Asymptotic behavior of critical primitive multi-type branching processes with immigration

Márton Ispány**, ${ }^{*}$, Gyula Pap**
* University of Debrecen, Faculty of Informatics, Pf. 12, H-4010 Debrecen, Hungary;
** University of Szeged, Bolyai Institute, Aradi vértanúk tere 1, H-6720 Szeged, Hungary

e-mails: ispany.marton@inf.unideb.hu (M. Ispány), papgy@math.u-szeged.hu (G. Pap)
\diamond Corresponding author.

Abstract

Under natural assumptions a Feller type diffusion approximation is derived for critical multi-type branching processes with immigration when the offspring mean matrix is primitive (in other words, positively regular). Namely, it is proved that a sequence of appropriately scaled random step functions formed from a sequence of critical primitive multi-type branching processes with immigration converges weakly towards a squared Bessel process supported by a ray determined by the Perron vector of the offspring mean matrix.

1 Introduction

Branching processes have a number of applications in biology, finance, economics, queueing theory etc., see e.g. Haccou, Jagers and Vatutin [1]. Many aspects of applications in epidemiology, genetics and cell kinetics were presented at the 2009 Badajoz Workshop on Branching Processes, see [2].

[^0]In this paper, let $\mathbb{Z}_{+}, \mathbb{N}, \mathbb{R}, \mathbb{R}_{+}$and \mathbb{R}_{++}denote the set of non-negative integers, positive integers, real numbers, non-negative real numbers and positive real numbers, respectively. Every random variable will be defined on a fixed probability space $(\Omega, \mathcal{A}, \mathrm{P})$.

Let $\left(X_{k}\right)_{k \in \mathbb{Z}_{+}}$be a single-type Galton-Watson branching process with immigration and with initial value $X_{0}=0$. Suppose that it is critial, i.e., the offspring mean equals 1. Wei and Winnicki [3] proved a functional limit theorem $\mathcal{X}^{(n)} \xrightarrow{\mathcal{L}} \mathcal{X}$ as $n \rightarrow \infty$, where $\mathcal{X}_{t}^{(n)}:=n^{-1} X_{\lfloor n t\rfloor}$ for $t \in \mathbb{R}_{+}, n \in \mathbb{N}$, where $\lfloor x\rfloor$ denotes the integer part of $x \in \mathbb{R}$, and $\left(\mathcal{X}_{t}\right)_{t \in \mathbb{R}_{+}}$is a (nonnegative) diffusion process with initial value $\mathcal{X}_{0}=0$ and with generator

$$
\begin{equation*}
L f(x)=m_{\varepsilon} f^{\prime}(x)+\frac{1}{2} V_{\xi} x f^{\prime \prime}(x), \quad f \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}_{+}\right) \tag{1.1}
\end{equation*}
$$

where m_{ε} is the immigration mean, V_{ξ} is the offspring variance, and $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}_{+}\right)$ denotes the space of infinitely differentiable functions on \mathbb{R}_{+}with compact support. The process $\left(\mathcal{X}_{t}\right)_{t \in \mathbb{R}_{+}}$can also be characterized as the unique strong solution of the stochastic differential equation (SDE)

$$
\mathrm{d} \mathcal{X}_{t}=m_{\varepsilon} \mathrm{d} t+\sqrt{V_{\xi} \mathcal{X}_{t}^{+}} \mathrm{d} \mathcal{W}_{t}, \quad t \in \mathbb{R}_{+}
$$

with initial value $\mathcal{X}_{0}=0$, where $\left(\mathcal{W}_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Wiener process, and x^{+} denotes the positive part of $x \in \mathbb{R}$. Note that this so-called square-root process is also known as Cox-Ingersoll-Ross model in financial mathematics (see Musiela and Rutkowski [4, p. 290]). In fact, $\left(4 V_{\xi}^{-1} \mathcal{X}_{t}\right)_{t \in \mathbb{R}_{+}}$is the square of a $4 V_{\xi}^{-1} m_{\varepsilon}$-dimensional Bessel process started at 0 (see Revuz and Yor [5, XI.1.1]).

Moreover, for critical Galton-Watson branching processes without immigration, Feller [6] proved the following diffusion approximation (see also Ethier and Kurtz [7, Theorem 9.1.3]). Consider a sequence of critical Galton-Watson branching processes
$\left(X_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}, n \in \mathbb{N}$, without immigration, with the same offspring distribution, and with initial value $X_{0}^{(n)}$ independent of the offspring variables such that $n^{-1} X_{0}^{(n)} \xrightarrow{\mathcal{L}} \mu$ as $n \rightarrow \infty$. Then $\mathcal{X}^{(n)} \xrightarrow{\mathcal{L}} \mathcal{X}$ as $n \rightarrow \infty$, where $\mathcal{X}_{t}^{(n)}:=n^{-1} X_{\lfloor n t\rfloor}^{(n)}$ for $t \in \mathbb{R}_{+}$, $n \in \mathbb{N}$, and $\left(\mathcal{X}_{t}\right)_{t \in \mathbb{R}_{+}}$is a (nonnegative) diffusion process with initial distribution μ and with generator given by (1.1) with $m_{\varepsilon}=0$. Furthermore, independently of each other, Lebedev [8] and Sriram [9] generalized the result of Wei and Winnicki for a sequence of branching processes with immigration which is nearly critical in the sense that $m_{\xi}^{(n)}=1+\alpha n^{-1}+\mathrm{o}\left(n^{-1}\right)$ as $n \rightarrow \infty$ with $\alpha \in \mathbb{R}$, where $m_{\xi}^{(n)}$ is the offspring mean of the process $\left(X_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}$. They proved that, as $n \rightarrow \infty, \mathcal{X}^{(n)}$ converges towards a diffusion process with initial value $\mathcal{X}_{0}=0$ and with generator $L_{\alpha} f(x)=\left(\alpha x+m_{\varepsilon}\right) f^{\prime}(x)+\frac{1}{2} V_{\xi} x f^{\prime \prime}(x), \quad f \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}_{+}\right)$.

A multi-type branching process $\left(\boldsymbol{X}_{k}\right)_{k \in \mathbb{Z}_{+}}$is referred to respectively as subcritical, critical or supercritical if $\varrho\left(\boldsymbol{m}_{\boldsymbol{\xi}}\right)<1, \varrho\left(\boldsymbol{m}_{\boldsymbol{\xi}}\right)=1$ or $\varrho\left(\boldsymbol{m}_{\boldsymbol{\xi}}\right)>1$, where $\varrho\left(\boldsymbol{m}_{\boldsymbol{\xi}}\right)$ denotes the spectral radius of the offspring mean matrix $\boldsymbol{m}_{\boldsymbol{\xi}}$ (see, e.g., Athreya and Ney [10] or Quine [11]). Joffe and Métivier [12, Theorem 4.3.1] studied a sequence $\left(\boldsymbol{X}_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}$of critical multi-type branching processes with the same offspring distributions but without immigration if the offspring mean matrix is primitive and $n^{-1} \boldsymbol{X}_{0}^{(n)} \xrightarrow{\mathcal{L}} \boldsymbol{\mu}$ as $n \rightarrow \infty$. They determined the limiting behavior of the martingale part $\left(\boldsymbol{\mathcal { M }}^{(n)}\right)_{n \in \mathbb{N}}$ given by $\boldsymbol{\mathcal { M }}_{t}^{(n)}:=n^{-1} \sum_{k=1}^{\lfloor n t\rfloor} \boldsymbol{M}_{k}^{(n)}$ with $\boldsymbol{M}_{k}^{(n)}:=\boldsymbol{X}_{k}^{(n)}-\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)} \mid \boldsymbol{X}_{0}^{(n)}, \ldots, \boldsymbol{X}_{k-1}^{(n)}\right.$) (see (3.4)). Joffe and Métivier [12, Theorem 4.2.2] also studied a sequence $\left(\boldsymbol{X}_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}, \quad n \in \mathbb{N}$, of multi-type branching processes without immigration which is nearly critical of special type, namely, when the offspring mean matrices $\boldsymbol{m}_{\xi}^{(n)}, \quad n \in \mathbb{N}$, satisfy $\boldsymbol{m}_{\xi}^{(n)}=\boldsymbol{I}_{p}+n^{-1} \boldsymbol{C}+\mathrm{o}\left(n^{-1}\right)$ as $n \rightarrow \infty$, and they proved that the sequence $\left(n^{-1} \boldsymbol{X}_{\lfloor n t\rfloor}^{(n)}\right)_{t \in \mathbb{R}_{+}}$converges towards a diffusion process.

The aim of the present paper is to obtain a joint generalization of the above mentioned results for critical multi-type branching processes with immigration. We
succeeded to determine the asymptotic behavior of a sequence of critical multi-type branching processes with immigration and with the same offspring and immigration distributions if the offspring mean matrix is primitive and $n^{-1} \boldsymbol{X}_{0}^{(n)} \xrightarrow{\mathcal{L}} \boldsymbol{\mu}$ as $n \rightarrow \infty$, where $\boldsymbol{\mu}$ is concentrated on the ray $\mathbb{R}_{+} \cdot \boldsymbol{u}_{\boldsymbol{m}_{\xi}}$, where $\boldsymbol{u}_{\boldsymbol{m}_{\xi}}$ is the Perron eigenvector of the offspring mean matrix $\boldsymbol{m}_{\boldsymbol{\xi}}$ (see Theorem 3.1). It turned out that the limiting diffusion process is always one-dimensional in the sense that for all $t \in \mathbb{R}_{+}$, the distribution of $\boldsymbol{\mathcal { X }}_{t}$ is also concentrated on the ray $\mathbb{R}_{+} \cdot \boldsymbol{u}_{\boldsymbol{m}_{\xi}}$. In fact, $\boldsymbol{\mathcal { X }}_{t}=\mathcal{X}_{t} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}$, $t \in \mathbb{R}_{+}$, where $\left(\mathcal{X}_{t}\right)_{t \in \mathbb{R}_{+}}$is again a squared Bessel process which is a continuous time and continuous state branching process with immigration. In the single-type case, Li [13] proved a result on the convergence of a sequence of discrete branching processes with immigration to a continuous branching process with immigration using appropriate time scaling which is different from our scaling. Later, Ma [14] extended Li's result for two-type branching processes. They proved the convergence of the sequence of infinitesimal generators of single(two)-type branching processes with immigration towards the generator of the limiting diffusion process which is a well-known technique in case of time-homogeneous Markov processes, see, e.g., Ethier and Kurtz [7]. Contrarily, our approach is based on the martingale method. It is interesting to note that Kesten and Stigum [15] considered a supercritical multi-type branching process without immigration, with a fixed initial distribution and with primitive offspring mean matrix, and they proved that $\varrho\left(\boldsymbol{m}_{\xi}\right)^{-n} \boldsymbol{X}_{n} \rightarrow \boldsymbol{W}$ almost surely as $n \rightarrow \infty$, where the random vector \boldsymbol{W} is also concentrated on the ray $\mathbb{R}_{+} \cdot \boldsymbol{u}_{\boldsymbol{m}_{\xi}}$ (see also Kurtz, Lyons, Pemantle and Peres [16]).

