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Abstract. We present theoretical and computational results con-
cerning an optimization problem for lattices, related to a general-
ization of the concept of dual lattices. Let Λ be a k-dimensional
lattice in Rn (with 0 < k ≤ n), and p, q ∈ R+∪{∞}. We define the
p, q-norm Np,q(Λ) of the lattice Λ and show that this norm always
exists. In fact, our results yield an algorithm for the calculation
of Np,q(Λ). Further, since this general algorithm is not efficient,
we discuss more closely two particular choices for p, q, which arise
naturally. Namely, we consider the case (p, q) = (2,∞), and also
the choice (p, q) = (1,∞). In both cases we show that in general
an optimal basis of Λ as well as Np,q(Λ) can be actually calculated.
Finally, we illustrate our methods by several numerical examples.

1. Introduction

Let Λ be a k-dimensional lattice in Rn (with 0 < k ≤ n). We call

Λ̂ := {x̂ ∈ Rn : (x̂, x) ∈ Z for all x ∈ Λ}

the dual set of Λ. A lattice Λ∗ in Rn is called a dual lattice of Λ, if
Λ̂ = Λ∗ ⊕H holds with some subspace H of Rn. In other words, Λ∗ is
a dual lattice of Λ if there exists a subspace H of Rn such that every
a ∈ Λ̂ can be uniquely written in the form a = b+h (b ∈ Λ∗, h ∈ H). As

it is well-known, if k = n (i.e. Λ is a full lattice in Rn) then Λ̂ is just the
dual (or polar or reciprocal) lattice of Λ (see e.g. [Lekkerkerker 69]).

In that case we have Λ∗ = Λ̂ and H = {0}. In Section 2 we show that
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dual lattices do exist for any lattice Λ, and give some of their basic
properties.

Let p, q ∈ R+ ∪ {∞}, and let L ⊂ Rn be a k-dimensional lattice.
Then the p, q-size of L is

|L|p,q = min
(a1,...,ak)

|(|a1|p, . . . , |ak|p)|q,

where (a1, . . . , ak) runs through all bases of L, and |v|r = |vtr|r is the
Lr-norm of a vector v with vtr = (v1, . . . , vn) ∈ Rn given by

|v|r = |vtr|r =


(

n∑
i=1

|vi|r
)1/r

, if r ∈ R+,

max{|v1|, . . . , |vn|}, if r = ∞.

Then the p, q-norm of the lattice Λ is defined by

(1) Np,q(Λ) = min
Λ∗

|Λ∗|p,q

where Λ∗ runs through all the dual lattices of Λ. By the norm equiva-
lence theorem any bounded region contains only finitely many vectors
of a lattice L ⊂ Rn. Hence the size |L|p,q exists for any lattice. As we
shall see later, the minimum in (1) also exists, soNp,q(Λ) is well-defined,
too.

It is worth to mention that in case of k = n, i.e. when we con-
sider full lattices, the above notions are well-known and are of great
importance in lattice theory and in many of its applications (see e.g.
the books [Lekkerkerker 69] and [Pohst and Zassenhaus 89], and the
papers [Kannan and Lovász 88] and [Schnell 92]). On the other hand,
the problem of finding N1,∞(Λ) in case of k = n− 1 naturally arises in
the context of solving S-unit equations (see [Hajdu 09]).

In the paper we take up the problem for general 0 < k ≤ n and p, q.
First we show that Np,q(Λ) exists for any p, q and Λ. In fact, our re-
sults yield an algorithm for the calculation of Np,q(Λ). However, since
this general algorithm is not really efficient, we discuss two particular
cases separately. Namely, we consider the natural case (p, q) = (2,∞),
and also the choice (p, q) = (1,∞), when as we indicated already, the
problem arises from lattices connected to the unit groups of algebraic
number fields. In both cases we show that an optimal basis of Λ can
be explicitly calculated. Finally, we illustrate our methods by several
numerical examples. At this point, our intention is to present some il-
lustrative material, rather than to stress the computations to the limit.
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2. Some basic properties of dual lattices

In this chapter we give some basic properties of dual lattices. On
the one hand, as we demonstrate that, this notion is a natural general-
ization of the usual concept of the dual lattice of a full lattice. On the
other hand, we need to establish a way to be able to work effectively
with dual lattices.

