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Abstract

Under natural assumptions a Feller type diffusion approximation is derived for

critical multi-type branching processes with immigration when the offspring mean

matrix is primitive (in other words, positively regular). Namely, it is proved that

a sequence of appropriately scaled random step functions formed from a sequence

of critical primitive multi-type branching processes with immigration converges

weakly towards a squared Bessel process supported by a ray determined by the

Perron vector of the offspring mean matrix.

1 Introduction

Branching processes have a number of applications in biology, finance, economics,

queueing theory etc., see e.g. Haccou, Jagers and Vatutin [1]. Many aspects of appli-

cations in epidemiology, genetics and cell kinetics were presented at the 2009 Badajoz

Workshop on Branching Processes, see [2].
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In this paper, let Z+, N, R, R+ and R++ denote the set of non-negative

integers, positive integers, real numbers, non-negative real numbers and positive real

numbers, respectively. Every random variable will be defined on a fixed probability

space (Ω,A,P).

Let (Xk)k∈Z+ be a single-type Galton–Watson branching process with immigration

and with initial value X0 = 0. Suppose that it is critial, i.e., the offspring mean equals

1. Wei and Winnicki [3] proved a functional limit theorem X (n) L−→ X as n → ∞,

where X (n)
t := n−1Xbntc for t ∈ R+, n ∈ N, where bxc denotes the integer part of

x ∈ R, and (Xt)t∈R+ is a (nonnegative) diffusion process with initial value X0 = 0

and with generator

(1.1) Lf(x) = mεf
′(x) +

1

2
Vξxf

′′(x), f ∈ C∞c (R+),

where mε is the immigration mean, Vξ is the offspring variance, and C∞c (R+)

denotes the space of infinitely differentiable functions on R+ with compact support.

The process (Xt)t∈R+ can also be characterized as the unique strong solution of the

stochastic differential equation (SDE)

dXt = mε dt+
√
VξX+

t dWt, t ∈ R+,

with initial value X0 = 0, where (Wt)t∈R+ is a standard Wiener process, and x+

denotes the positive part of x ∈ R. Note that this so-called square-root process is

also known as Cox–Ingersoll–Ross model in financial mathematics (see Musiela and

Rutkowski [4, p. 290]). In fact, (4V −1
ξ Xt)t∈R+ is the square of a 4V −1

ξ mε-dimensional

Bessel process started at 0 (see Revuz and Yor [5, XI.1.1]).

Moreover, for critical Galton–Watson branching processes without immigration,

Feller [6] proved the following diffusion approximation (see also Ethier and Kurtz [7,

Theorem 9.1.3]). Consider a sequence of critical Galton–Watson branching processes
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(
X

(n)
k

)
k∈Z+

, n ∈ N, without immigration, with the same offspring distribution, and

with initial value X
(n)
0 independent of the offspring variables such that n−1X

(n)
0

L−→ µ

as n → ∞. Then X (n) L−→ X as n → ∞, where X (n)
t := n−1X

(n)
bntc for t ∈ R+,

n ∈ N, and (Xt)t∈R+ is a (nonnegative) diffusion process with initial distribution

µ and with generator given by (1.1) with mε = 0. Furthermore, independently

of each other, Lebedev [8] and Sriram [9] generalized the result of Wei and Winnicki

for a sequence of branching processes with immigration which is nearly critical in the

sense that m
(n)
ξ = 1 + αn−1 + o(n−1) as n → ∞ with α ∈ R, where m

(n)
ξ is

the offspring mean of the process
(
X

(n)
k

)
k∈Z+

. They proved that, as n → ∞, X (n)

converges towards a diffusion process with initial value X0 = 0 and with generator

Lαf(x) = (αx+mε)f
′(x) + 1

2
Vξxf

′′(x), f ∈ C∞c (R+).

A multi-type branching process (Xk)k∈Z+ is referred to respectively as subcrit-

ical, critical or supercritical if %(mξ) < 1, %(mξ) = 1 or %(mξ) > 1, where

%(mξ) denotes the spectral radius of the offspring mean matrix mξ (see, e.g.,

Athreya and Ney [10] or Quine [11]). Joffe and Métivier [12, Theorem 4.3.1] stud-

ied a sequence (X
(n)
k )k∈Z+ of critical multi-type branching processes with the same

offspring distributions but without immigration if the offspring mean matrix is prim-

itive and n−1X
(n)
0

L−→ µ as n → ∞. They determined the limiting behav-

ior of the martingale part (M(n))n∈N given by M(n)
t := n−1

∑bntc
k=1M

(n)
k with

M
(n)
k := X

(n)
k − E(X

(n)
k | X(n)

0 , . . . ,X
(n)
k−1) (see (3.4)). Joffe and Métivier [12, The-

orem 4.2.2] also studied a sequence (X
(n)
k )k∈Z+ , n ∈ N, of multi-type branching

processes without immigration which is nearly critical of special type, namely, when

the offspring mean matrices m
(n)
ξ , n ∈ N, satisfy m

(n)
ξ = Ip + n−1C + o(n−1)

as n → ∞, and they proved that the sequence (n−1X
(n)
bntc)t∈R+ converges towards a

diffusion process.