2 Multi-type branching processes with immigration

We will investigate a sequence $\left(\boldsymbol{X}_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}, \quad n \in \mathbb{N}$, of critical p-type branching processes with immigration sharing the same offspring and immigration distributions, but having possibly different initial distributions. For each $n \in \mathbb{N}, k \in \mathbb{Z}_{+}$, and $i \in\{1, \ldots, p\}$, the number of individuals of type i in the $k^{\text {th }}$ generation of the $n^{\text {th }}$ process is denoted by $X_{k, i}^{(n)}$. By $\xi_{k, j, i, \ell}^{(n)}$ we denote the number of type ℓ offspring produced by the $j^{\text {th }}$ individual who is of type i belonging to the $(k-1)^{\text {th }}$ generation of the $n^{\text {th }}$ process. The number of type i immigrants in the $k^{\text {th }}$ generation of the $n^{\text {th }}$ process will be denoted by $\varepsilon_{k, i}^{(n)}$. Consider the random vectors

$$
\boldsymbol{X}_{k}^{(n)}:=\left[\begin{array}{c}
X_{k, 1}^{(n)} \\
\vdots \\
X_{k, p}^{(n)}
\end{array}\right], \quad \boldsymbol{\xi}_{k, j, i}^{(n)}:=\left[\begin{array}{c}
\xi_{k, j, i, 1}^{(n)} \\
\vdots \\
\xi_{k, j, i, p}^{(n)}
\end{array}\right], \quad \boldsymbol{\varepsilon}_{k}^{(n)}:=\left[\begin{array}{c}
\varepsilon_{k, 1}^{(n)} \\
\vdots \\
\varepsilon_{k, p}^{(n)}
\end{array}\right] .
$$

Then, for $n, k \in \mathbb{N}$, we have

$$
\begin{equation*}
\boldsymbol{X}_{k}^{(n)}=\sum_{i=1}^{p} \sum_{j=1}^{X_{k-1, i}^{(n)}} \boldsymbol{\xi}_{k, j, i}^{(n)}+\boldsymbol{\varepsilon}_{k}^{(n)} \tag{2.1}
\end{equation*}
$$

Here $\left\{\boldsymbol{X}_{0}^{(n)}, \boldsymbol{\xi}_{k, j, i}^{(n)}, \boldsymbol{\varepsilon}_{k}^{(n)}: k, j \in \mathbb{N}, i \in\{1, \ldots, p\}\right\}$ are supposed to be independent for all $n \in \mathbb{N}$. Moreover, $\left\{\boldsymbol{\xi}_{k, j, i}^{(n)}: k, j, n \in \mathbb{N}\right\}$ for each $i \in\{1, \ldots, p\}$, and $\left\{\varepsilon_{k}^{(n)}: k, n \in \mathbb{N}\right\}$ are supposed to consist of identically distributed vectors.

We suppose $\mathrm{E}\left(\left\|\boldsymbol{\xi}_{1,1, i}^{(1)}\right\|^{2}\right)<\infty$ for all $i \in\{1, \ldots, p\}$ and $\mathrm{E}\left(\left\|\varepsilon_{1}^{(1)}\right\|^{2}\right)<\infty$.

Introduce the notations

$$
\begin{gathered}
\boldsymbol{m}_{\boldsymbol{\xi}_{i}}:=\mathrm{E}\left(\boldsymbol{\xi}_{1,1, i}^{(1)}\right) \in \mathbb{R}_{+}^{p}, \quad \boldsymbol{m}_{\boldsymbol{\xi}}:=\left[\begin{array}{lll}
\boldsymbol{m}_{\boldsymbol{\xi}_{1}} & \cdots & \boldsymbol{m}_{\boldsymbol{\xi}_{d}}
\end{array}\right] \in \mathbb{R}_{+}^{p \times p}, \quad \boldsymbol{m}_{\boldsymbol{\varepsilon}}:=\mathrm{E}\left(\boldsymbol{\varepsilon}_{1}^{(1)}\right) \in \mathbb{R}_{+}^{p}, \\
\boldsymbol{V}_{\boldsymbol{\xi}_{i}}:=\operatorname{Var}\left(\boldsymbol{\xi}_{1,1, i}^{(1)}\right) \in \mathbb{R}^{p \times p}, \quad \boldsymbol{V}_{\boldsymbol{\varepsilon}}:=\operatorname{Var}\left(\boldsymbol{\varepsilon}_{1}^{(1)}\right) \in \mathbb{R}^{p \times p} .
\end{gathered}
$$

Note that many authors define the offspring mean matrix as $\boldsymbol{m}_{\boldsymbol{\xi}}^{\top}$. For $k \in \mathbb{Z}_{+}$, let $\mathcal{F}_{k}^{(n)}:=\sigma\left(\boldsymbol{X}_{0}^{(n)}, \boldsymbol{X}_{1}^{(n)}, \ldots, \boldsymbol{X}_{k}^{(n)}\right) . \quad$ By (2.1),

$$
\begin{equation*}
\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)} \mid \mathcal{F}_{k-1}^{(n)}\right)=\sum_{i=1}^{p} X_{k-1, i}^{(n)} \boldsymbol{m}_{\boldsymbol{\xi}_{i}}+\boldsymbol{m}_{\boldsymbol{\varepsilon}}=\boldsymbol{m}_{\boldsymbol{\xi}} \boldsymbol{X}_{k-1}^{(n)}+\boldsymbol{m}_{\boldsymbol{\varepsilon}} \tag{2.2}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right)=\boldsymbol{m}_{\xi} \mathrm{E}\left(\boldsymbol{X}_{k-1}^{(n)}\right)+\boldsymbol{m}_{\boldsymbol{\varepsilon}}, \quad k, n \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right)=\boldsymbol{m}_{\xi}^{k} \mathrm{E}\left(\boldsymbol{X}_{0}^{(n)}\right)+\sum_{j=0}^{k-1} \boldsymbol{m}_{\xi}^{j} \boldsymbol{m}_{\boldsymbol{\varepsilon}}, \quad k, n \in \mathbb{N} \tag{2.4}
\end{equation*}
$$

Hence, the offspring mean matrix $\boldsymbol{m}_{\boldsymbol{\xi}}$ plays a crucial role in the asymptotic behavior of the sequence $\left(\boldsymbol{X}_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}$.

In what follows we recall some known facts about primitive nonnegative matrices. A matrix $\boldsymbol{A} \in \mathbb{R}_{+}^{p \times p}$ is called primitive if there exists $m \in \mathbb{N}$ such that $\boldsymbol{A}^{m} \in \mathbb{R}_{++}^{p \times p}$. A matrix $\boldsymbol{A} \in \mathbb{R}_{+}^{p \times p}$ is primitive if and only if it is irreducible and has only one eigenvalue of maximum modulus; see, e.g., Horn and Johnson [17, Definition 8.5.0, Theorem 8.5.2]. If a matrix $\boldsymbol{A} \in \mathbb{R}_{+}^{p \times p}$ is primitive then, by the Frobenius-Perron theorem (see, e.g., Horn and Johnson [17, Theorems 8.2.11 and 8.5.1]), the following assertions hold:

- $\varrho(\boldsymbol{A}) \in \mathbb{R}_{++}, \varrho(\boldsymbol{A})$ is an eigenvalue of \boldsymbol{A}, the algebraic and geometric multi-
plicities of $\varrho(\boldsymbol{A})$ equal 1 and the absolute values of the other eigenvalues of \boldsymbol{A} are less than $\varrho(\boldsymbol{A})$.
- Corresponding to the eigenvalue $\varrho(\boldsymbol{A})$ there exists a unique (right) eigenvector $\boldsymbol{u}_{\boldsymbol{A}} \in \mathbb{R}_{++}^{p}$, called Perron vector, such that the sum of the coordinates of $\boldsymbol{u}_{\boldsymbol{A}}$ is 1.
- Further,

$$
\varrho(\boldsymbol{A})^{-n} \boldsymbol{A}^{n} \rightarrow \boldsymbol{\Pi}_{\boldsymbol{A}}:=\boldsymbol{u}_{\boldsymbol{A}} \boldsymbol{v}_{\boldsymbol{A}}^{\top} \in \mathbb{R}_{++}^{p \times p} \quad \text { as } n \rightarrow \infty
$$

where $\boldsymbol{v}_{\boldsymbol{A}} \in \mathbb{R}_{++}^{p}$ is the unique left eigenvector corresponding to the eigenvalue $\varrho(\boldsymbol{A})$ with $\boldsymbol{u}_{\boldsymbol{A}}^{\top} \boldsymbol{v}_{\boldsymbol{A}}=1$.

- Moreover, there exist $c_{\boldsymbol{A}}, r_{\boldsymbol{A}} \in \mathbb{R}_{++}$with $r_{\boldsymbol{A}}<1$ such that

$$
\begin{equation*}
\left\|\varrho(\boldsymbol{A})^{-n} \boldsymbol{A}^{n}-\boldsymbol{\Pi}_{\boldsymbol{A}}\right\| \leqslant c_{\boldsymbol{A}} r_{\boldsymbol{A}}^{n} \quad \text { for all } n \in \mathbb{N} \tag{2.5}
\end{equation*}
$$

where $\|\boldsymbol{B}\|$ denotes the operator norm of a matrix $\boldsymbol{B} \in \mathbb{R}^{p \times p}$ defined by $\|\boldsymbol{B}\|:=\sup _{\|\boldsymbol{x}\|=1}\|\boldsymbol{B} \boldsymbol{x}\|$.

A multi-type branching process with immigration will be called primitive if its offspring mean matrix $\boldsymbol{m}_{\boldsymbol{\xi}}$ is primitive. Note that many authors call it positively regular.

3 Convergence results

A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}^{p}$ is called càdlàg if it is right continuous with left limits. Let $\mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$ and $\mathrm{C}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$ denote the space of all \mathbb{R}^{p}-valued càdlàg and continuous functions on \mathbb{R}_{+}, respectively. Let $\mathcal{D}_{\infty}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$ denote the Borel σ-algebra in $\mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$ for the metric defined in Jacod and Shiryaev [18, Chapter VI, (1.26)] (with this metric $\mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$ is a complete and separable metric space). For \mathbb{R}^{p}-valued stochastic processes $\left(\mathcal{Y}_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\mathcal{Y}_{t}^{(n)}\right)_{t \in \mathbb{R}_{+}}, n \in \mathbb{N}$, with càdlàg paths we write
$\mathcal{Y}^{(n)} \xrightarrow{\mathcal{L}} \mathcal{Y}$ if the distribution of $\mathcal{Y}^{(n)}$ on the space $\left(\mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right), \mathcal{D}_{\infty}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)\right)$ converges weakly to the distribution of \mathcal{Y} on the space $\left(\mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right), \mathcal{D}_{\infty}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)\right)$ as $n \rightarrow \infty$.

For each $n \in \mathbb{N}$, consider the random step processes

$$
\boldsymbol{\mathcal { X }}_{t}^{(n)}:=n^{-1} \boldsymbol{X}_{\lfloor n t\rfloor}^{(n)}, \quad t \in \mathbb{R}_{+}, \quad n \in \mathbb{N} .
$$

For a vector $\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i=1, \ldots, p} \in \mathbb{R}_{+}^{p}$, we will use notation $\boldsymbol{\alpha} \odot \boldsymbol{V}_{\boldsymbol{\xi}}:=\sum_{i=1}^{p} \alpha_{i} \boldsymbol{V}_{\boldsymbol{\xi}_{i}} \in$ $\mathbb{R}^{p \times p}$, which is a positive semi-definite matrix, a mixture of the variance matrices $\boldsymbol{V}_{\xi_{1}}, \ldots, \boldsymbol{V}_{\xi_{p}}$.