Recall that the set

Λ̂ := {x̂ ∈ Rn : (x̂, x) ∈ Z for all x ∈ Λ}
is called the dual set of a k-dimensional lattice Λ in Rn (0 < k ≤ n). As

we mentioned already, if k = n (i.e. Λ is a full lattice in Rn) then Λ̂ is
the dual (or polar or reciprocal) lattice of Λ (see e.g. [Lekkerkerker 69],
[Kannan and Lovász 88] and [Schnell 92]). Our first aim is to describe

the structure of Λ̂ in the general case.

Theorem 2.1. Let a1, . . . , ak be an arbitrary, but fixed basis of Λ. Take
any vectors bi ∈ Rn (i = 1, . . . , k) such that

(bi, aj) =

{
1, if i = j,

0, otherwise
(1 ≤ i, j ≤ k).

Write Λ∗ for the lattice generated by b1, . . . , bk, and let Λ⊥ be the orthog-
onal complement of the subspace of Rn generated by a1, . . . , ak. Then
we have

Λ̂ = Λ∗ ⊕ Λ⊥,

that is, any b ∈ Λ̂ can be uniquely written as

(2) b = a∗ + a⊥ with a∗ ∈ Λ∗, a⊥ ∈ Λ⊥.

Further, here Λ∗ and Λ⊥ are uniquely determined in the following sense.
Let L and H be a lattice and a subspace in Rn, respectively, such that

Λ̂ = L⊕H.

Then we have H = Λ⊥, and both

L ⊆ Λ∗ + Λ⊥ and Λ∗ ⊆ L+ Λ⊥.

In particular, dim(L) = k and dim(H) = n− k.

Proof. First we show that every element of Λ̂ can be written in the
form (2). For this, let b ∈ Λ̂ be arbitrary. Then we have

(b, ai) = ti (ti ∈ Z, i = 1, . . . , k).

Put
a∗ := t1b1 + · · ·+ tkbk and a⊥ := b− a∗.
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Then we obviously have a∗ ∈ Λ∗. Moreover, by the definition of the
vectors bi (i = 1, . . . , k), a∗ and a⊥ we obtain

(a⊥, ai) = (b− a∗, ai) = (b, ai)− (a∗, ai) =

= (b, ai)− (t1b1 + · · ·+ tkbk, ai) = ti − ti = 0 (i = 1, . . . , k).

Hence we get that a⊥ ∈ Λ⊥ is also valid, which proves that Λ̂ = Λ∗+Λ⊥.
To prove the uniqueness of the representation (2) of any b ∈ Λ̂, take

arbitrary vectors ak+1, . . . , an ∈ Rn such that a1, . . . , ak, ak+1, . . . an are

linearly independent (over R). Then we see that Λ̂ contains the dual

lattice of the full lattice generated by a1, . . . , an in Rn. Hence Λ̂ is not
included in any proper subspace of Rn, which shows that dim(Λ∗) +
dim(Λ⊥) = n must hold. Hence the uniqueness of the representation

(2) follows immediately. Thus we proved that Λ̂ = Λ∗ ⊕ Λ⊥.

Assume now that we also have Λ̂ = L⊕H with some lattice L and
subspace H in Rn. Suppose that h ∈ H \ Λ⊥. Take an arbitrary t ∈ R
and observe that by th ∈ Λ̂ we have

(th, ai) = t(h, ai) ∈ Z (i = 1, . . . , k).

However, this is clearly possible only if

(h, ai) = 0 (i = 1, . . . , k).

This yields h ∈ Λ⊥, a contradiction. Hence we have H ⊆ Λ⊥. Assume
next that h ∈ Λ⊥ \ H. Observe that for any t ∈ R we have th ∈ Λ̂.

Thus by Λ̂ = L ⊕ H, for any t ∈ R there exist vectors ut ∈ L and
vt ∈ H such that th = ut + vt. Since L is a countable set, the vectors
ut (t ∈ R) cannot be all different. Thus there exist t1, t2 ∈ R with
t1 ̸= t2, such that ut1

= ut2
. This yields

(t2 − t1)h = (ut2
+ vt2)− (ut1

+ vt1) = vt2 − vt1 .