The aim of the present paper is to obtain a joint generalization of the above

mentioned results for critical multi-type branching processes with immigration. We
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succeeded to determine the asymptotic behavior of a sequence of critical multi-type

branching processes with immigration and with the same offspring and immigration

distributions if the offspring mean matrix is primitive and n−1X
(n)
0

L−→ µ as n→∞,

where µ is concentrated on the ray R+ ·umξ
, where umξ

is the Perron eigenvector

of the offspring mean matrix mξ (see Theorem 3.1). It turned out that the limiting

diffusion process is always one-dimensional in the sense that for all t ∈ R+, the dis-

tribution of X t is also concentrated on the ray R+ · umξ
. In fact, X t = Xtumξ

,

t ∈ R+, where (Xt)t∈R+ is again a squared Bessel process which is a continuous time

and continuous state branching process with immigration. In the single-type case, Li

[13] proved a result on the convergence of a sequence of discrete branching processes

with immigration to a continuous branching process with immigration using appro-

priate time scaling which is different from our scaling. Later, Ma [14] extended Li’s

result for two-type branching processes. They proved the convergence of the sequence

of infinitesimal generators of single(two)-type branching processes with immigration

towards the generator of the limiting diffusion process which is a well-known technique

in case of time-homogeneous Markov processes, see, e.g., Ethier and Kurtz [7]. Con-

trarily, our approach is based on the martingale method. It is interesting to note that

Kesten and Stigum [15] considered a supercritical multi-type branching process with-

out immigration, with a fixed initial distribution and with primitive offspring mean

matrix, and they proved that %(mξ)
−nXn → W almost surely as n → ∞, where

the random vector W is also concentrated on the ray R+ · umξ
(see also Kurtz,

Lyons, Pemantle and Peres [16]).
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2 Multi-type branching processes with immigra-

tion

We will investigate a sequence
(
X

(n)
k

)
k∈Z+

, n ∈ N, of critical p-type branching

processes with immigration sharing the same offspring and immigration distributions,

but having possibly different initial distributions. For each n ∈ N, k ∈ Z+, and

i ∈ {1, . . . , p}, the number of individuals of type i in the kth generation of the nth

process is denoted by X
(n)
k,i . By ξ

(n)
k,j,i,` we denote the number of type ` offspring

produced by the jth individual who is of type i belonging to the (k−1)th generation

of the nth process. The number of type i immigrants in the kth generation of the

nth process will be denoted by ε
(n)
k,i . Consider the random vectors

X
(n)
k :=


X

(n)
k,1

...

X
(n)
k,p

 , ξ
(n)
k,j,i :=


ξ

(n)
k,j,i,1

...

ξ
(n)
k,j,i,p

 , ε
(n)
k :=


ε

(n)
k,1

...

ε
(n)
k,p

 .

Then, for n, k ∈ N, we have

(2.1) X
(n)
k =

p∑
i=1

X
(n)
k−1,i∑
j=1

ξ
(n)
k,j,i + ε

(n)
k .

Here
{
X

(n)
0 , ξ

(n)
k,j,i, ε

(n)
k : k, j ∈ N, i ∈ {1, . . . , p}

}
are supposed to be independent

for all n ∈ N. Moreover,
{
ξ

(n)
k,j,i : k, j, n ∈ N

}
for each i ∈ {1, . . . , p}, and

{ε(n)
k : k, n ∈ N} are supposed to consist of identically distributed vectors.

We suppose E
(
‖ξ(1)

1,1,i‖2
)
< ∞ for all i ∈ {1, . . . , p} and E

(
‖ε(1)

1 ‖2
)
< ∞.
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Introduce the notations

mξi := E
(
ξ

(1)
1,1,i

)
∈ Rp

+, mξ :=

[
mξ1 · · · mξd

]
∈ Rp×p

+ , mε := E
(
ε

(1)
1

)
∈ Rp

+,

V ξi := Var
(
ξ

(1)
1,1,i

)
∈ Rp×p, V ε := Var

(
ε

(1)
1

)
∈ Rp×p.

Note that many authors define the offspring mean matrix as m>ξ . For k ∈ Z+, let

F (n)
k := σ

(
X

(n)
0 ,X

(n)
1 , . . . ,X

(n)
k

)
. By (2.1),

(2.2) E
(
X

(n)
k

∣∣F (n)
k−1

)
=

p∑
i=1

X
(n)
k−1,imξi +mε = mξX

(n)
k−1 +mε.

Consequently,

(2.3) E
(
X

(n)
k

)
= mξ E

(
X

(n)
k−1

)
+mε, k, n ∈ N,

which implies

(2.4) E
(
X

(n)
k

)
= mk

ξ E
(
X

(n)
0

)
+

k−1∑
j=0

mj
ξmε, k, n ∈ N.

Hence, the offspring mean matrix mξ plays a crucial role in the asymptotic behavior

of the sequence
(
X

(n)
k

)
k∈Z+

.

In what follows we recall some known facts about primitive nonnegative matrices.

A matrix A ∈ Rp×p
+ is called primitive if there exists m ∈ N such that Am ∈ Rp×p

++ .

A matrix A ∈ Rp×p
+ is primitive if and only if it is irreducible and has only one

eigenvalue of maximum modulus; see, e.g., Horn and Johnson [17, Definition 8.5.0,

Theorem 8.5.2]. If a matrix A ∈ Rp×p
+ is primitive then, by the Frobenius–Perron

theorem (see, e.g., Horn and Johnson [17, Theorems 8.2.11 and 8.5.1]), the following

assertions hold:

• %(A) ∈ R++, %(A) is an eigenvalue of A, the algebraic and geometric multi-
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plicities of %(A) equal 1 and the absolute values of the other eigenvalues of A

are less than %(A).

• Corresponding to the eigenvalue %(A) there exists a unique (right) eigenvector

uA ∈ Rp
++, called Perron vector, such that the sum of the coordinates of uA is

1.