Theorem 3.1 Let $\left(\boldsymbol{X}_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}, \quad n \in \mathbb{N}$, be a sequence of critical primitive p-type branching processes with immigration sharing the same offspring and immigration distributions, but having possibly different initial distributions, such that $n^{-1} \boldsymbol{X}_{0}^{(n)} \xrightarrow{\mathcal{L}}$ $\mathcal{X}_{0} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}$, where \mathcal{X}_{0} is a nonnegative random variable with distribution μ. Suppose $\mathrm{E}\left(\left\|\boldsymbol{X}_{0}^{(n)}\right\|^{2}\right)=\mathrm{O}\left(n^{2}\right), \mathrm{E}\left(\left\|\boldsymbol{\xi}_{1,1, i}^{(1)}\right\|^{4}\right)<\infty$ for all $i \in\{1, \ldots, p\}$ and $\mathrm{E}\left(\left\|\varepsilon_{1}^{(1)}\right\|^{4}\right)<\infty$. Then

$$
\begin{equation*}
\boldsymbol{\mathcal { X }}^{(n)} \xrightarrow{\mathcal{L}} \mathcal{X} \boldsymbol{u}_{\boldsymbol{m}_{\boldsymbol{\xi}}} \quad \text { as } n \rightarrow \infty \tag{3.1}
\end{equation*}
$$

where $\left(\mathcal{X}_{t}\right)_{t \in \mathbb{R}_{+}}$is the unique weak solution (in the sense of probability law) of the $S D E$

$$
\begin{equation*}
\mathrm{d} \mathcal{X}_{t}=\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \boldsymbol{m}_{\boldsymbol{\varepsilon}} \mathrm{d} t+\sqrt{\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top}\left(\boldsymbol{u}_{\boldsymbol{m}_{\boldsymbol{\xi}}} \odot \boldsymbol{V}_{\boldsymbol{\xi}}\right) \boldsymbol{v}_{\boldsymbol{m}_{\xi}} \mathcal{X}_{t}^{+}} \mathrm{d} \mathcal{W}_{t}, \quad t \in \mathbb{R}_{+}, \tag{3.2}
\end{equation*}
$$

with initial distribution μ, where $\left(\mathcal{W}_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard Wiener process.

Remark 1 Theorem 3.1 will remain true under the weaker assumptions $E\left(\left\|\boldsymbol{\xi}_{1,1, i}^{(1)}\right\|^{2}\right)<$ ∞ for all $i \in\{1, \ldots, p\}$ and $\mathrm{E}\left(\left\|\varepsilon_{1}^{(1)}\right\|^{2}\right)<\infty$. In fact, the higher moment assumptions in the theorem are needed only for facilitating of checking the conditional Lindeberg
condition, namely, condition (ii) of Theorem A. 3 for proving convergence (3.4) of the martingale part. One can check the conditional Lindeberg condition under the weaker moment assumptions of Theorem 3.1 by the method of Ispány and Pap [19], see also this method in Barczy et al. [20]. If $d \geqslant 2$ then it is not clear if one might get rid of the assumption $\mathrm{E}\left(\left\|\boldsymbol{X}_{0}^{(n)}\right\|^{2}\right)=\mathrm{O}\left(n^{2}\right)$ in Theorem 3.1.

Remark 2 Under the assumptions of Theorem 3.1, by the same method, one can also prove $\widetilde{\mathcal{X}}^{(n)} \xrightarrow{\mathcal{L}} \widetilde{\mathcal{X}} \boldsymbol{u}_{\boldsymbol{m}_{\boldsymbol{\xi}}}$ as $n \rightarrow \infty$, where $\widetilde{\boldsymbol{\mathcal { X }}}_{t}^{(n)}:=n^{-1}\left(\boldsymbol{X}_{\lfloor n t\rfloor}^{(n)}-\boldsymbol{m}_{\boldsymbol{\xi}}^{\lfloor n t\rfloor} \boldsymbol{X}_{0}^{(n)}\right)$, $t \in \mathbb{R}_{+}$, $n \in \mathbb{N}$, and $\left(\widetilde{\mathcal{X}}_{t}\right)_{t \in \mathbb{R}_{+}}$is the unique strong solution of the SDE (3.2) with initial value $\widetilde{\mathcal{X}}_{0}=0$.

Remark 3 The SDE (3.2) has a unique strong solution $\left(\mathcal{X}_{t}^{\left(x_{0}\right)}\right)_{t \in \mathbb{R}_{+}}$for all initial values $\mathcal{X}_{0}^{\left(x_{0}\right)}=x_{0} \in \mathbb{R}$. Indeed, since $|\sqrt{x}-\sqrt{y}| \leqslant \sqrt{|x-y|}$ for $x, y \geqslant 0$, the coefficient functions $\mathbb{R} \ni x \mapsto \boldsymbol{v}_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{\top} \boldsymbol{m}_{\boldsymbol{\varepsilon}} \in \mathbb{R}_{+}$and $\mathbb{R} \ni x \mapsto \sqrt{\boldsymbol{v}_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{\top}\left(\boldsymbol{u}_{\boldsymbol{\xi}} \odot \boldsymbol{V}_{\boldsymbol{\xi}}\right) \boldsymbol{v}_{\boldsymbol{m}_{\boldsymbol{\xi}}} x^{+}}$ satisfy conditions of part (ii) of Theorem 3.5 in Chapter IX in Revuz and Yor [5] or the conditions of Proposition 5.2.13 in Karatzas and Shreve [21]. Further, by the comparison theorem (see, e.g., Revuz and Yor [5, Theorem 3.7, Chapter IX]), if the initial value $\mathcal{X}_{0}^{\left(x_{0}\right)}=x_{0}$ is nonnegative, then $\mathcal{X}_{t}^{(x)}$ is nonnegative for all $t \in \mathbb{R}_{+}$with probability one. Hence \mathcal{X}_{t}^{+}may be replaced by \mathcal{X}_{t} under the square root in (3.2).

Proof of Theorem 3.1. In order to prove (3.1), for each $n \in \mathbb{N}$, introduce the sequence

$$
\begin{equation*}
\boldsymbol{M}_{k}^{(n)}:=\boldsymbol{X}_{k}^{(n)}-\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)} \mid \mathcal{F}_{k-1}^{(n)}\right)=\boldsymbol{X}_{k}^{(n)}-\boldsymbol{m}_{\boldsymbol{\xi}} \boldsymbol{X}_{k-1}^{(n)}-\boldsymbol{m}_{\boldsymbol{\varepsilon}}, \quad k \in \mathbb{N} \tag{3.3}
\end{equation*}
$$

which is a sequence of martingale differences with respect to the filtration $\left(\mathcal{F}_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}$. Consider the random step processes

$$
\mathcal{M}_{t}^{(n)}:=n^{-1}\left(\boldsymbol{X}_{0}^{(n)}+\sum_{k=1}^{\lfloor n t\rfloor} \boldsymbol{M}_{k}^{(n)}\right), \quad t \in \mathbb{R}_{+}, \quad n \in \mathbb{N} .
$$

First we will verify convergence

$$
\begin{equation*}
\mathcal{M}^{(n)} \xrightarrow{\mathcal{L}} \boldsymbol{\mathcal { M }} \quad \text { as } n \rightarrow \infty, \tag{3.4}
\end{equation*}
$$

where $\left(\boldsymbol{\mathcal { M }}_{t}\right)_{t \in \mathbb{R}_{+}}$is the unique weak solution of the SDE

$$
\begin{equation*}
\mathrm{d} \boldsymbol{\mathcal { M }}_{t}=\sqrt{\left(\boldsymbol{\Pi}_{\boldsymbol{m}_{\boldsymbol{\xi}}}\left(\boldsymbol{\mathcal { M }}_{t}+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right)\right)^{+} \odot \boldsymbol{V}_{\boldsymbol{\xi}}} \mathrm{d} \boldsymbol{\mathcal { W }}_{t}, \quad t \in \mathbb{R}_{+}, \tag{3.5}
\end{equation*}
$$

with initial distribution $\boldsymbol{\mu}: \stackrel{\mathcal{L}}{=} \mathcal{X}_{0} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}$, where $\left(\mathcal{W}_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard p-dimensional Wiener process, \boldsymbol{x}^{+}denotes the positive part of $\boldsymbol{x} \in \mathbb{R}^{p}$, and for a positive semidefinite matrix $\boldsymbol{A} \in \mathbb{R}^{p \times p}, \sqrt{\boldsymbol{A}}$ denotes its unique symmetric positive semi-definite square root.

From (3.3) we obtain the recursion

$$
\begin{equation*}
\boldsymbol{X}_{k}^{(n)}=\boldsymbol{m}_{\boldsymbol{\xi}} \boldsymbol{X}_{k-1}^{(n)}+\boldsymbol{M}_{k}^{(n)}+\boldsymbol{m}_{\boldsymbol{\varepsilon}}, \quad k \in \mathbb{N}, \tag{3.6}
\end{equation*}
$$

implying

$$
\begin{equation*}
\boldsymbol{X}_{k}^{(n)}=\boldsymbol{m}_{\xi}^{k} \boldsymbol{X}_{0}^{(n)}+\sum_{j=1}^{k} \boldsymbol{m}_{\xi}^{k-j}\left(\boldsymbol{M}_{j}^{(n)}+\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right), \quad k \in \mathbb{N} . \tag{3.7}
\end{equation*}
$$

Applying a version of the continuous mapping theorem (see Appendix) together with (3.4) and (3.7), in Section 4 we show that

$$
\begin{equation*}
\boldsymbol{\mathcal { X }}^{(n)} \xrightarrow{\mathcal{L}} \boldsymbol{\mathcal { X }} \quad \text { as } n \rightarrow \infty \tag{3.8}
\end{equation*}
$$

where $\mathcal{X}_{t}:=\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\left(\mathcal{M}_{t}+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right), \quad t \in \mathbb{R}_{+}$. Using $\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}=\boldsymbol{u}_{\boldsymbol{m}_{\xi}} \boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top}$ and $\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}=1$ we get that the process $\mathcal{Y}_{t}:=\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \boldsymbol{\mathcal { X }}_{t}, t \in \mathbb{R}_{+}$, satisfies $\mathcal{Y}_{t}=\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \boldsymbol{\Pi}_{\boldsymbol{m}_{\boldsymbol{\xi}}}\left(\boldsymbol{\mathcal { M }}_{t}+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right)=$ $\boldsymbol{v}_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{\top}\left(\boldsymbol{\mathcal { M }}_{t}+{ }_{t \boldsymbol{m}_{\boldsymbol{\varepsilon}}}\right), \quad t \in \mathbb{R}_{+}$, hence $\boldsymbol{\mathcal { X }}_{t}=\mathcal{Y}_{t} \boldsymbol{u}_{\boldsymbol{m}_{\boldsymbol{\xi}}}$. By Itô's formula we obtain that $\left(\mathcal{Y}_{t}\right)_{t \in \mathbb{R}_{+}}$satisfies the $\operatorname{SDE}(3.2)$ (see the analysis of the process $\left(\mathcal{P}_{t}^{\left(\boldsymbol{y}_{0}\right)}\right)_{t \in \mathbb{R}_{+}}$in the first
equation of (4.1) and in equation (4.2)) such that $\mathcal{Y}_{0}=\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \boldsymbol{\mathcal { X }}_{0}=\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top}\left(\mathcal{X}_{0} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}\right)=\mathcal{X}_{0}$, thus we conclude the statement of Theorem 3.1.

Remark 4 By Itô's formula, the limit process $\left(\mathcal{X}_{t}\right)_{t \in \mathbb{R}_{+}}$in (3.1) can also be characterized as a weak solution of the SDE

$$
\begin{equation*}
\mathrm{d} \boldsymbol{\mathcal { X }}_{t}=\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{m}_{\boldsymbol{\varepsilon}} \mathrm{d} t+\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \sqrt{\boldsymbol{\mathcal { X }}_{t}^{+} \odot \boldsymbol{V}_{\boldsymbol{\xi}}} \mathrm{d} \mathcal{W}_{t}, \quad t \in \mathbb{R}_{+} \tag{3.9}
\end{equation*}
$$

with initial distribution $\Pi_{\boldsymbol{m}_{\xi}} \mathcal{M}_{0}=\boldsymbol{\Pi}_{\boldsymbol{m}_{\boldsymbol{\xi}}}\left(\mathcal{X}_{0} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}\right)=\mathcal{X}_{0} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}$, since $\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}=$ $\boldsymbol{u}_{\boldsymbol{m}_{\xi}} \boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}=\boldsymbol{u}_{\boldsymbol{m}_{\xi}}$.