However, since vt1 , vt2 ∈ H andH is a subspace, we get that (t2−t1)h ∈
H. Hence also h ∈ H, a contradiction. This shows that Λ⊥ ⊆ H must
also be valid. Thus H = Λ⊥ indeed. In particular, we obviously have
dim(H) = dim(Λ⊥) = n− k.

On the other hand, since by 0 ∈ H = Λ⊥ we have both L ⊆ Λ̂
and Λ∗ ⊆ Λ̂, we immediately obtain that both L ⊆ Λ∗ + Λ⊥ and
Λ∗ ⊆ L + Λ⊥. So we only need to prove that dim(L) = k. Assume

to the contrary that dim(L) > k. (Since Λ̂ = L ⊕ H and dim(H) =
n− k, dim(L) < k is clearly impossible.) Let ℓ1, . . . , ℓk ∈ L be linearly
independent elements (over R), such that

(3) L0 ∩H = {0},
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where L0 is the linear subspace of Rn generated by the vectors ℓ1, . . . , ℓk.

Since Λ̂ = L⊕H, such vectors exist. By our assumption dim(L) > k,

we can find a vector ℓ ∈ L \ L0. Observe that ℓ ∈ Λ̂, and put

(4) (ℓ, ai) = ti ∈ Z (i = 1, . . . , k).

Since dim(L0) = k and dim(H) = n− k, by (3) we can write

(5) ℓ = c1ℓ1 + · · ·+ ckℓk + h

with some c1, . . . , ck ∈ R and h ∈ H, which are uniquely determined.
This by (h, ai) = 0 (i = 1, . . . , k) yields

(6) (ℓ, ai) = (c1ℓ1+· · ·+ckℓk+h, ai) = di,1c1+· · ·+di,kck (i = 1, . . . , k)

where di,j = (ℓj, ai) ∈ Z for 1 ≤ i, j ≤ k. Combining (4) and (6) we
obtain the system of linear equations

(7)

d1,1 . . . d1,k
...

. . .
...

dk,1 . . . dk,k

c1
...
ck

 =

t1
...
tk


for c1, . . . , ck. One can easily check that the matrix on the left hand
side of (7) is invertible. Thus, using that di,j ∈ Z (1 ≤ i, j ≤ k), we
get that c1, . . . , ck ∈ Q. So there exists a non-zero integer t such that
tci ∈ Z for all i = 1, . . . , k. However, this by (5) yields that we have

two distinct representations for tℓ ∈ Λ̂ of the form u + v with u ∈ L
and v ∈ H, given by

tℓ+ 0 = ((tc1)ℓ1 + · · ·+ (tck)ℓk) + th.

This is a contradiction showing that dim(L) = k indeed, and the the-
orem follows. �

As a simple consequence we obtain the following statement, which
yields a complete and explicit characterization of the dual lattices of
Λ.

Corollary 2.1. Let a∗1, . . . , a
∗
k be an arbitrary, but fixed basis of Λ∗.

Then, using the notation of Theorem 2.1 we have the following.
For any h1, . . . , hk ∈ Λ⊥ the lattice L generated by the vectors a∗1 +

h1, . . . , a
∗
k + hk is a dual lattice of Λ.

Vice versa, suppose that Λ̂ = L⊕H, where L and H is a lattice and
a subspace in Rn, respectively. Then L (as a lattice) has a unique basis
of the form a∗1 + h1, . . . , a

∗
k + hk with some h1, . . . , hk ∈ Λ⊥.

Proof. The first part of the statement immediately follows by observing
that since a∗1, . . . , a

∗
k is a basis of Λ∗ and Λ∗ ⊕ Λ⊥ = Λ̂, we have that

Λ̂ = L⊕ Λ⊥.
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To prove the second part of the statement, observe that since Λ∗ ⊆ Λ̂,
and also H = Λ⊥, there exist b1, . . . , bk ∈ L and h1, . . . , hk ∈ Λ⊥ such
that a∗i = bi + h′

i (i = 1, . . . , k). That is, we have

a∗1 + h1, . . . , a
∗
k + hk ∈ L with h1 = −h′

1, . . . , hk = −h′
k ∈ Λ⊥.