• Further,

%(A)−nAn → ΠA := uAv
>
A ∈ Rp×p

++ as n→∞,

where vA ∈ Rp
++ is the unique left eigenvector corresponding to the eigenvalue

%(A) with u>AvA = 1.

• Moreover, there exist cA, rA ∈ R++ with rA < 1 such that

(2.5) ‖%(A)−nAn −ΠA‖ 6 cAr
n
A for all n ∈ N,

where ‖B‖ denotes the operator norm of a matrix B ∈ Rp×p defined by

‖B‖ := sup‖x‖=1 ‖Bx‖.

A multi-type branching process with immigration will be called primitive if its offspring

mean matrix mξ is primitive. Note that many authors call it positively regular.

3 Convergence results

A function f : R+ → Rp is called càdlàg if it is right continuous with left limits. Let

D(R+,Rp) and C(R+,Rp) denote the space of all Rp-valued càdlàg and continuous

functions on R+, respectively. Let D∞(R+,Rp) denote the Borel σ-algebra in

D(R+,Rp) for the metric defined in Jacod and Shiryaev [18, Chapter VI, (1.26)] (with

this metric D(R+,Rp) is a complete and separable metric space). For Rp-valued

stochastic processes (Y t)t∈R+ and (Y (n)
t )t∈R+ , n ∈ N, with càdlàg paths we write
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Y (n) L−→ Y if the distribution of Y (n) on the space (D(R+,Rp),D∞(R+,Rp))

converges weakly to the distribution of Y on the space (D(R+,Rp),D∞(R+,Rp)) as

n→∞.

For each n ∈ N, consider the random step processes

X (n)
t := n−1X

(n)
bntc, t ∈ R+, n ∈ N.

For a vector α = (αi)i=1,...,p ∈ Rp
+, we will use notation α � V ξ :=

∑p
i=1 αiV ξi ∈

Rp×p, which is a positive semi-definite matrix, a mixture of the variance matrices

V ξ1 , . . . ,V ξp .

Theorem 3.1 Let
(
X

(n)
k

)
k∈Z+

, n ∈ N, be a sequence of critical primitive p-type

branching processes with immigration sharing the same offspring and immigration dis-

tributions, but having possibly different initial distributions, such that n−1X
(n)
0

L−→

X0umξ
, where X0 is a nonnegative random variable with distribution µ. Suppose

E
(
‖X(n)

0 ‖2
)

= O(n2), E
(
‖ξ(1)

1,1,i‖4
)
<∞ for all i ∈ {1, . . . , p} and E

(
‖ε(1)

1 ‖4
)
<∞.

Then

X (n) L−→ Xumξ
as n→∞,(3.1)

where (Xt)t∈R+ is the unique weak solution (in the sense of probability law) of the

SDE

(3.2) dXt = v>mξ
mε dt+

√
v>mξ

(umξ
� V ξ)vmξ

X+
t dWt, t ∈ R+,

with initial distribution µ, where (Wt)t∈R+ is a standard Wiener process.

Remark 1 Theorem 3.1 will remain true under the weaker assumptions E
(
‖ξ(1)

1,1,i‖2
)
<

∞ for all i ∈ {1, . . . , p} and E
(
‖ε(1)

1 ‖2
)
<∞. In fact, the higher moment assumptions

in the theorem are needed only for facilitating of checking the conditional Lindeberg
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condition, namely, condition (ii) of Theorem A.3 for proving convergence (3.4) of the

martingale part. One can check the conditional Lindeberg condition under the weaker

moment assumptions of Theorem 3.1 by the method of Ispány and Pap [19], see also

this method in Barczy et al. [20]. If d > 2 then it is not clear if one might get rid of

the assumption E(‖X(n)
0 ‖2) = O(n2) in Theorem 3.1.

Remark 2 Under the assumptions of Theorem 3.1, by the same method, one can also

prove X̃
(n) L−→ X̃umξ

as n→∞, where X̃
(n)

t := n−1
(
X

(n)
bntc−m

bntc
ξ X

(n)
0

)
, t ∈ R+,

n ∈ N, and (X̃t)t∈R+ is the unique strong solution of the SDE (3.2) with initial value

X̃0 = 0.

Remark 3 The SDE (3.2) has a unique strong solution (X (x0)
t )t∈R+ for all initial

values X (x0)
0 = x0 ∈ R. Indeed, since |

√
x − √y| 6

√
|x− y| for x, y > 0, the

coefficient functions R 3 x 7→ v>mξ
mε ∈ R+ and R 3 x 7→

√
v>mξ

(uξ � V ξ)vmξ
x+

satisfy conditions of part (ii) of Theorem 3.5 in Chapter IX in Revuz and Yor [5]

or the conditions of Proposition 5.2.13 in Karatzas and Shreve [21]. Further, by the

comparison theorem (see, e.g., Revuz and Yor [5, Theorem 3.7, Chapter IX]), if the

initial value X (x0)
0 = x0 is nonnegative, then X (x)

t is nonnegative for all t ∈ R+ with

probability one. Hence X+
t may be replaced by Xt under the square root in (3.2).

Proof of Theorem 3.1. In order to prove (3.1), for each n ∈ N, introduce the sequence

(3.3) M
(n)
k := X

(n)
k − E

(
X

(n)
k

∣∣F (n)
k−1

)
= X

(n)
k −mξX

(n)
k−1 −mε, k ∈ N,

which is a sequence of martingale differences with respect to the filtration
(
F (n)
k

)
k∈Z+

.

Consider the random step processes

M(n)
t := n−1

(
X

(n)
0 +

bntc∑
k=1

M
(n)
k

)
, t ∈ R+, n ∈ N.