Remark 5 The generator of $\left(\boldsymbol{\mathcal { M }}_{t}\right)_{t \in \mathbb{R}_{+}}$is given by

$$
\begin{aligned}
L_{t} f(\boldsymbol{x}) & =\frac{1}{2}\left\langle\left[\left(\boldsymbol{\Pi}_{\boldsymbol{m}_{\boldsymbol{\xi}}}\left(\boldsymbol{x}+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right)\right) \odot \boldsymbol{V}_{\boldsymbol{\xi}}\right] \nabla, \nabla\right\rangle f(\boldsymbol{x}) \\
& =\frac{1}{2}\left(\boldsymbol{x}+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right)^{\top} \boldsymbol{\Pi}_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{\top} \sum_{i=1}^{p} \sum_{j=1}^{p} \boldsymbol{V}_{\xi, i, j} \partial_{i} \partial_{j} f(\boldsymbol{x}), \quad t \in \mathbb{R}_{+}, \quad f \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{p}\right),
\end{aligned}
$$

where $\boldsymbol{V}_{\xi, i, j}:=\left(\operatorname{Cov}\left(\xi_{1,1, \ell, i}, \xi_{1,1, \ell, j}\right)\right)_{\ell=1, \ldots, d} \in \mathbb{R}_{+}^{p}$. (Joffe and Métivier [12, Theorem 4.3.1] also obtained this generator with $\boldsymbol{m}_{\boldsymbol{\varepsilon}}=\mathbf{0}$ deriving (3.4) for processes without immigration.)

4 Proof of $\mathcal{M}^{(n)} \xrightarrow{\mathcal{L}} \mathcal{M}$ and $\boldsymbol{X}^{(n)} \xrightarrow{\mathcal{L}} \mathcal{X}$

First we prove $\boldsymbol{\mathcal { M }}^{(n)} \xrightarrow{\mathcal{L}} \boldsymbol{\mathcal { M }}$ applying Theorem A. 3 for $\boldsymbol{\mathcal { U }}=\boldsymbol{\mathcal { M }}, \quad \boldsymbol{U}_{0}^{(n)}=n^{-1} \boldsymbol{X}_{0}^{(n)}$ and $\boldsymbol{U}_{k}^{(n)}=n^{-1} \boldsymbol{M}_{k}^{(n)}$ for $n, k \in \mathbb{N}$, and with coefficient function $\gamma: \mathbb{R}_{+} \times \mathbb{R}^{p} \rightarrow$ $\mathbb{R}^{p \times p}$ of the $\operatorname{SDE}(3.5)$ given by $\gamma(t, \boldsymbol{x})=\sqrt{\left(\boldsymbol{\Pi}_{\boldsymbol{m}_{\boldsymbol{\xi}}}\left(\boldsymbol{x}+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right)\right)^{+} \odot \boldsymbol{V}_{\boldsymbol{\xi}}}$. The aim of the following discussion is to show that the SDE (3.5) has a unique strong solution $\left(\boldsymbol{\mathcal { M }}_{t}^{\left(\boldsymbol{y}_{0}\right)}\right)_{t \in \mathbb{R}_{+}}$with initial value $\boldsymbol{\mathcal { M }}_{0}^{\left(\boldsymbol{y}_{0}\right)}=\boldsymbol{y}_{0}$ for all $\boldsymbol{y}_{0} \in \mathbb{R}^{p}$. First suppose that the

SDE (3.5), which can also be written in the form

$$
\mathrm{d} \boldsymbol{\mathcal { M }}_{t}=\sqrt{\left(\boldsymbol{v}_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{\top}\left(\boldsymbol{\mathcal { M }}_{t}+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right)\right)^{+}\left(\boldsymbol{u}_{\boldsymbol{m}_{\boldsymbol{\xi}}} \odot \boldsymbol{V}_{\boldsymbol{\xi}}\right)} \mathrm{d} \mathcal{W}_{t}
$$

has a strong solution $\left(\boldsymbol{\mathcal { M }}_{t}^{\left(\boldsymbol{y}_{0}\right)}\right)_{t \in \mathbb{R}_{+}}$with $\boldsymbol{\mathcal { M }}_{0}^{\left(\boldsymbol{y}_{0}\right)}=\boldsymbol{y}_{0}$. Then, by Itô's formula, the process $\left(\mathcal{P}_{t}^{\left(\boldsymbol{y}_{0}\right)}, \boldsymbol{\mathcal { Q }}_{t}^{\left(\boldsymbol{y}_{0}\right)}\right)_{t \in \mathbb{R}_{+}}$, defined by

$$
\mathcal{P}_{t}^{\left(\boldsymbol{y}_{0}\right)}:=\boldsymbol{v}_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{\top}\left(\boldsymbol{\mathcal { M }}_{t}^{\left(\boldsymbol{y}_{0}\right)}+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right), \quad \mathcal{Q}_{t}^{\left(\boldsymbol{y}_{0}\right)}:=\boldsymbol{\mathcal { M }}_{t}^{\left(\boldsymbol{y}_{0}\right)}-\mathcal{P}_{t}^{\left(\boldsymbol{y}_{0}\right)} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}
$$

is a strong solution of the SDE

$$
\left\{\begin{array}{l}
\mathrm{d} \mathcal{P}_{t}=\boldsymbol{v}_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{\top} \boldsymbol{m}_{\boldsymbol{\varepsilon}} \mathrm{d} t+\sqrt{\mathcal{P}_{t}^{+}} \boldsymbol{v}_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{\top} \sqrt{\boldsymbol{u}_{\boldsymbol{m}_{\xi}} \odot \boldsymbol{V}_{\boldsymbol{\xi}}} \mathrm{d} \mathcal{\mathcal { W }}_{t}, \tag{4.1}\\
\mathrm{~d} \boldsymbol{\mathcal { Q }}_{t}=-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{m}_{\boldsymbol{\varepsilon}} \mathrm{d} t+\sqrt{\mathcal{P}_{t}^{+}}\left(\boldsymbol{I}_{p}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) \sqrt{\boldsymbol{u}_{\boldsymbol{m}_{\xi}} \odot \boldsymbol{V}_{\boldsymbol{\xi}}} \mathrm{d} \mathcal{W}_{t}
\end{array}\right.
$$

with initial value $\left(\mathcal{P}_{0}^{\left(\boldsymbol{y}_{0}\right)}, \mathcal{Q}_{0}^{\left(\boldsymbol{y}_{0}\right)}\right)=\left(\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \boldsymbol{y}_{0},\left(\boldsymbol{I}_{d}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) \boldsymbol{y}_{0}\right)$, where \boldsymbol{I}_{p} denotes the p-dimensional unit matrix. The SDE (4.1) has a unique strong solution $\left(\mathcal{P}_{t}^{\left(p_{0}\right)}, \mathcal{\mathcal { Q }}_{t}^{\left(\boldsymbol{q}_{0}\right)}\right)_{t \in \mathbb{R}_{+}}$, with an arbitrary initial value $\left(\mathcal{P}_{0}^{\left(p_{0}\right)}, \mathcal{Q}_{0}^{\left(\boldsymbol{q}_{0}\right)}\right)=\left(p_{0}, \boldsymbol{q}_{0}\right) \in \mathbb{R}_{+} \times \mathbb{R}^{p}$, since the first equation of (4.1) can be written in the form

$$
\begin{equation*}
\mathrm{d} \mathcal{P}_{t}=b \mathrm{~d} t+\sqrt{\mathcal{P}_{t}^{+}} \mathrm{d} \widetilde{\mathcal{W}}_{t} \tag{4.2}
\end{equation*}
$$

with $b:=\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \boldsymbol{m}_{\boldsymbol{\varepsilon}} \in \mathbb{R}_{+}$and

$$
\widetilde{\mathcal{W}_{t}}:=\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \sqrt{\boldsymbol{u}_{m_{\xi}} \odot \boldsymbol{V}_{\boldsymbol{\xi}}} \mathcal{W}_{t}=\sqrt{\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top}\left(\boldsymbol{u}_{\boldsymbol{m}_{\xi}} \odot \boldsymbol{V}_{\boldsymbol{\xi}}\right) \boldsymbol{v}_{\boldsymbol{m}_{\xi}}} \mathcal{W}_{t}
$$

where $\left(\mathcal{W}_{t}\right)_{t \in \mathbb{R}_{+}}$is a standard one-dimensional Wiener process. (Equation (4.2) can be discussed as equation (3.2) in Remark 3.) If $\left(\mathcal{P}_{t}^{\left(\boldsymbol{y}_{0}\right)}, \mathcal{Q}_{t}^{\left(\boldsymbol{y}_{0}\right)}\right)_{t \in \mathbb{R}_{+}}$is the unique strong solution of the SDE (4.1) with the initial value $\left(\mathcal{P}_{0}^{\left(\boldsymbol{y}_{0}\right)}, \mathcal{Q}_{0}^{\left(\boldsymbol{y}_{0}\right)}\right)=\left(\boldsymbol{v}_{\boldsymbol{m}_{\xi}}^{\top} \boldsymbol{y}_{0},\left(\boldsymbol{I}_{p}-\right.\right.$
$\left.\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) \boldsymbol{y}_{0}$), then, again by Itô's formula,

$$
\mathcal{M}_{t}^{\left(\boldsymbol{y}_{0}\right)}:=\mathcal{P}_{t}^{\left(\boldsymbol{y}_{0}\right)} \boldsymbol{u}_{\boldsymbol{m}_{\xi}}+\mathcal{Q}_{t}^{\left(\boldsymbol{y}_{0}\right)}, \quad t \in \mathbb{R}_{+},
$$

is a strong solution of (3.5) with $\boldsymbol{\mathcal { M }}_{0}^{\left(\boldsymbol{y}_{0}\right)}=\boldsymbol{y}_{0}$. Consequently, (3.5) admits a unique strong solution $\left(\boldsymbol{\mathcal { M }}_{t}^{\left(\boldsymbol{y}_{0}\right)}\right)_{t \in \mathbb{R}_{+}}$with $\boldsymbol{\mathcal { M }}_{0}^{\left(\boldsymbol{y}_{0}\right)}=\boldsymbol{y}_{0}$ for all $\boldsymbol{y}_{0} \in \mathbb{R}^{p}$.