Note that obviously, the above vectors are linearly independent (over
R). We show that they form a basis of L as a lattice, as well. Let
b ∈ L arbitrary. Then since a∗1, . . . , a

∗
k is a basis of the lattice Λ∗, by

Theorem 2.1 we can write

b = t1a
∗
1 + · · ·+ tka

∗
k + a⊥ (t1, . . . , tk ∈ Z, a⊥ ∈ Λ⊥).

On the other hand, we also have that the linear combination

t1(a
∗
1 + h1) + · · ·+ tk(a

∗
k + hk)

belongs to L. Thus we have

t1h1 + · · ·+ tkhk − a⊥ ∈ L ∩H,

which yields
t1h1 + · · ·+ tkhk = a⊥.

That is, b is a linear combination of a∗1 + h1, . . . , a
∗
k + hk with integral

coefficients, so the latter vectors form a basis of the lattice L indeed.
Finally, assume that

a∗i + hi, a
∗
i + h′

i ∈ L

for some i ∈ {1, . . . , k}, with hi, h
′
i ∈ H. Then we have hi − h′

i ∈
L ∩ H, whence hi = h′

i. This proves the uniqueness of the vectors hi

(i = 1, . . . , k), and the statement follows. �
Remark 1. In view of Theorem 2.1 and Corollary 2.1 we see that the
dual set Λ̂ can be decomposed as a direct sum L⊕H of a lattice and a
subspace of Rn “almost” uniquely. More precisely, the subspace H is
in fact uniquely determined, while the lattice is determined “modulo”
H. In particular, if Λ is a full lattice, then H = {0}, and L = Λ̂
is uniquely determined. In that case L is called the dual lattice of
Λ. Thus in the general situation 0 < k ≤ n it is natural to call the
decomposing lattices L as dual lattices of Λ.

Now we give a reformulation of Corollary 2.1 for bases of Λ, since
this will prove to be useful later on. We shall need the following notion.
Let A = (a1, . . . , ak) be a system of linearly independent vectors in Rn

(0 < k ≤ n). A system B = (b1, . . . , bk) is called a dual system of A if

(bi, aj) =

{
1, if i = j,

0, otherwise
(1 ≤ i, j ≤ k).



AN OPTIMIZATION PROBLEM FOR LATTICES 7

Note that B forms a linearly independent system. In particular, if
k = n, i.e. A is a basis of Rn, then B is the dual basis for A.

Corollary 2.2. Let A = (a1, . . . , ak) be a basis of the lattice Λ. Then
there is a one-to-one correspondence between the dual systems of A and
the dual lattices of Λ. More precisely, every dual lattice L of Λ has a
unique basis B = (b1, . . . , bk) which is a dual system of A.

Proof. Let B = (b1, . . . , bk) be a dual basis of A. Observe that a system
B′ = (b′1, . . . , b

′
k) of vectors in Rn is a dual system of A if and only if

b′i = bi + hi with some hi ∈ Λ⊥ (i = 1, . . . , k).

Hence the statement is an immediate consequence of Corollary 2.1. �
The last property we give concerning dual lattices is the following.

Note that, once again, this property is a generalization of the corre-
sponding one from the classical case k = n.

Corollary 2.3. Let L be a dual lattice of Λ. Then Λ is also a dual
lattice of L.

Proof. Using that B = (b1, . . . , bk) is a dual system of A = (a1, . . . , ak)
if and only if A is a dual system of B, by the already known properties
of dual lattices, one can easily check that L̂ = Λ ⊕ L⊥ holds. Hence
the statement immediately follows. �

3. The norm Np,q in the general case

We start with extending the notion of the norm Np,q to bases of Λ.
The reason is that later on, instead of lattices we will work with their
bases. First, let B = (b1, . . . , bk) be a system of linearly independent
vectors in Rn. Then the p, q-size of the system B is defined by

|B|p,q = ||b1|p, . . . , |bk|p|q.
As above, let Λ be a k-dimensional lattice in Rn (with 0 < k ≤ n), and
let A = (a1, . . . , ak) be any basis for Λ. The p, q-norm Np,q(A) of the
system A is defined in the following way:

Np,q(A) = min
B

|B|p,q,

where B runs through all the dual systems of A.
Throughout the section, let p, q ∈ R+ ∪ {∞} be fixed. Note that a

priori it is not clear whether Np,q(A) and Np,q(Λ) exist or not, however,
we shall show that these norms (i.e. the minima) always exist.