9



First we will verify convergence

M(n) L−→M as n→∞,(3.4)

where (Mt)t∈R+ is the unique weak solution of the SDE

(3.5) dMt =
√

(Πmξ
(Mt + tmε))+ � V ξ dW t, t ∈ R+,

with initial distribution µ :
L
= X0umξ

, where (W t)t∈R+ is a standard p-dimensional

Wiener process, x+ denotes the positive part of x ∈ Rp, and for a positive semi-

definite matrix A ∈ Rp×p,
√
A denotes its unique symmetric positive semi-definite

square root.

From (3.3) we obtain the recursion

(3.6) X
(n)
k = mξX

(n)
k−1 +M

(n)
k +mε, k ∈ N,

implying

(3.7) X
(n)
k = mk

ξX
(n)
0 +

k∑
j=1

mk−j
ξ (M

(n)
j +mε), k ∈ N.

Applying a version of the continuous mapping theorem (see Appendix) together with

(3.4) and (3.7), in Section 4 we show that

X (n) L−→ X as n→∞,(3.8)

where X t := Πmξ
(Mt + tmε), t ∈ R+. Using Πmξ

= umξ
v>mξ

and v>mξ
umξ

= 1

we get that the process Yt := v>mξ
X t, t ∈ R+, satisfies Yt = v>mξ

Πmξ
(Mt+ tmε) =

v>mξ
(Mt + tmε), t ∈ R+, hence X t = Ytumξ

. By Itô’s formula we obtain that

(Yt)t∈R+ satisfies the SDE (3.2) (see the analysis of the process (P(y0)
t )t∈R+ in the first
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equation of (4.1) and in equation (4.2)) such that Y0 = v>mξ
X 0 = v>mξ

(X0umξ
) = X0,

thus we conclude the statement of Theorem 3.1. 2

Remark 4 By Itô’s formula, the limit process (X t)t∈R+ in (3.1) can also be charac-

terized as a weak solution of the SDE

(3.9) dX t = Πmξ
mε dt+ Πmξ

√
X +

t � V ξ dW t, t ∈ R+,

with initial distribution Πmξ
M0 = Πmξ

(X0umξ
) = X0umξ

, since Πmξ
umξ

=

umξ
v>mξ

umξ
= umξ

.

Remark 5 The generator of (Mt)t∈R+ is given by

Ltf(x) =
1

2

〈
[(Πmξ

(x+ tmε))� V ξ]∇,∇
〉
f(x)

=
1

2
(x+ tmε)

>Π>mξ

p∑
i=1

p∑
j=1

V ξ,i,j ∂i∂jf(x), t ∈ R+, f ∈ C∞c (Rp),

where V ξ,i,j := (Cov(ξ1,1,`,i, ξ1,1,`,j))`=1,...,d ∈ Rp
+. (Joffe and Métivier [12, Theorem

4.3.1] also obtained this generator with mε = 0 deriving (3.4) for processes without

immigration.)

4 Proof of M(n) L−→M and X (n) L−→ X

First we prove M(n) L−→M applying Theorem A.3 for U = M, U
(n)
0 = n−1X

(n)
0

and U
(n)
k = n−1M

(n)
k for n, k ∈ N, and with coefficient function γ : R+ × Rp →

Rp×p of the SDE (3.5) given by γ(t,x) =
√

(Πmξ
(x+ tmε))+ � V ξ. The aim of

the following discussion is to show that the SDE (3.5) has a unique strong solution(
M(y0)

t

)
t∈R+

with initial value M(y0)
0 = y0 for all y0 ∈ Rp. First suppose that the
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SDE (3.5), which can also be written in the form

dMt =
√

(v>mξ
(Mt + tmε))+(umξ

� V ξ) dW t,

has a strong solution
(
M(y0)

t

)
t∈R+

with M(y0)
0 = y0. Then, by Itô’s formula, the

process
(
P(y0)
t , Q(y0)

t

)
t∈R+

, defined by

P(y0)
t := v>mξ

(M(y0)
t + tmε), Q(y0)

t := M(y0)
t − P(y0)

t umξ

is a strong solution of the SDE

(4.1)


dPt = v>mξ

mε dt+
√
P+
t v

>
mξ

√
umξ

� V ξ dW t,

dQt = −Πmξ
mε dt+

√
P+
t

(
Ip −Πmξ

)√
umξ

� V ξ dW t

with initial value
(
P(y0)

0 , Q(y0)
0

)
=
(
v>mξ

y0, (Id − Πmξ
)y0

)
, where Ip de-

notes the p-dimensional unit matrix. The SDE (4.1) has a unique strong solution(
P(p0)
t , Q(q0)

t

)
t∈R+

, with an arbitrary initial value
(
P(p0)

0 , Q(q0)
0

)
= (p0, q0) ∈ R+×Rp,

since the first equation of (4.1) can be written in the form

(4.2) dPt = b dt+
√
P+
t dW̃t

with b := v>mξ
mε ∈ R+ and

W̃t := v>mξ

√
umξ � V ξ W t =

√
v>mξ

(umξ
� V ξ)vmξ

Wt,

where (Wt)t∈R+ is a standard one-dimensional Wiener process. (Equation (4.2) can

be discussed as equation (3.2) in Remark 3.) If (P(y0)
t , Q(y0)

t )t∈R+ is the unique

strong solution of the SDE (4.1) with the initial value
(
P(y0)

0 , Q(y0)
0

)
=
(
v>mξ

y0, (Ip−
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Πmξ
)y0

)
, then, again by Itô’s formula,

M(y0)
t := P(y0)

t umξ
+ Q(y0)

t , t ∈ R+,

is a strong solution of (3.5) with M(y0)
0 = y0. Consequently, (3.5) admits a unique

strong solution
(
M(y0)

t

)
t∈R+

with M(y0)
0 = y0 for all y0 ∈ Rp.