Now we show that conditions (i) and (ii) of Theorem A. 3 hold. We have to check that, for each $T>0$,

$$
\begin{align*}
& \sup _{t \in[0, T]}\left\|\frac{1}{n^{2}} \sum_{k=1}^{\lfloor n t\rfloor} \mathrm{E}\left[\boldsymbol{M}_{k}^{(n)}\left(\boldsymbol{M}_{k}^{(n)}\right)^{\top} \mid \mathcal{F}_{k-1}^{(n)}\right]-\int_{0}^{t}\left(\boldsymbol{\mathcal { R }}_{s}^{(n)}\right)_{+} \mathrm{d} s \odot \boldsymbol{V}_{\boldsymbol{\xi}}\right\| \xrightarrow{\mathrm{P}} 0, \tag{4.3}\\
& \frac{1}{n^{2}} \sum_{k=1}^{\lfloor n T\rfloor} \mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|^{2} \mathbb{1}_{\left\{\left\|\boldsymbol{M}_{k}^{(n)}\right\|>n \theta\right\}} \mid \mathcal{F}_{k-1}^{(n)}\right) \xrightarrow{\mathrm{P}} 0 \quad \text { for all } \theta>0 \tag{4.4}
\end{align*}
$$

as $n \rightarrow \infty$, where the process $\left(\boldsymbol{\mathcal { R }}_{t}^{(n)}\right)_{t \in \mathbb{R}_{+}}$is defined by

$$
\begin{equation*}
\boldsymbol{\mathcal { R }}_{t}^{(n)}:=\boldsymbol{\Pi}_{\boldsymbol{m}_{\boldsymbol{\xi}}}\left(\mathcal{M}_{t}^{(n)}+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right), \quad t \in \mathbb{R}_{+}, \quad n \in \mathbb{N} . \tag{4.5}
\end{equation*}
$$

By (3.3),

$$
\begin{aligned}
\boldsymbol{\mathcal { R }}_{t}^{(n)} & =\boldsymbol{\Pi}_{m_{\xi}}\left(n^{-1}\left(\boldsymbol{X}_{0}^{(n)}+\sum_{k=1}^{\lfloor n t\rfloor}\left(\boldsymbol{X}_{k}^{(n)}-\boldsymbol{m}_{\boldsymbol{\xi}} \boldsymbol{X}_{k-1}^{(n)}-\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right)\right)+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right) \\
& =n^{-1} \boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{X}_{\lfloor n t\rfloor}^{(n)}+n^{-1}(n t-\lfloor n t\rfloor) \boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{m}_{\boldsymbol{\varepsilon}}
\end{aligned}
$$

where we used that $\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{m}_{\boldsymbol{\xi}}=\left(\lim _{n \rightarrow \infty} \boldsymbol{m}_{\boldsymbol{\xi}}^{n}\right) \boldsymbol{m}_{\boldsymbol{\xi}}=\lim _{n \rightarrow \infty} \boldsymbol{m}_{\xi}^{n+1}=\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}$ implies $\boldsymbol{\Pi}_{\boldsymbol{m}_{\boldsymbol{\xi}}}\left(\boldsymbol{I}_{p}-\right.$ $\left.\boldsymbol{m}_{\boldsymbol{\xi}}\right)=\mathbf{0}$. Thus $\left(\boldsymbol{\mathcal { R }}_{t}^{(n)}\right)_{+}=\boldsymbol{\mathcal { R }}_{t}^{(n)}$, and
$\int_{0}^{t}\left(\boldsymbol{R}_{s}^{(n)}\right)_{+} \mathrm{d} s=\frac{1}{n^{2}} \sum_{\ell=0}^{\lfloor n t\rfloor-1} \boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{X}_{\ell}^{(n)}+\frac{n t-\lfloor n t\rfloor}{n^{2}} \boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{X}_{\lfloor n t\rfloor}^{(n)}+\frac{\lfloor n t\rfloor+(n t-\lfloor n t\rfloor)^{2}}{2 n^{2}} \boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{m}_{\boldsymbol{\varepsilon}}$.

Using (A.4), we obtain

$$
\frac{1}{n^{2}} \sum_{k=1}^{\lfloor n t\rfloor} \mathrm{E}\left[\boldsymbol{M}_{k}^{(n)}\left(\boldsymbol{M}_{k}^{(n)}\right)^{\top} \mid \mathcal{F}_{k-1}^{(n)}\right]=\frac{\lfloor n t\rfloor}{n^{2}} \boldsymbol{V}_{\boldsymbol{\varepsilon}}+\frac{1}{n^{2}} \sum_{k=1}^{\lfloor n t\rfloor} \boldsymbol{X}_{k-1}^{(n)} \odot \boldsymbol{V}_{\boldsymbol{\xi}}
$$

Hence, in order to show (4.3), it suffices to prove

$$
\begin{equation*}
\sup _{t \in[0, T]} \frac{1}{n^{2}} \sum_{k=0}^{\lfloor n t\rfloor-1}\left\|\left(\boldsymbol{I}_{p}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) \boldsymbol{X}_{k}^{(n)}\right\| \xrightarrow{\mathrm{P}} 0, \quad \sup _{t \in[0, T]} \frac{1}{n^{2}}\left\|\boldsymbol{X}_{\lfloor n t\rfloor}^{(n)}\right\| \xrightarrow{\mathrm{P}} 0 \tag{4.6}
\end{equation*}
$$

as $n \rightarrow \infty$. Using (3.7) and $\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} \boldsymbol{m}_{\boldsymbol{\xi}}=\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}$, we obtain

$$
\left(\boldsymbol{I}_{d}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) \boldsymbol{X}_{k}^{(n)}=\left(\boldsymbol{m}_{\xi}^{k}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) \boldsymbol{X}_{0}^{(n)}+\sum_{j=1}^{k}\left(\boldsymbol{m}_{\xi}^{k-j}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right)\left(\boldsymbol{M}_{j}^{n)}+\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right)
$$

Hence by (2.5),

$$
\begin{aligned}
\sum_{k=0}^{\lfloor n t\rfloor-1}\left\|\left(\boldsymbol{I}_{d}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) \boldsymbol{X}_{k}^{(n)}\right\| & \leqslant c_{\boldsymbol{m}_{\xi}} \sum_{k=0}^{\lfloor n t\rfloor-1} r_{\boldsymbol{m}_{\xi}}^{k}\left\|\boldsymbol{X}_{0}^{(n)}\right\|+c_{\boldsymbol{m}_{\xi}} \sum_{k=1}^{\lfloor n t\rfloor-1} \sum_{j=1}^{k} r_{\boldsymbol{m}_{\xi}}^{k-j}\left\|\boldsymbol{M}_{j}^{(n)}+\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\| \\
& \leqslant \frac{c_{\boldsymbol{m}_{\boldsymbol{\xi}}}}{1-r_{\boldsymbol{m}_{\xi}}}\left(\left\|\boldsymbol{X}_{0}^{(n)}\right\|+\lfloor n t\rfloor \cdot\left\|\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\|+\sum_{j=1}^{\lfloor n t\rfloor-1}\left\|\boldsymbol{M}_{j}^{(n)}\right\|\right)
\end{aligned}
$$

Moreover, by (3.7) and (A.8),

$$
\begin{aligned}
\left\|\boldsymbol{X}_{\lfloor n t\rfloor}\right\| & \leqslant\left\|\boldsymbol{m}_{\boldsymbol{\xi}}^{\lfloor n t\rfloor}\right\| \cdot\left\|\boldsymbol{X}_{0}^{(n)}\right\|+\sum_{j=1}^{\lfloor n t\rfloor}\left\|\boldsymbol{m}_{\boldsymbol{\xi}}^{\lfloor n t\rfloor-j}\right\| \cdot\left\|\boldsymbol{M}_{j}^{(n)}+\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\| \\
& \leqslant C_{\boldsymbol{m}_{\xi}}\left(\left\|\boldsymbol{X}_{0}^{(n)}\right\|+\lfloor n t\rfloor \cdot\left\|\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\|+\sum_{j=1}^{\lfloor n t\rfloor}\left\|\boldsymbol{M}_{j}^{(n)}\right\|\right)
\end{aligned}
$$

where $C_{\boldsymbol{m}_{\xi}}$ is defined by (A.8). Consequently, in order to prove (4.6), it suffices to show

$$
\frac{1}{n^{2}} \sum_{j=1}^{\lfloor n T\rfloor}\left\|\boldsymbol{M}_{j}^{(n)}\right\| \xrightarrow{\mathrm{P}} 0, \quad \frac{1}{n^{2}}\left\|\boldsymbol{X}_{0}^{(n)}\right\| \xrightarrow{\mathrm{P}} 0 \quad \text { as } n \rightarrow \infty .
$$

In fact, assumption $n^{-1} \boldsymbol{X}_{0}^{(n)} \xrightarrow{\mathcal{L}} \boldsymbol{\mu}$ implies the second convergence, while Lemma
A. 2 yields $n^{-2} \sum_{j=1}^{\lfloor n T\rfloor} \mathrm{E}\left(\left\|\boldsymbol{M}_{j}^{(n)}\right\|\right) \rightarrow 0$, thus we obtain (4.3).

Next we check condition (4.4). We have

$$
\mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|^{2} \mathbb{1}_{\left\{\left\|\boldsymbol{M}_{k}^{(n)}\right\|>n \theta\right\}} \mid \mathcal{F}_{k-1}^{(n)}\right) \leqslant n^{-2} \theta^{-2} \mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|^{4} \mid \mathcal{F}_{k-1}^{(n)}\right) .
$$

Moreover, $n^{-4} \sum_{k=1}^{\lfloor n T\rfloor} \mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|^{4}\right) \rightarrow 0$ as $n \rightarrow \infty$, since $\mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|^{4}\right)=\mathrm{O}\left((k+n)^{2}\right)$ by Lemma A.2. Hence we obtain (4.4).

Now we turn to prove (3.8) applying Lemma A.4. By (3.7), $\boldsymbol{\mathcal { X }}^{(n)}=\Psi_{n}\left(\boldsymbol{\mathcal { M }}^{(n)}\right)$, where the mapping $\Psi_{n}: \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right) \rightarrow \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$ is given by

$$
\Psi_{n}(f)(t):=\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor} f(0)+\sum_{j=1}^{\lfloor n t\rfloor} \boldsymbol{m}_{\boldsymbol{\xi}}^{\lfloor n t\rfloor-j}\left(f\left(\frac{j}{n}\right)-f\left(\frac{j-1}{n}\right)+n^{-1} \boldsymbol{m}_{\varepsilon}\right)
$$

for $f \in \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right), \quad t \in \mathbb{R}_{+}, \quad n \in \mathbb{N}$. Further, $\boldsymbol{\mathcal { X }}=\Psi(\boldsymbol{\mathcal { M }})$, where the mapping $\Psi: \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right) \rightarrow \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$ is given by

$$
\Psi(f)(t):=\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\left(f(t)+t \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right), \quad f \in \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right), \quad t \in \mathbb{R}_{+}
$$

Measurability of the mappings $\Psi_{n}, n \in \mathbb{N}$, and Ψ can be checked as in Barczy et al. [20].

The aim of the following discussion is to show that the set $C:=\left\{f \in \mathrm{C}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)\right.$: $\left.\Pi_{\boldsymbol{m}_{\xi}} f(0)=f(0)\right\}$ satisfies $C \in \mathcal{D}_{\infty}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right), C \subset C_{\Psi,\left(\Psi_{n}\right)_{n \in \mathbb{N}}}$ and $\mathrm{P}(\boldsymbol{\mathcal { M }} \in C)=1$. Note that $f \in C$ implies $f(0) \in \mathbb{R} \cdot \boldsymbol{u}_{\boldsymbol{m}_{\xi}}$.

First note that $C=\mathrm{C}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right) \cap \pi_{0}^{-1}\left(\left(\boldsymbol{I}_{p}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right)^{-1}(\{0\})\right)$, where $\pi_{0}: \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right) \rightarrow$ \mathbb{R}^{p} denotes the projection defined by $\pi_{0}(f):=f(0)$ for $f \in \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$. Using that $\mathrm{C}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right) \in \mathcal{D}_{\infty}$ (see, e.g., Ethier and Kurtz [7, Problem 3.11.25]), the mapping $\mathbb{R}^{p} \ni \boldsymbol{x} \mapsto\left(\boldsymbol{I}_{p}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) \boldsymbol{x} \in \mathbb{R}^{p}$ is measurable and that π_{0} is measurable (see, e.g., Ethier and Kurtz [7, Proposition 3.7.1]), we obtain $C \in \mathcal{D}_{\infty}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$.

