (23)

with 〈r2〉 =
∫

r2n(r)dr. Writing the total non-interacting kinetic energy (Eq.(15)) as Ts = 〈p2〉/2 the uncertainty
relation

〈p2〉〈r2〉 ≥ 9N2

4
(24)

can be obtained.This inequality was derived earlier by Gadre and Chakravorty [24]. We emphasize here that the
idempotent non-interacting one-matrix was used in all inequalities. We can, however, use the fact that the total
kinetic energy is related with the non-interacting kinetic energy by T ≥ Ts [9], where the total interacting kinetic
energy T is given by a relation as Eq.(15) with the difference that the exact interacting one-matrix is applied instead
of the idempotent non-interacting one-matrix. Therefore from inequality (23) one can readily obtain an equality for
the total interacting kinetic energy T . However, it would be less sharper than (24).
Now, the relationship between the newly defined Shannon information SF and the usual Shannon information Sn

coming from the electron density is explored. Introduce the function f with the definition

γ(r, r′) = n1/2(r)n1/2(r′)f(r, r′). (25)

It can readly seen that f(r, r) = 1. From the idempotency (Eq. (8)) follows that
∫

n(r2)f
2(r, r2)dr2 = 2 (26)

for any r1. Substituting Eq. (25) into Eq. (9) and Eq. (11) we obtain

SF =
2

N
Sn + 2 lnN − 1

2N

∫

f2(R) ln f2(R)dR. (27)

For a one-level, two-electron system f(r, r′) = 1 and this relation reduces to Eq. (45). This case is studied in Section
4.
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III. THE LOCAL WAVE-VECTOR, LINK BETWEEN THE SHANNON AND FISHER INFORMATION

Following Nagy, Romera and Liu [11, 12] the local wave-vector is defined as

q(R) = −∇RF (R)

F (R)
. (28)

It can also be written as

q(R) = −∇R(lnF ). (29)

Eqs. (13),(14),(28) and (29) lead to the relations

q = ∇R

(sF
F

)

(30)

and

q2 =
iF
F

. (31)

That is, the local wave-vector q provides a link between the Shannon and Fisher information: the local wave-vector is
the gradient of the Shannon information per particle and the square of the local wave-vector is the Fisher information
per particle. From Eqs. (20) and (31) follows the relationship between the local kinetic energy and local Fisher
information:

τs =
N

16
Fq2, (32)

while, the non-interacting kinetic energy takes the form

Ts =
N

16

∫

Fq2dR, (33)

that is, the non-interacting kinetic energy is proportional to the average of the square of the wave vector.

IV. RESULTS FOR COULOMB SYSTEMS

We illustrate the results above by Coulomb systems. Consider first the case when the γ has the form

γ = A exp [−a(r1 + r2)] (34)

and consequently F can be written

F =
A2

2N
exp [−2a(r1 + r2)]. (35)

Expressions (34) and (35) are valid for the asymptotic region (r1 → ∞ and r2 → ∞) for any system in Coulomb
external potential (v(r) = −Z/r) . Eq. (35) gives the asymptotic behaviour of the distribution function F with

a =
√
2I, where I is the first ionization potential.

The Shannon and the Fisher information densities then take the form

sF = −F [2 lnA− ln (2N)− 2a(r1 + r2)] (36)

and

iF = a2F =
16

N
τs, (37)

respectively.

sF
F

= − ln τs + lnNa2 − ln 2 (38)
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The square of the local wave vector is

q2 = 8a2 =
iF
F

=
16

N

τs
F
. (39)

Consider, now, a zero-order approximation to the one-matrix for the He isoelectronic series [25] :

γ =
Z − α

π
exp [−(Z − α)(r1 + r2)]. (40)

We are led to the Shannon information

SF = −6 ln (Z − α) + 6 + 2 lnπ (41)

that can also be written as

SF = −3 lnTs − 3 ln 2 + 6 + 2 lnπ. (42)

We mention here that Massen and Panos [26] proposed a relationship between the phase-space Shannon information
and the kinetic energy.
The idempotent one-matrix for the He isoelectronic series can be written as :

γ = 2φ1s(r1)φ1s(r2), (43)

where φ1s is the one-electron orbital. The Shannon information has the the form

SF = −2

∫

n1s(r) ln (n1s(r))dr, (44)

where n1s = (φ1s)
2 is the one-electron density. The Shannon information Sn constructed from the electron density n

(Eq. (5) can be related to the SF :

SF = Sn + 2 ln 2. (45)

Fig. 1 presents Sn and Ts. Sn has been numerically obtained using the analytical Hartree-Fock wave functions of
Koga et al. [27] for the He isoelectronic series (Z = 2-9). The values of Ts have been obtained from reference [28].
We have fitted these values obtaining (with a c. c. of 0.95) that

Sn = −3.07 lnTs + 7.25 (46)

in good agreement with Eq. (42) that can be written in terms of Sn as

Sn = −3 lnTs + 6.90. (47)

Eq. (45) is valid only for a one-level, two-electron system. In other cases Eq. (27) should be used and the relationship
between Sn and Ts cannot be described by expressions (46) or (47). It will be the subject of further research. Finally,
we can utilize expression for the lower bound of Sn derived by Gadre and Bendale [18]:

Sn ≥ 3N(1 + lnπ)/2 + (N lnN)/2− 3N ln (3N/4Ts)/2. (48)

Substituting Ts from Eq. (19) into Eq. (48) the inequality for Sn is expressed by the Fisher information IF :

Sn ≥ 3N(1 + lnπ)/2 + (N lnN)/2− 3N ln (N/12IF )/2. (49)

In summary, a six-dimentional distribution function is constructed from the one-matrix of a non-interacting sys-
tem. For double occupied orbitals and real one-matrix, the Fisher information obtaineded from the six-dimentional
distribution function is proportional to the non-interacting kinetic energy. A local six-dimensional wave-vector q is
defined that establishes a link between the Shannon and Fisher information: the local wave-vector is the gradient of
the Shannon information per particle and the square of the local wave-vector is the Fisher information per particle.
A relationship is explored between the non-interacting kinetic energy and the local wave-vector.
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FIG. 1: Sn in terms of Ts for He-like ions. The crosses correspond to the Hartree-Fock values for the ions with nuclear charge
Z = 2− 9. The dashed line corresponds to equation (46). All the data are in atomic units.
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[12] Á. Nagy, E. Romera and S. B. Liu, Phys. Lett. A 377 286 (2013).

[13] I. M. Ghiringhelli, L. P. Hamilton and L. Delle Site , J. Chem. Phys. 132, 014106 (2010).

[14] C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948).

[15] I. Bialynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 129 (1975).



7

[16] S. R. Gadre, Phys. Rev. A 30, 620 (1984), S. R. Gadre and R. J. Bendale, Int. J. Quantum Chem. 28, 311
(1985).

[17] S. R. Gadre, S. B. Sears, S. J. Chakravorty and R. J. Bendale, Phys. Rev. A 32, 2602 (1985).

[18] S. R. Gadre and R. J. Bendale, Phys. Rev. A 36, 1932 (1987).

[19] S. B. Liu, J. Chem. Phys. 126, 191107 (2007); 126, 244103 (2007).
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