Now we show that conditions (i) and (ii) of Theorem A.3 hold. We have to check

that, for each T > 0,

sup
t∈[0,T ]

∥∥∥∥ 1

n2

bntc∑
k=1

E
[
M

(n)
k (M

(n)
k )>

∣∣F (n)
k−1

]
−
∫ t

0

(R(n)
s )+ ds � V ξ

∥∥∥∥ P−→ 0,(4.3)

1

n2

bnT c∑
k=1

E
(
‖M (n)

k ‖
2
1{‖M (n)

k ‖>nθ}

∣∣F (n)
k−1

) P−→ 0 for all θ > 0(4.4)

as n→∞, where the process (R(n)
t )t∈R+ is defined by

(4.5) R(n)
t := Πmξ

(
M(n)

t + tmε

)
, t ∈ R+, n ∈ N.

By (3.3),

R(n)
t = Πmξ

(
n−1

(
X

(n)
0 +

bntc∑
k=1

(X
(n)
k −mξX

(n)
k−1 −mε)

)
+ tmε

)

= n−1Πmξ
X

(n)
bntc + n−1(nt− bntc)Πmξ

mε,

where we used that Πmξ
mξ = ( lim

n→∞
mn
ξ)mξ = lim

n→∞
mn+1
ξ = Πmξ

implies Πmξ
(Ip−

mξ) = 0. Thus (R(n)
t )+ = R(n)

t , and

∫ t

0

(R(n)
s )+ ds =

1

n2

bntc−1∑
`=0

Πmξ
X

(n)
` +

nt− bntc
n2

Πmξ
X

(n)
bntc +

bntc+ (nt− bntc)2

2n2
Πmξ

mε.

13



Using (A.4), we obtain

1

n2

bntc∑
k=1

E
[
M

(n)
k (M

(n)
k )>

∣∣F (n)
k−1

]
=
bntc
n2
V ε +

1

n2

bntc∑
k=1

X
(n)
k−1 � V ξ.

Hence, in order to show (4.3), it suffices to prove

(4.6) sup
t∈[0,T ]

1

n2

bntc−1∑
k=0

‖(Ip −Πmξ
)X

(n)
k ‖

P−→ 0, sup
t∈[0,T ]

1

n2
‖X(n)

bntc‖
P−→ 0

as n→∞. Using (3.7) and Πmξ
mξ = Πmξ

, we obtain

(Id −Πmξ
)X

(n)
k =

(
mk
ξ −Πmξ

)
X

(n)
0 +

k∑
j=1

(
mk−j
ξ −Πmξ

)
(M

n)
j +mε).

Hence by (2.5),

bntc−1∑
k=0

‖(Id −Πmξ
)X

(n)
k ‖ 6 cmξ

bntc−1∑
k=0

rkmξ
‖X(n)

0 ‖+ cmξ

bntc−1∑
k=1

k∑
j=1

rk−jmξ
‖M (n)

j +mε‖

6
cmξ

1− rmξ

(
‖X(n)

0 ‖+ bntc · ‖mε‖+

bntc−1∑
j=1

‖M (n)
j ‖
)
.

Moreover, by (3.7) and (A.8),

‖Xbntc‖ 6 ‖mbntcξ ‖ · ‖X
(n)
0 ‖+

bntc∑
j=1

‖mbntc−jξ ‖ · ‖M (n)
j +mε‖

6 Cmξ

(
‖X(n)

0 ‖+ bntc · ‖mε‖+

bntc∑
j=1

‖M (n)
j ‖
)
,

where Cmξ
is defined by (A.8). Consequently, in order to prove (4.6), it suffices to

show

1

n2

bnT c∑
j=1

‖M (n)
j ‖

P−→ 0,
1

n2
‖X(n)

0 ‖
P−→ 0 as n→∞.

In fact, assumption n−1X
(n)
0

L−→ µ implies the second convergence, while Lemma

14



A.2 yields n−2
∑bnT c

j=1 E(‖M (n)
j ‖)→ 0, thus we obtain (4.3).

Next we check condition (4.4). We have

E
(
‖M (n)

k ‖
2
1{‖M (n)

k ‖>nθ}

∣∣F (n)
k−1

)
6 n−2θ−2 E

(
‖M (n)

k ‖
4
∣∣F (n)

k−1

)
.

Moreover, n−4
∑bnT c

k=1 E
(
‖M (n)

k ‖4
)
→ 0 as n→∞, since E

(
‖M (n)

k ‖4
)

= O
(
(k+n)2

)
by Lemma A.2. Hence we obtain (4.4).

Now we turn to prove (3.8) applying Lemma A.4. By (3.7), X (n) = Ψn(M(n)),

where the mapping Ψn : D(R+,Rp)→ D(R+,Rp) is given by

Ψn(f)(t) := m
bntc
ξ f(0) +

bntc∑
j=1

m
bntc−j
ξ

(
f

(
j

n

)
− f

(
j − 1

n

)
+ n−1mε

)

for f ∈ D(R+,Rp), t ∈ R+, n ∈ N. Further, X = Ψ(M), where the mapping

Ψ : D(R+,Rp)→ D(R+,Rp) is given by

Ψ(f)(t) := Πmξ
(f(t) + tmε), f ∈ D(R+,Rp), t ∈ R+.