Fix a function $f \in C$ and a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\mathrm{D}\left(\mathbb{R}^{p}\right)$ with $f_{n} \xrightarrow{\text { lu }} f$. By the definition of Ψ, we have $\Psi(f) \in C\left(\mathbb{R}^{p}\right)$. Further, we can write

$$
\begin{aligned}
\Psi_{n}\left(f_{n}\right)(t)= & \boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\left(f_{n}\left(\frac{\lfloor n t\rfloor}{n}\right)+\frac{\lfloor n t\rfloor}{n} \boldsymbol{m}_{\varepsilon}\right)+\left(\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) f(0) \\
& +\sum_{j=1}^{\lfloor n t\rfloor}\left(\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor-j}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right)\left(f_{n}\left(\frac{j}{n}\right)-f\left(\frac{j-1}{n}\right)+\frac{1}{n} \boldsymbol{m}_{\varepsilon}\right),
\end{aligned}
$$

hence we have

$$
\begin{aligned}
& \left\|\Psi_{n}\left(f_{n}\right)(t)-\Psi(f)(t)\right\| \leqslant\left\|\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right\|\left(\left\|f_{n}\left(\frac{\lfloor n t\rfloor}{n}\right)-f(t)\right\|+\frac{1}{n}\left\|\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\|\right) \\
& \quad+\left\|\left(\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) f_{n}(0)\right\|+\sum_{j=1}^{\lfloor n t\rfloor}\left\|\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor-j}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right\|\left(\left\|f_{n}\left(\frac{j}{n}\right)-f_{n}\left(\frac{j-1}{n}\right)\right\|+\frac{1}{n}\left\|\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\|\right) .
\end{aligned}
$$

For all $T>0$ and $t \in[0, T]$,

$$
\begin{aligned}
\left\|f_{n}\left(\frac{\lfloor n t\rfloor}{n}\right)-f(t)\right\| & \leqslant\left\|f_{n}\left(\frac{\lfloor n t\rfloor}{n}\right)-f\left(\frac{\lfloor n t\rfloor}{n}\right)\right\|+\left\|f\left(\frac{\lfloor n t\rfloor}{n}\right)-f(t)\right\| \\
& \leqslant \omega_{T}\left(f, n^{-1}\right)+\sup _{t \in[0, T]}\left\|f_{n}(t)-f(t)\right\|
\end{aligned}
$$

where $\omega_{T}(f, \cdot)$ is the modulus of continuity of f on $[0, T]$, and we have $\omega_{T}\left(f, n^{-1}\right) \rightarrow$ 0 since f is continuous (see, e.g., Jacod and Shiryaev [18, VI.1.6]). In a similar way,

$$
\left\|f_{n}\left(\frac{j}{n}\right)-f_{n}\left(\frac{j-1}{n}\right)\right\| \leqslant \omega_{T}\left(f, n^{-1}\right)+2 \sup _{t \in[0, T]}\left\|f_{n}(t)-f(t)\right\|
$$

By (2.5),

$$
\sum_{j=1}^{\lfloor n t\rfloor}\left\|\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor-j}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\boldsymbol{\xi}}}\right\| \leqslant \sum_{j=1}^{\lfloor n T\rfloor} c_{\boldsymbol{m}_{\xi}}{\underset{\boldsymbol{m}}{\xi}}_{\lfloor n t\rfloor-j} \leqslant \frac{c_{\boldsymbol{m}_{\xi}}}{1-r_{\boldsymbol{m}_{\xi}}}
$$

Further,

$$
\begin{aligned}
\left\|\left(\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) f_{n}(0)\right\| & \leqslant\left\|\left(\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right)\left(f_{n}(0)-f(0)\right)\right\|+\left\|\left(\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) f(0)\right\| \\
& \leqslant c_{\boldsymbol{m}_{\xi}} \sup _{t \in[0, T]}\left\|f_{n}(t)-f(t)\right\|,
\end{aligned}
$$

since $\left(\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor}-\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right) f(0)=\mathbf{0}$ for all $t \in \mathbb{R}_{+}$. Indeed, $\boldsymbol{m}_{\boldsymbol{\xi}} \boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}=\boldsymbol{m}_{\xi} \lim _{n \rightarrow \infty} \boldsymbol{m}_{\xi}^{n}=$ $\lim _{n \rightarrow \infty} \boldsymbol{m}_{\xi}^{n+1}=\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}$ and $f(0)=\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} f(0)$ imply $\quad \boldsymbol{m}_{\xi}^{\lfloor n t\rfloor} f(0)=\boldsymbol{m}_{\xi}^{\lfloor n t\rfloor} \boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}} f(0)=$ $\Pi_{\boldsymbol{m}_{\xi}} f(0)$. Thus we conclude $C \subset C_{\Psi,\left(\Psi_{n}\right)_{n \in \mathbb{N}}}$.

By the definition of a weak solution (see, e.g., Jacod and Shiryaev [18, Definition 2.24, Chapter III] $), \boldsymbol{\mathcal { M }}$ has almost sure continuous sample paths, so we have $\mathrm{P}(\boldsymbol{\mathcal { M }} \in$ $C)=$ 1. Consequently, by Lemma A.4, we obtain $\boldsymbol{\mathcal { X }}^{(n)}=\Psi_{n}\left(\boldsymbol{\mathcal { M }}^{(n)}\right) \xrightarrow{\mathcal{L}} \Psi(\boldsymbol{\mathcal { M }}) \stackrel{\mathcal{L}}{=} \boldsymbol{\mathcal { X }}$ as $n \rightarrow \infty$.

Acknowledgements

M. Ispány has been supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The project has been supported by the European Union, co-financed by the European Social Fund. The research of G. Pap was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 ,,National Excellence Program - Elaborating and operating an inland student and researcher personal support system". The project was subsidized by the European Union and co-financed by the European Social Fund.

Appendix

In the proof of Theorem 3.1 we will use some facts about the first and second order moments of the sequences $\left(\boldsymbol{X}_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}$and $\left(\boldsymbol{M}_{k}^{(n)}\right)_{k \in \mathbb{N}}$.

Lemma A. 1 Under the assumptions of Theorem 3.1 we have for all $k, n \in \mathbb{N}$

$$
\begin{gather*}
\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right)=\boldsymbol{m}_{\boldsymbol{\xi}}^{k} \mathrm{E}\left(\boldsymbol{X}_{0}^{(n)}\right)+\sum_{j=0}^{k-1} \boldsymbol{m}_{\boldsymbol{\xi}}^{j} \boldsymbol{m}_{\boldsymbol{\varepsilon}} \tag{A.1}\\
\operatorname{Var}\left(\boldsymbol{X}_{k}^{(n)}\right)=\sum_{j=0}^{k-1} \boldsymbol{m}_{\boldsymbol{\xi}}^{j}\left[\boldsymbol{V}_{\boldsymbol{\varepsilon}}+\left(\boldsymbol{m}_{\xi}^{k-j-1} \mathrm{E}\left(\boldsymbol{X}_{0}^{(n)}\right)\right) \odot \boldsymbol{V}_{\xi}\right]\left(\boldsymbol{m}_{\boldsymbol{\xi}}^{\top}\right)^{j} \\
+\boldsymbol{m}_{\boldsymbol{\xi}}^{k}\left(\operatorname{Var}\left(\boldsymbol{X}_{0}^{(n)}\right)\right)\left(\boldsymbol{m}_{\boldsymbol{\xi}}^{\top}\right)^{k}+\sum_{j=0}^{k-2} \boldsymbol{m}_{\boldsymbol{\xi}}^{j} \sum_{\ell=0}^{k-j-2}\left[\left(\boldsymbol{m}_{\boldsymbol{\xi}}^{\ell} \boldsymbol{m}_{\boldsymbol{\varepsilon}}\right) \odot \boldsymbol{V}_{\xi}\right]\left(\boldsymbol{m}_{\boldsymbol{\xi}}^{\top}\right)^{j} \tag{A.2}
\end{gather*}
$$

Moreover,

$$
\begin{align*}
\mathrm{E}\left(\boldsymbol{M}_{k}^{(n)} \mid \mathcal{F}_{k-1}^{(n)}\right)=\mathbf{0} \quad \text { for } k, n \in \mathbb{N}, \tag{A.3}\\
\mathrm{E}\left[\boldsymbol{M}_{k}^{(n)}\left(\boldsymbol{M}_{\ell}^{(n)}\right)^{\top} \mid \mathcal{F}_{\max \{k, \ell\}-1}^{(n)}\right]= \begin{cases}\boldsymbol{V}_{\boldsymbol{\varepsilon}}+\boldsymbol{X}_{k-1}^{(n)} \odot \boldsymbol{V}_{\boldsymbol{\xi}} & \text { if } k=\ell, \\
\mathbf{0} & \text { if } k \neq \ell .\end{cases} \tag{A.4}
\end{align*}
$$

Further,

$$
\begin{align*}
\mathrm{E}\left(\boldsymbol{M}_{k}^{(n)}\right) & =\mathbf{0} \quad \text { for } k \in \mathbb{N}, \tag{A.5}\\
\mathrm{E}\left[\boldsymbol{M}_{k}^{(n)}\left(\boldsymbol{M}_{\ell}^{(n)}\right)^{\top}\right] & = \begin{cases}\boldsymbol{V}_{\boldsymbol{\varepsilon}}+\mathrm{E}\left(\boldsymbol{X}_{k-1}^{(n)}\right) \odot \boldsymbol{V}_{\boldsymbol{\xi}} & \text { if } k=\ell \\
\mathbf{0} & \text { if } k \neq \ell\end{cases}
\end{align*}
$$

Proof. We have already proved (A.1), see (2.4). The equality $\boldsymbol{M}_{k}^{(n)}=\boldsymbol{X}_{k}^{(n)}-$ $\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)} \mid \mathcal{F}_{k-1}^{(n)}\right)$ clearly implies (A.3) and (A.5). By (2.1) and (3.3),

$$
\begin{equation*}
\boldsymbol{M}_{k}^{(n)}=\boldsymbol{X}_{k}^{(n)}-\sum_{i=1}^{p} X_{k-1, i}^{(n)} \mathrm{E}\left(\boldsymbol{\xi}_{1,1, i}^{(1)}\right)-\boldsymbol{m}_{\boldsymbol{\varepsilon}}=\left(\boldsymbol{\varepsilon}_{k}-\mathrm{E}\left(\boldsymbol{\varepsilon}_{k}\right)\right)+\sum_{i=1}^{p} \sum_{j=1}^{X_{k-1, i}^{(n)}}\left(\boldsymbol{\xi}_{k, j, i}^{(n)}-\mathrm{E}\left(\boldsymbol{\xi}_{k, j, i}^{(n)}\right)\right) . \tag{A.7}
\end{equation*}
$$

For each $k, n \in \mathbb{N}$, the random vectors $\left\{\boldsymbol{\xi}_{k, j, i}^{(n)}-\mathrm{E}\left(\boldsymbol{\xi}_{k, j, i}^{(n)}\right), \boldsymbol{\varepsilon}_{k}^{(n)}-\mathrm{E}\left(\boldsymbol{\varepsilon}_{k}^{(n)}\right): j \in \mathbb{N}, i \in\right.$ $\{1, \ldots, p\}\}$ are independent of each others, independent of $\mathcal{F}_{k-1}^{(n)}$, and have zero
mean, thus in case $k=\ell$ we conclude (A.4) and hence (A.6). If $k<\ell$ then $\mathrm{E}\left[\boldsymbol{M}_{k}^{(n)}\left(\boldsymbol{M}_{\ell}^{(n)}\right)^{\top} \mid \mathcal{F}_{\ell-1}^{(n)}\right]=\boldsymbol{M}_{k}^{(n)} \mathrm{E}\left[\left(\boldsymbol{M}_{\ell}^{(n)}\right)^{\top} \mid \mathcal{F}_{\ell-1}^{(n)}\right]=\mathbf{0}$ by (A.3), thus we obtain (A.4) and (A.6) in case $k \neq \ell$.