Theorem 3.1. For any basis A = (a1, . . . , ak) of Λ, Np,q(A) exists.

Proof. Calculate the vectors â1, . . . , âk having the following properties:
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(i) for all i, j ∈ {1, . . . , k}

(âi, aj) =

{
1, if i = j,

0, otherwise,

(ii) âi⊥Λ⊥, that is (âi, a
⊥) = 0 for all a⊥ ∈ Λ⊥ (i = 1, . . . , k).

For this procedure, and other standard methods used see e.g. the
book of Pohst and Zassenhaus [Pohst and Zassenhaus 89]. Note that

property (i) just means that Â = (â1, . . . , âk) is a dual system of A. In

particular, by Corollary 2.2, Â is a basis of a dual lattice of Λ. In fact
property (ii) is not important for the proof of the present statement,
however, the vectors â1, . . . , âk play an important role also later on.
Observe that by Corollary 2.1 we have that B = (b1, . . . , bk) is a dual
system of A if and only if

(8) bi belongs to the hyperplane âi + Λ⊥ for any i = 1, . . . , k.

For 1 ≤ i ≤ k, let µi be the smallest non-negative real number
such that (âi + Λ⊥) ∩ µiGp is non-empty, where Gp is the unit sphere
with respect to the Lp-norm in Rn. Since Gp is compact, hence µi

exists. Let b∗i ∈ (âi +Λ⊥) ∩ µiGp, and let B = (b1, . . . , bk) be any dual
system of A. Then we have |b∗i |p ≤ |bi|p, whence |(|b∗1|p, . . . , |b∗k|p)|q ≤
|(|b1|p, . . . , |bk|p)|q. Thus Np,q(A) exists; in particular, we have

Np,q(A) = |(|b∗1|p, . . . , |b∗k|p)|q.

�

Remark 2. From the proof of Theorem 3.1 it follows that the vectors
b∗1, . . . , b

∗
k realizing the minimum Np,q(A) are independent of q.

Theorem 3.2. Let Λ be a k-dimensional lattice of Rn (with k ≤ n).
Then for any positive real t, Λ has only finitely many bases of p, q-norm
smaller than t, and these bases can be effectively determined.

Proof. Let A = (a1, . . . , ak) be an arbitrary, but fixed basis of Λ. It
is sufficient to “bound” all k × k unimodular matrices U such that
Np,q(AU) < t.

First observe that if U is a k × k unimodular matrix, then a system
B′ = (b′1, . . . , b

′
k) is a dual system for A′ = AU if and only if

B′tr = U−1

b1
...
bk
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with some dual system B = (b1, . . . , bk) of A. Thus by (8) we have

B′tr = U−1

â1 + h1
...

âk + hk

 = U−1

â1
...
âk

+

h′
1
...
h′
k


where h1, . . . , hk, h

′
1, . . . , h

′
k ∈ Λ⊥. Here we used that Λ⊥ is a subspace

of Rn. Write bi,1, . . . , bi,k and ui,1, . . . , ui,k for the entries of b
′
i and the i-

th row of U−1 for i = 1, . . . , k, respectively. Then by the above equality
we have

b′i = ui,1â1 + · · ·+ ui,kâk + h′
i (i = 1, . . . , k).

Observe that here h′
i is orthogonal to the vectors â1, . . . , âk. Thus by

the theorem of Pythagoras we obtain

(9) |b′i|22 = |ui,1â1 + · · ·+ ui,kâk|22 + |h′
i|22 (i = 1, . . . , k).

On the other hand, letting B′ be such that |B′|p,q = Np,q(AU), we
have

|(|b′1|p, . . . , |b′k|p)|q < t

implying

(10) |b′i|2 < c(p, q, n, t) (i = 1, . . . , k).

Here c(p, q, n, t) is a positive constant depending only on p, q, n, t, and
we used the equivalence of the norms Lr over the space Rn.