Measurability of the mappings Ψn, n ∈ N, and Ψ can be checked as in Barczy et

al. [20].

The aim of the following discussion is to show that the set C := {f ∈ C(R+,Rp) :

Πmξ
f(0) = f(0)} satisfies C ∈ D∞(R+,Rp), C ⊂ CΨ, (Ψn)n∈N and P(M ∈ C) = 1.

Note that f ∈ C implies f(0) ∈ R · umξ
.

First note that C = C(R+,Rp)∩π−1
0

(
(Ip−Πmξ

)−1({0})
)
, where π0 : D(R+,Rp)→

Rp denotes the projection defined by π0(f) := f(0) for f ∈ D(R+,Rp). Using that

C(R+,Rp) ∈ D∞ (see, e.g., Ethier and Kurtz [7, Problem 3.11.25]), the mapping

Rp 3 x 7→ (Ip −Πmξ
)x ∈ Rp is measurable and that π0 is measurable (see, e.g.,

Ethier and Kurtz [7, Proposition 3.7.1]), we obtain C ∈ D∞(R+,Rp).
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Fix a function f ∈ C and a sequence (fn)n∈N in D(Rp) with fn
lu−→ f . By the

definition of Ψ, we have Ψ(f) ∈ C(Rp). Further, we can write

Ψn(fn)(t) = Πmξ

(
fn

(
bntc
n

)
+
bntc
n
mε

)
+
(
m
bntc
ξ −Πmξ

)
f(0)

+

bntc∑
j=1

(
m
bntc−j
ξ −Πmξ

)(
fn

(
j

n

)
− f

(
j − 1

n

)
+

1

n
mε

)
,

hence we have

‖Ψn(fn)(t)−Ψ(f)(t)‖ 6 ‖Πmξ
‖
(∥∥∥∥fn(bntcn

)
− f(t)

∥∥∥∥+
1

n
‖mε‖

)

+
∥∥∥(mbntcξ −Πmξ

)
fn(0)

∥∥∥+

bntc∑
j=1

∥∥mbntc−jξ −Πmξ

∥∥(∥∥∥∥fn( jn
)
− fn

(
j − 1

n

)∥∥∥∥+
1

n
‖mε‖

)
.

For all T > 0 and t ∈ [0, T ],

∥∥∥∥fn(bntcn
)
− f(t)

∥∥∥∥ 6

∥∥∥∥fn(bntcn
)
− f

(
bntc
n

)∥∥∥∥+

∥∥∥∥f (bntcn
)
− f(t)

∥∥∥∥
6 ωT (f, n−1) + sup

t∈[0,T ]

‖fn(t)− f(t)‖,

where ωT (f, ·) is the modulus of continuity of f on [0, T ], and we have ωT (f, n−1)→

0 since f is continuous (see, e.g., Jacod and Shiryaev [18, VI.1.6]). In a similar way,

∥∥∥∥fn( jn
)
− fn

(
j − 1

n

)∥∥∥∥ 6 ωT (f, n−1) + 2 sup
t∈[0,T ]

‖fn(t)− f(t)‖.

By (2.5),
bntc∑
j=1

∥∥mbntc−jξ −Πmξ

∥∥ 6
bnT c∑
j=1

cmξ
rbntc−jmξ

6
cmξ

1− rmξ

.
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Further,

∥∥∥(mbntcξ −Πmξ

)
fn(0)

∥∥∥ 6
∥∥∥(mbntcξ −Πmξ

)(
fn(0)− f(0)

)∥∥∥+
∥∥∥(mbntcξ −Πmξ

)
f(0)

∥∥∥
6 cmξ

sup
t∈[0,T ]

‖fn(t)− f(t)‖,

since
(
m
bntc
ξ −Πmξ

)
f(0) = 0 for all t ∈ R+. Indeed, mξΠmξ

= mξ limn→∞m
n
ξ =

limn→∞m
n+1
ξ = Πmξ

and f(0) = Πmξ
f(0) imply m

bntc
ξ f(0) = m

bntc
ξ Πmξ

f(0) =

Πmξ
f(0). Thus we conclude C ⊂ CΨ, (Ψn)n∈N .

By the definition of a weak solution (see, e.g., Jacod and Shiryaev [18, Definition

2.24, Chapter III]), M has almost sure continuous sample paths, so we have P(M ∈

C) = 1. Consequently, by Lemma A.4, we obtain X (n) = Ψn(M(n))
L−→ Ψ(M)

L
= X

as n→∞. 2
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Appendix

In the proof of Theorem 3.1 we will use some facts about the first and second order

moments of the sequences (X
(n)
k )k∈Z+ and (M

(n)
k )k∈N.
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Lemma A.1 Under the assumptions of Theorem 3.1 we have for all k, n ∈ N

E(X
(n)
k ) = mk

ξ E(X
(n)
0 ) +

k−1∑
j=0

mj
ξmε,(A.1)

Var(X
(n)
k ) =

k−1∑
j=0

mj
ξ

[
V ε + (mk−j−1

ξ E(X
(n)
0 ))� V ξ

]
(m>ξ )j

+mk
ξ(Var(X

(n)
0 ))(m>ξ )k +

k−2∑
j=0

mj
ξ

k−j−2∑
`=0

[
(m`

ξmε)� V ξ

]
(m>ξ )j.

(A.2)

Moreover,

E
(
M

(n)
k

∣∣F (n)
k−1

)
= 0 for k, n ∈ N,(A.3)

E
[
M

(n)
k (M

(n)
` )>

∣∣F (n)
max{k,`}−1

]
=


V ε +X

(n)
k−1 � V ξ if k = `,

0 if k 6= `.