By (3.7) and (A.1), we conclude

$$
\boldsymbol{X}_{k}^{(n)}-\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right)=\boldsymbol{m}_{\boldsymbol{\xi}}^{k}\left(\boldsymbol{X}_{0}^{(n)}-\mathrm{E}\left(\boldsymbol{X}_{0}^{(n)}\right)\right)+\sum_{j=1}^{k} \boldsymbol{m}_{\boldsymbol{\xi}}^{k-j} \boldsymbol{M}_{j}^{(n)}
$$

Now by (A.6),

$$
\begin{aligned}
\operatorname{Var}\left(\boldsymbol{X}_{k}^{(n)}\right)= & \boldsymbol{m}_{\boldsymbol{\xi}}^{k} \mathrm{E}\left[\left(\boldsymbol{X}_{0}^{(n)}-\mathrm{E}\left(\boldsymbol{X}_{0}^{(n)}\right)\right)\left(\boldsymbol{X}_{0}^{(n)}-\mathrm{E}\left(\boldsymbol{X}_{0}^{(n)}\right)\right)^{\top}\right]\left(\boldsymbol{m}_{\boldsymbol{\xi}}^{\top}\right)^{k} \\
& +\sum_{j=1}^{k} \sum_{\ell=1}^{k}\left(\boldsymbol{m}_{\boldsymbol{\xi}}^{\top}\right)^{k-j} \mathrm{E}\left[\boldsymbol{M}_{j}^{n}\left(\boldsymbol{M}_{\ell}^{n}\right)^{\top}\right]\left(\boldsymbol{m}_{\boldsymbol{\xi}}\right)^{k-\ell} \\
= & \boldsymbol{m}_{\boldsymbol{\xi}}^{k} \operatorname{Var}\left(\boldsymbol{X}_{0}^{(n)}\right)\left(\boldsymbol{m}_{\boldsymbol{\xi}}^{\top}\right)^{k}+\sum_{j=1}^{k} \boldsymbol{m}_{\xi}^{k-j} \mathrm{E}\left[\boldsymbol{M}_{j}^{(n)}\left(\boldsymbol{M}_{j}^{(n)}\right)^{\top}\right]\left(\boldsymbol{m}_{\boldsymbol{\xi}}^{\top}\right)^{k-j} .
\end{aligned}
$$

Finally, using the expression in (A.6) for $\mathrm{E}\left[\boldsymbol{M}_{j}^{(n)}\left(\boldsymbol{M}_{j}^{(n)}\right)^{\top}\right]$ we obtain (A.2).

Lemma A. 2 Under the assumptions of Theorem 3.1 we have

$$
\begin{gathered}
\mathrm{E}\left(\left\|\boldsymbol{X}_{k}^{(n)}\right\|\right)=\mathrm{O}(k+n), \quad \mathrm{E}\left(\left\|\boldsymbol{X}_{k}^{(n)}\right\|^{2}\right)=\mathrm{O}\left((k+n)^{2}\right), \\
\mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|\right)=\mathrm{O}\left((k+n)^{1 / 2}\right), \quad \mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|^{4}\right)=\mathrm{O}\left((k+n)^{2}\right) .
\end{gathered}
$$

Proof. By (A.1),

$$
\left\|\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right)\right\| \leqslant\left\|\boldsymbol{m}_{\boldsymbol{\xi}}^{k}\right\| \cdot \mathrm{E}\left(\left\|\boldsymbol{X}_{0}^{(n)}\right\|\right)+\sum_{j=0}^{k-1}\left\|\boldsymbol{m}_{\boldsymbol{\xi}}^{j}\right\| \cdot\left\|\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\| \leqslant C_{\boldsymbol{m}_{\boldsymbol{\xi}}}\left(\sqrt{C} n+\left\|\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\| k\right)
$$

where

$$
\begin{equation*}
C_{\boldsymbol{m}_{\xi}}:=\sup _{j \in \mathbb{Z}_{+}}\left\|\boldsymbol{m}_{\xi}^{j}\right\|<\infty, \quad C:=\sup _{n \in \mathbb{N}} n^{-2} \mathrm{E}\left(\left\|\boldsymbol{X}_{0}^{(n)}\right\|^{2}\right)<\infty \tag{A.8}
\end{equation*}
$$

since (2.5) implies $C_{\boldsymbol{m}_{\xi}} \leqslant c_{\boldsymbol{m}_{\boldsymbol{\xi}}}+\left\|\boldsymbol{\Pi}_{\boldsymbol{m}_{\xi}}\right\|$. Hence, we obtain $\mathrm{E}\left(\left\|\boldsymbol{X}_{k}^{(n)}\right\|\right) \leqslant$ $p\left\|\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right)\right\|=\mathrm{O}(k+n)$.

We have

$$
\begin{aligned}
\mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|\right) & \leqslant \sqrt{\mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|^{2}\right)}=\sqrt{\mathrm{E}\left[\operatorname{tr}\left(\boldsymbol{M}_{k}^{(n)}\left(\boldsymbol{M}_{k}^{(n)}\right)^{\top}\right)\right]}=\sqrt{\operatorname{tr}\left[\boldsymbol{V}_{\boldsymbol{\varepsilon}}+\mathrm{E}\left(\boldsymbol{X}_{k-1}^{(n)}\right) \odot \boldsymbol{V}_{\boldsymbol{\xi}}\right]} \\
& \leqslant \sqrt{\operatorname{tr}\left(\boldsymbol{V}_{\boldsymbol{\varepsilon}}\right)}+\sqrt{\operatorname{tr}\left[\mathrm{E}\left(\boldsymbol{X}_{k-1}^{(n)}\right) \odot \boldsymbol{V}_{\boldsymbol{\xi}}\right]}
\end{aligned}
$$

hence we obtain $\mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|\right)=\mathrm{O}\left((k+n)^{1 / 2}\right)$ from $\mathrm{E}\left(\left\|\boldsymbol{X}_{k}^{(n)}\right\|\right)=\mathrm{O}(k+n)$.
We have

$$
\mathrm{E}\left(\left\|\boldsymbol{X}_{k}^{(n)}\right\|^{2}\right)=\mathrm{E}\left[\operatorname{tr}\left(\boldsymbol{X}_{k}^{(n)}\left(\boldsymbol{X}_{k}^{(n)}\right)^{\top}\right)\right]=\operatorname{tr}\left(\operatorname{Var}\left(\boldsymbol{X}_{k}^{(n)}\right)\right)+\operatorname{tr}\left[\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right) \mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right)^{\top}\right]
$$

where $\operatorname{tr}\left[\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right) \mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right)^{\top}\right]=\left\|\mathrm{E}\left(\boldsymbol{X}_{k}^{(n)}\right)\right\|^{2} \leqslant\left[\mathrm{E}\left(\left\|\boldsymbol{X}_{k}^{(n)}\right\|\right)\right]^{2}=\mathrm{O}\left((k+n)^{2}\right)$. Moreover, $\operatorname{tr}\left(\operatorname{Var}\left(\boldsymbol{X}_{k}^{(n)}\right)\right)=\mathrm{O}\left((k+n)^{2}\right)$. Indeed, by (A.2) and (A.8),

$$
\begin{aligned}
\left\|\operatorname{Var}\left(\boldsymbol{X}_{k}^{(n)}\right)\right\| \leqslant & \sum_{j=0}^{k-1}\left(\left\|\boldsymbol{V}_{\boldsymbol{\varepsilon}}\right\|+\left\|\boldsymbol{V}_{\boldsymbol{\xi}}\right\| \cdot\left\|\boldsymbol{m}_{\boldsymbol{\xi}}^{k-j-1}\right\| \cdot \mathrm{E}\left(\left\|\boldsymbol{X}_{0}^{(n)}\right\|\right)\right)\left\|\boldsymbol{m}_{\boldsymbol{\xi}}^{j}\right\|^{2} \\
& +\left\|\operatorname{Var}\left(X_{0}^{(n)}\right)\right\| \cdot\left\|\boldsymbol{m}_{\boldsymbol{\xi}}^{k}\right\|^{2}+\left\|\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\| \cdot\left\|\boldsymbol{V}_{\boldsymbol{\xi}}\right\| \sum_{j=0}^{k-2}\left\|\boldsymbol{m}_{\boldsymbol{\xi}}^{j}\right\|^{2} \sum_{\ell=0}^{k-j-2}\left\|\boldsymbol{m}_{\boldsymbol{\xi}}^{\ell}\right\| \\
\leqslant & \left(\left\|\boldsymbol{V}_{\boldsymbol{\varepsilon}}\right\|+C_{\boldsymbol{m}_{\boldsymbol{\xi}}}\left\|\boldsymbol{V}_{\boldsymbol{\xi}}\right\| \cdot \mathrm{E}\left(\left\|\boldsymbol{X}_{0}^{(n)}\right\|\right)\right) C_{\boldsymbol{m}_{\xi}}^{2} k \\
& +\left(\mathrm{E}\left(\left\|\boldsymbol{X}_{0}^{(n)}\right\|^{2}\right)+\left[\mathrm{E}\left(\left\|X_{0}^{n}\right\|\right)\right]^{2}\right) C_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{2}+C_{\boldsymbol{m}_{\boldsymbol{\xi}}}^{3}\left\|\boldsymbol{m}_{\boldsymbol{\varepsilon}}\right\| \cdot\left\|\boldsymbol{V}_{\boldsymbol{\xi}}\right\| k^{2}
\end{aligned}
$$

where $\left\|\boldsymbol{V}_{\boldsymbol{\xi}}\right\|:=\sum_{i=1}^{p}\left\|\boldsymbol{V}_{\boldsymbol{\xi}_{i}}\right\|$, hence we obtain $\mathrm{E}\left(\left\|\boldsymbol{X}_{k}^{(n)}\right\|^{2}\right)=O\left((k+n)^{2}\right)$.
By (A.7),

$$
\left\|\boldsymbol{M}_{k}^{(n)}\right\| \leqslant\left\|\varepsilon_{k}^{(n)}-\mathrm{E}\left(\varepsilon_{k}^{(n)}\right)\right\|+\sum_{i=1}^{p}\left\|\sum_{j=1}^{X_{k-1, i}^{(n)}}\left(\boldsymbol{\xi}_{k, j, i}^{(n)}-\mathrm{E}\left(\boldsymbol{\xi}_{k, j, i}^{(n)}\right)\right)\right\|
$$

hence
$\mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|^{4}\right) \leqslant(p+1)^{3} \mathrm{E}\left(\left\|\boldsymbol{\varepsilon}_{1}^{(1)}-\mathrm{E}\left(\boldsymbol{\varepsilon}_{1}^{(1)}\right)\right\|^{4}\right)+(p+1)^{3} \sum_{i=1}^{p} \mathrm{E}\left(\left\|\sum_{j=1}^{X_{k-1, i}^{(n)}}\left(\boldsymbol{\xi}_{k, j, i}^{(n)}-\mathrm{E}\left(\boldsymbol{\xi}_{k, j, i}^{(n)}\right)\right)\right\|^{4}\right)$.
Here

$$
\begin{aligned}
\mathrm{E}\left(\| \sum_{j=1}^{X_{k-1, i}^{(n)}}\left(\boldsymbol{\xi}_{k, j, i}^{(n)}-\mathrm{E}\left(\boldsymbol{\xi}_{k, j, i}^{(n)}\right) \|^{4}\right)\right. & =\mathrm{E}\left[\left(\sum_{\ell=1}^{p}\left(\sum_{j=1}^{X_{k-1, i}^{(n)}}\left(\xi_{k, j, i, \ell}^{(n)}-\mathrm{E}\left(\xi_{k, j, i, \ell}^{(n)}\right)\right)^{2}\right)^{2}\right]\right. \\
& \leqslant p \sum_{\ell=1}^{p} \mathrm{E}\left[\left(\sum_{j=1}^{X_{k-1, i}^{(n)}}\left(\xi_{k, j, i, \ell}^{(n)}-\mathrm{E}\left(\xi_{k, j, i, \ell}^{(n)}\right)\right)^{4}\right]\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{E}\left[\left(\sum_{j=1}^{X_{k-1, i}^{(n)}}\left(\xi_{k, j, i, \ell}-\mathrm{E}\left(\xi_{k, j, i, \ell}\right)\right)\right)^{4} \mid \mathcal{F}_{k-1}^{(n)}\right] \\
& \quad=X_{k-1, i}^{(n)} \mathrm{E}\left[\left(\xi_{1,1, i, \ell}^{(1)}-\mathrm{E}\left(\xi_{1,1, i, \ell}^{(1)}\right)\right)^{4}\right]+X_{k-1, i}^{(n)}\left(X_{k-1, i}^{(n)}-1\right)\left(\mathrm{E}\left[\left(\xi_{1,1, i, \ell}^{(1)}-\mathrm{E}\left(\xi_{1,1, i, \ell}^{(1)}\right)\right)^{2}\right]\right)^{2}
\end{aligned}
$$

with $\left(\mathrm{E}\left[\left(\xi_{1,1, i, \ell}^{(1)}-\mathrm{E}\left(\xi_{1,1, i, \ell}^{(1)}\right)\right)^{2}\right]\right)^{2} \leqslant \mathrm{E}\left[\left(\xi_{1,1, i, \ell}^{(1)}-\mathrm{E}\left(\xi_{1,1, i, \ell}^{(1)}\right)\right)^{4}\right]$, hence

$$
\mathrm{E}\left[\left(\sum_{j=1}^{X_{k-1, i}^{(n)}}\left(\xi_{k, j, i, \ell}^{(n)}-\mathrm{E}\left(\xi_{k, j, j, \ell}^{(n)}\right)\right)\right)^{4}\right] \leqslant \mathrm{E}\left[\left(\xi_{1,1, i, \ell}^{(1)}-\mathrm{E}\left(\xi_{1,1, i, \ell}^{(1)}\right)\right)^{4}\right] \mathrm{E}\left[\left(X_{k-1, i}^{(n)}\right)^{2}\right]
$$