(A.4)

Further,

E(M
(n)
k ) = 0 for k ∈ N,(A.5)

E
[
M

(n)
k (M

(n)
` )>

]
=


V ε + E(X

(n)
k−1)� V ξ if k = `,

0 if k 6= `.

(A.6)

Proof. We have already proved (A.1), see (2.4). The equality M
(n)
k = X

(n)
k −

E
(
X

(n)
k

∣∣F (n)
k−1

)
clearly implies (A.3) and (A.5). By (2.1) and (3.3),

(A.7)

M
(n)
k = X

(n)
k −

p∑
i=1

X
(n)
k−1,i E(ξ

(1)
1,1,i)−mε = (εk − E(εk)) +

p∑
i=1

X
(n)
k−1,i∑
j=1

(ξ
(n)
k,j,i − E(ξ

(n)
k,j,i)).

For each k, n ∈ N, the random vectors
{
ξ

(n)
k,j,i − E(ξ

(n)
k,j,i), ε

(n)
k − E(ε

(n)
k ) : j ∈ N, i ∈

{1, . . . , p}
}

are independent of each others, independent of F (n)
k−1, and have zero
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mean, thus in case k = ` we conclude (A.4) and hence (A.6). If k < ` then

E
[
M

(n)
k (M

(n)
` )>

∣∣F (n)
`−1

]
= M

(n)
k E

[
(M

(n)
` )>

∣∣F (n)
`−1

]
= 0 by (A.3), thus we obtain (A.4)

and (A.6) in case k 6= `.

By (3.7) and (A.1), we conclude

X
(n)
k − E(X

(n)
k ) = mk

ξ(X
(n)
0 − E(X

(n)
0 )) +

k∑
j=1

mk−j
ξ M

(n)
j .

Now by (A.6),

Var(X
(n)
k ) = mk

ξ E
[
(X

(n)
0 − E(X

(n)
0 ))(X

(n)
0 − E(X

(n)
0 ))>

]
(m>ξ )k

+
k∑
j=1

k∑
`=1

(
m>ξ

)k−j
E
[
Mn

j (Mn
` )>
]

(mξ)
k−`

= mk
ξ Var(X

(n)
0 )(m>ξ )k +

k∑
j=1

mk−j
ξ E

[
M

(n)
j (M

(n)
j )>

]
(m>ξ )k−j.

Finally, using the expression in (A.6) for E
[
M

(n)
j (M

(n)
j )>

]
we obtain (A.2). 2

Lemma A.2 Under the assumptions of Theorem 3.1 we have

E(‖X(n)
k ‖) = O(k + n), E(‖X(n)

k ‖
2) = O((k + n)2),

E(‖M (n)
k ‖) = O((k + n)1/2), E(‖M (n)

k ‖
4) = O((k + n)2).

Proof. By (A.1),

‖E(X
(n)
k )‖ 6 ‖mk

ξ‖ · E(‖X(n)
0 ‖) +

k−1∑
j=0

‖mj
ξ‖ · ‖mε‖ 6 Cmξ

(
√
Cn+ ‖mε‖k),

where

(A.8) Cmξ
:= sup

j∈Z+

‖mj
ξ‖ <∞, C := sup

n∈N
n−2 E(‖X(n)

0 ‖2) <∞,
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since (2.5) implies Cmξ
6 cmξ

+ ‖Πmξ
‖. Hence, we obtain E(‖X(n)

k ‖) 6

p‖E(X
(n)
k )‖ = O(k + n).

We have

E(‖M (n)
k ‖) 6

√
E(‖M (n)

k ‖2) =

√
E
[
tr(M

(n)
k (M

(n)
k )>)

]
=

√
tr
[
V ε + E(X

(n)
k−1)� V ξ

]
6
√

tr(V ε) +

√
tr
[
E(X

(n)
k−1)� V ξ

]
,

hence we obtain E(‖M (n)
k ‖) = O((k + n)1/2) from E(‖X(n)

k ‖) = O(k + n).

We have

E(‖X(n)
k ‖

2) = E
[
tr(X

(n)
k (X

(n)
k )>)

]
= tr(Var(X

(n)
k )) + tr

[
E(X

(n)
k ) E(X

(n)
k )>

]
,

where tr
[
E(X

(n)
k ) E(X

(n)
k )>

]
= ‖E(X

(n)
k )‖2 6

[
E(‖X(n)

k ‖)
]2

= O((k+n)2). Moreover,

tr(Var(X
(n)
k )) = O((k + n)2). Indeed, by (A.2) and (A.8),

‖Var(X
(n)
k )‖ 6

k−1∑
j=0

(
‖V ε‖+ ‖V ξ‖ · ‖mk−j−1

ξ ‖ · E(‖X(n)
0 ‖)

)
‖mj

ξ‖
2

+ ‖Var(X
(n)
0 )‖ · ‖mk

ξ‖2 + ‖mε‖ · ‖V ξ‖
k−2∑
j=0

‖mj
ξ‖

2

k−j−2∑
`=0

‖m`
ξ‖

6
(
‖V ε‖+ Cmξ

‖V ξ‖ · E(‖X(n)
0 ‖)

)
C2
mξ
k

+
(

E(‖X(n)
0 ‖2) +

[
E(‖Xn

0 ‖)
]2)
C2
mξ

+ C3
mξ
‖mε‖ · ‖V ξ‖k2,

where ‖V ξ‖ :=
∑p

i=1 ‖V ξi‖, hence we obtain E(‖X(n)
k ‖2) = O((k + n)2).

By (A.7),

‖M (n)
k ‖ 6 ‖ε(n)

k − E(ε
(n)
k )‖+

p∑
i=1

∥∥∥∥∥
X

(n)
k−1,i∑
j=1

(ξ
(n)
k,j,i − E(ξ

(n)
k,j,i))

∥∥∥∥∥,

20



hence

E(‖M (n)
k ‖

4) 6 (p+1)3 E(‖ε(1)
1 −E(ε

(1)
1 )‖4)+(p+1)3

p∑
i=1

E

(∥∥∥∥∥
X

(n)
k−1,i∑
j=1

(ξ
(n)
k,j,i−E(ξ

(n)
k,j,i))

∥∥∥∥∥
4)
.

Here

E

(∥∥∥∥∥
X

(n)
k−1,i∑
j=1

(ξ
(n)
k,j,i − E(ξ

(n)
k,j,i))

∥∥∥∥∥
4)

= E

[(
p∑
`=1

(X
(n)
k−1,i∑
j=1

(ξ
(n)
k,j,i,` − E(ξ

(n)
k,j,i,`))

)2)2]

6 p

p∑
`=1

E

[(X
(n)
k−1,i∑
j=1

(ξ
(n)
k,j,i,` − E(ξ

(n)
k,j,i,`))

)4]
,

where

E

[(X
(n)
k−1,i∑
j=1

(ξk,j,i,` − E(ξk,j,i,`))

)4 ∣∣∣∣∣F (n)
k−1

]

= X
(n)
k−1,i E[(ξ

(1)
1,1,i,` − E(ξ

(1)
1,1,i,`))

4] +X
(n)
k−1,i(X

(n)
k−1,i − 1)

(
E[(ξ

(1)
1,1,i,` − E(ξ

(1)
1,1,i,`))

2]
)2

with
(
E[(ξ

(1)
1,1,i,` − E(ξ

(1)
1,1,i,`))

2]
)2

6 E[(ξ
(1)
1,1,i,` − E(ξ

(1)
1,1,i,`))

4], hence

E

[(X
(n)
k−1,i∑
j=1

(ξ
(n)
k,j,i,` − E(ξ

(n)
k,j,i,`))

)4]
6 E[(ξ

(1)
1,1,i,` − E(ξ

(1)
1,1,i,`))

4] E[(X
(n)
k−1,i)

2]

Consequently, E(‖X(n)
k ‖2) = O((k + n)2) implies E(‖M (n)

k ‖4) = O((k + n)2). 2

Next we recall a result about convergence of random step processes towards a

diffusion process, see Ispány and Pap [22, Corollary 2.2].

Theorem A.3 Let γ : R+ × Rp → Rp×r be a continuous function. Assume that

uniqueness in the sense of probability law holds for the SDE

(A.9) d U t = γ(t,U t) dW t, t ∈ R+,
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with initial value U0 = u0 for all u0 ∈ Rp, where (W t)t∈R+ is an r-dimensional

standard Wiener process. Let µ be a probability measure on (Rp,B((Rp)), and let

(U t)t∈R+ be a solution of (A.9) with initial distribution µ.

For each n ∈ N, let (U
(n)
k )k∈Z+ be a sequence of p-dimensional martingale

differences with respect to a filtration (F (n)
k )k∈Z+. Let

U (n)
t :=

bntc∑
k=0

U
(n)
k , t ∈ R+, n ∈ N.

Suppose E
(
‖U (n)

k ‖2
)
< ∞ for all n, k ∈ N, and U

(n)
0

L−→ µ. Suppose that, for

each T > 0,

(i) sup
t∈[0,T ]

∥∥∥∥∥bntc∑k=1

E
[
U

(n)
k (U

(n)
k )> | F (n)

k−1

]
−
∫ t

0
γ(s,U (n)

s )γ(s,U (n)
s )>ds

∥∥∥∥∥ P−→ 0,

(ii)
bnT c∑
k=1

E
(
‖U (n)

k ‖2
1{‖U (n)

k ‖>θ}

∣∣F (n)
k−1

) P−→ 0 for all θ > 0,

where
P−→ denotes convergence in probability. Then U (n) L−→ U as n→∞.

Now we recall a version of the continuous mapping theorem.

For functions f and fn, n ∈ N, in D(R+,Rp), we write fn
lu−→ f if

(fn)n∈N converges to f locally uniformly, i.e., if supt∈[0,T ] ‖fn(t) − f(t)‖ → 0 as

n → ∞ for all T > 0. For measurable mappings Φ : D(R+,Rp) → D(R+,Rq)

and Φn : D(R+,Rp) → D(R+,Rq), n ∈ N, we will denote by CΦ,(Φn)n∈N the set of

all functions f ∈ C(R+,Rp) for which Φn(fn) → Φ(f) whenever fn
lu−→ f with

fn ∈ D(R+,Rp), n ∈ N.

Lemma A.4 Let (U t)t∈R+ and (U (n)
t )t∈R+, n ∈ N, be Rp-valued stochastic processes

with càdlàg paths such that U (n) L−→ U . Let Φ : D(R+,Rp) → D(R+,Rq) and

Φn : D(R+,Rp) → D(R+,Rq), n ∈ N, be measurable mappings such that there exists
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C ⊂ CΦ,(Φn)n∈N with C ∈ D∞(R+,Rp) and P(U ∈ C) = 1. Then Φn(U (n))
L−→

Φ(U).

Lemma A.4 can be considered as a consequence of Theorem 3.27 in Kallenberg

[23], and we note that a proof of this lemma can also be found in Ispány and Pap [22,

Lemma 3.1].
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