Consequently, $\mathrm{E}\left(\left\|\boldsymbol{X}_{k}^{(n)}\right\|^{2}\right)=\mathrm{O}\left((k+n)^{2}\right)$ implies $\mathrm{E}\left(\left\|\boldsymbol{M}_{k}^{(n)}\right\|^{4}\right)=\mathrm{O}\left((k+n)^{2}\right)$.
Next we recall a result about convergence of random step processes towards a diffusion process, see Ispány and Pap [22, Corollary 2.2].

Theorem A. 3 Let $\gamma: \mathbb{R}_{+} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{p \times r}$ be a continuous function. Assume that uniqueness in the sense of probability law holds for the SDE

$$
\begin{equation*}
\mathrm{d} \boldsymbol{U}_{t}=\gamma\left(t, \mathcal{U}_{t}\right) \mathrm{d} \mathcal{W}_{t}, \quad t \in \mathbb{R}_{+} \tag{A.9}
\end{equation*}
$$

with initial value $\mathcal{U}_{0}=\boldsymbol{u}_{0}$ for all $\boldsymbol{u}_{0} \in \mathbb{R}^{p}$, where $\left(\mathcal{W}_{t}\right)_{t \in \mathbb{R}_{+}}$is an r-dimensional standard Wiener process. Let $\boldsymbol{\mu}$ be a probability measure on $\left(\mathbb{R}^{p}, \mathcal{B}\left(\left(\mathbb{R}^{p}\right)\right)\right.$, and let $\left(\boldsymbol{U}_{t}\right)_{t \in \mathbb{R}_{+}}$be a solution of (A.9) with initial distribution $\boldsymbol{\mu}$.

For each $n \in \mathbb{N}$, let $\left(\boldsymbol{U}_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}$be a sequence of p-dimensional martingale differences with respect to a filtration $\left(\mathcal{F}_{k}^{(n)}\right)_{k \in \mathbb{Z}_{+}}$. Let

$$
\mathcal{U}_{t}^{(n)}:=\sum_{k=0}^{\lfloor n t\rfloor} \boldsymbol{U}_{k}^{(n)}, \quad t \in \mathbb{R}_{+}, \quad n \in \mathbb{N}
$$

Suppose $\mathrm{E}\left(\left\|\boldsymbol{U}_{k}^{(n)}\right\|^{2}\right)<\infty$ for all $n, k \in \mathbb{N}$, and $\boldsymbol{U}_{0}^{(n)} \xrightarrow{\mathcal{L}} \boldsymbol{\mu}$. Suppose that, for each $T>0$,
(i) $\sup _{t \in[0, T]}\left\|\sum_{k=1}^{\lfloor n t\rfloor} \mathrm{E}\left[\boldsymbol{U}_{k}^{(n)}\left(\boldsymbol{U}_{k}^{(n)}\right)^{\top} \mid \mathcal{F}_{k-1}^{(n)}\right]-\int_{0}^{t} \gamma\left(s, \mathcal{U}_{s}^{(n)}\right) \gamma\left(s, \boldsymbol{U}_{s}^{(n)}\right)^{\top} \mathrm{d} s\right\| \xrightarrow{\mathrm{P}} 0$,
(ii) $\sum_{k=1}^{\lfloor n T\rfloor} \mathrm{E}\left(\left\|\boldsymbol{U}_{k}^{(n)}\right\|^{2} \mathbb{1}_{\left\{\left\|\boldsymbol{U}_{k}^{(n)}\right\|>\theta\right\}} \mid \mathcal{F}_{k-1}^{(n)}\right) \xrightarrow{\mathrm{P}} 0$ for all $\theta>0$,
where $\xrightarrow{\mathrm{P}}$ denotes convergence in probability. Then $\boldsymbol{U}^{(n)} \xrightarrow{\mathcal{L}} \boldsymbol{\mathcal { U }}$ as $n \rightarrow \infty$.

Now we recall a version of the continuous mapping theorem.
For functions f and $f_{n}, \quad n \in \mathbb{N}$, in $\mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$, we write $f_{n} \xrightarrow{\text { lu }} f$ if $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to f locally uniformly, i.e., if $\sup _{t \in[0, T]}\left\|f_{n}(t)-f(t)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $T>0$. For measurable mappings $\Phi: \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right) \rightarrow \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{q}\right)$ and $\Phi_{n}: \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right) \rightarrow \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{q}\right), \quad n \in \mathbb{N}$, we will denote by $C_{\Phi,\left(\Phi_{n}\right)_{n \in \mathbb{N}}}$ the set of all functions $f \in \mathrm{C}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$ for which $\Phi_{n}\left(f_{n}\right) \rightarrow \Phi(f)$ whenever $f_{n} \xrightarrow{\text { lu }} f$ with $f_{n} \in \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right), n \in \mathbb{N}$.

Lemma A. 4 Let $\left(\mathcal{U}_{t}\right)_{t \in \mathbb{R}_{+}}$and $\left(\mathcal{U}_{t}^{(n)}\right)_{t \in \mathbb{R}_{+}}, n \in \mathbb{N}$, be \mathbb{R}^{p}-valued stochastic processes with càdlàg paths such that $\mathcal{U}^{(n)} \xrightarrow{\mathcal{L}} \boldsymbol{\mathcal { U }}$. Let $\Phi: \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right) \rightarrow \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{q}\right)$ and $\Phi_{n}: \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right) \rightarrow \mathrm{D}\left(\mathbb{R}_{+}, \mathbb{R}^{q}\right), \quad n \in \mathbb{N}$, be measurable mappings such that there exists
$C \subset C_{\Phi,\left(\Phi_{n}\right)_{n \in \mathbb{N}}}$ with $C \in \mathcal{D}_{\infty}\left(\mathbb{R}_{+}, \mathbb{R}^{p}\right)$ and $\mathrm{P}(\mathcal{U} \in C)=1$. Then $\Phi_{n}\left(\mathcal{U}^{(n)}\right) \xrightarrow{\mathcal{L}}$ $\Phi(\mathcal{U})$.

Lemma A. 4 can be considered as a consequence of Theorem 3.27 in Kallenberg [23], and we note that a proof of this lemma can also be found in Ispány and Pap [22, Lemma 3.1].

References

[1] Haccou, P., Jagers, P., and Vatutin, V. 2005. Branching Processes, Cambridge University Press, Cambridge.
[2] Velasco, M.G., Puerto, I.M., Martínez, R., Molina, M., Mota, M., and Ramos, A. 2010. Workshop on Branching Processes and Their Applications, Lecture Notes in Statistics, Proceedings 197, Springer-Verlag, Berlin, Heidelberg.
[3] Wei, C.Z., Winnicki, J. 1989. Some asymptotic results for the branching process with immigration. Stochastic Processes and their Applications 31(2): 261-282.
[4] Musiela, M., Rutkowski, M. 1997. Martingale Methods in Financial Modelling, Springer-Verlag, Berlin, Heidelberg.
[5] Revuz, D., Yor, M. 2001. Continuous Martingales and Brownian Motion, 3rd ed., corrected 2nd printing, Springer-Verlag, Berlin.
[6] Feller, W. 1951. Diffusion processes in genetics. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley and Los Angeles, 227-246.
[7] Ethier, S.N., Kurtz, T.G. 1986. Markov Processes, John Wiley \& Sons, Inc., New York.
[8] Lebedev, E.A. 1985. Convergence of functionals of branching processes with immigration. Akademiya Nauk Ukrainskoi SSR. Doklady. Seriya A. 8: 58-61. (Russian. English summary.)
[9] Sriram, T.N. 1994. Invalidity of bootstrap for critical branching process with immigration. Annals of Statistics 22: 1013-1023.
[10] Athreya, K.B., Ney, P.E. 1972. Branching Processes, Springer-Verlag, New YorkHeidelberg.
[11] Quine, M.P. 1970. The multi-type Galton-Watson process with immigration. Journal of Applied Probability 7(2): 411-422.
[12] Joffe, A., Métivier, M. 1986. Weak convergence of sequences of semimartingales with applications to multitype branching processes. Advances in Applied Probability 18(1): 20-65.
[13] Zenghu Li 2006. A limit theorem for discrete Galton-Watson branching processes with immigration. Journal of Applied Probability 43(1): 289-295.
[14] Chunhua Ma 2009. A limit theorem of two-type GaltonWatson branching processes with immigration. Statistics \& Probability Letters 79: 1710-1716.
[15] Kesten, H., Stigum, B.P. 1966. A limit theorem for multidimensional GaltonWatson processes. Annals of Mathematical Statistics 37(5): 1211-1223.
[16] Kurtz, T., Lyons, R., Pemantle, R., and Peres, Y. 1997. A conceptual proof of the Kesten-Stigum theorem for multi-type branching processes. In Classical and Modern Branching Processes, IMA Vol. Math. Appl., 84, Springer, New York, 181-185.
[17] Horn, R.A., Johnson, Ch.R. 1985. Matrix Analysis, Cambridge University Press, Cambridge.
[18] Jacod, J., Shiryaev, A.N. 2003. Limit Theorems for Stochastic Processes, 2nd ed., Springer-Verlag, Berlin.
[19] Ispány, M., Pap, G. 2007. Weak convergence of step processes and an application for critical multitype branching processes with immigration. Available on the arXiv: http://arxiv.org/abs/math/0701803v1.
[20] Barczy, M., Ispány, M., and Pap, G. 2011. Asymptotic behavior of unstable INAR (p) processes. Stochastic Processes and their Applications 121(3): 583-608.
[21] Karatzas, I., Shreve, S.E. 1991. Brownian Motion and Stochastic Calculus, 2nd ed., Springer, Berlin.
[22] Ispány, M., Pap, G. 2010. A note on weak convergence of random step processes. Acta Mathematica Hungarica 126(4): 381-395.
[23] Kallenberg, O. 1997. Foundations of Modern Probability, Springer, New York, Berlin, Heidelberg.

[^0]: 2000 Mathematics Subject Classifications: Primary 60J80, 60F17; Secondary 60J60.
 Key words and phrases: critical primitive multi-type branching processes with immigration; squared Bessel processes.