Now combining (9) and (10), noting that A is chosen to be arbitrary
but fixed, we get

|ui,1â1 + · · ·+ ui,kâk|2 < c(p, q, n, t) (i = 1, . . . , k).

Observe that this inequality means that for any i = 1, . . . , k, ui,1â1 +
· · ·+ ui,kâk is a vector of a fixed lattice inside a bounded region. This
implies that these vectors, whence all entries of U−1 can be effectively
bounded and determined. Hence the same is true for all entries of U ,
and the theorem follows. �

Our next result, besides showing that Np,q(Λ) exists indeed, provides
a tool for its explicit calculation, as well.

Theorem 3.3. For any k-dimensional lattice Λ of Rn (with 0 < k ≤
n), Np,q(Λ) exists. Further, we have

(11) Np,q(Λ) = min
A

Np,q(A),

where A runs through all the bases of Λ.
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Proof. In view of Theorem 3.2 we know that the minimum on the right
hand side of (11) exists. Let A = (a1, . . . , ak) be a basis of Λ realizing
this minimum. We only need to show that for any dual lattice Λ∗ of Λ
we have |Λ∗|p,q ≥ Np,q(A).

For this purpose let B = (b1, . . . , bk) be a dual basis of A with

Np,q(A) = |B|p,q = |(|b1|p, . . . , |bk|p)|q.

Let L be the dual lattice of Λ generated by b1, . . . , bk. Let B′ =
(b′1 . . . , b

′
k) be any other basis of L. Then by Corollaries 2.2 and 2.3,

we can take a basis a′1, . . . , a
′
k of Λ such that B′ is a dual system of A′.

This by the minimality of Np,q(A) gives

|(|b1|p, . . . , |bk|p)|q = Np,q(A) ≤ Np,q(A
′) ≤ |(|b′1|p, . . . , |b′k|p)|q.

Hence for the size of L we obtain that

|L|p,q = |(|b1|p, . . . , |bk|p)|q = Np,q(A).

Let now Λ∗ be any dual lattice of Λ, and take a basis b∗1, . . . , b
∗
k in Λ∗

such that

|Λ∗|p,q = |(|b∗1|p, . . . , |b∗k|p)|q.
Take a basis A∗ = (a∗1, . . . , a

∗
k) in Λ such that B∗ = (b∗1, . . . , b

∗
k) is a dual

system of A∗. Then using again the minimality of Np,q(A) we have

|Λ∗|p,q = |B∗|p,q ≥ Np,q(A
∗) ≥ Np,q(A).

Thus we conclude that for an arbitrary dual lattice Λ∗ of Λ

|Λ∗|p,q ≥ |L|p,q
is valid. This proves that Np,q(Λ) exists, and Np,q(Λ) = |L|p,q. Further,
we also have

Np,q(Λ) = Np,q(A),

and the theorem is proved. �
Remark 3. Since the proofs of the previous results are constructive,
we obtain an algorithm for the determination of the norm Np,q(Λ) for
all p, q. This can be given in the following way.

3.1. Algorithm 0 - Np,q. Execute the following steps.

(A0.1) Let A = (a1, . . . , ak) be any basis of Λ. Determine the value
Np,q(A) by using Theorem 3.1.

(A0.2) Determine all bases A∗ of Λ using Theorem 3.2 which satisfy
Np,q(A

∗) ≤ Np,q(A).
(A0.3) Choose that basis from those obtained in Step (A0.2) for which

Np,q(A
∗) is minimal. Then Np,q(Λ) = Np,q(A

∗).
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Although Algorithm 0 theoretically finds Np,q(Λ), it is not efficient
from a practical point of view. Especially, Step (A0.2) is very time-
consuming. In the following two sections we investigate the problem of
developing substantially more efficient algorithms for determining Np,q

in two special cases, namely for (p, q) = (2,∞) and (1,∞).

4. The case (p, q) = (2,∞)

In this case the norm N2,∞(A) for any basis A = (a1, . . . , ak) of Λ
can be immediately obtained.

Lemma 4.1. For any basis A = (a1, . . . , ak) of Λ we have

N2,∞(A) = |(|â1|2, . . . , |âk|2)|∞,

where the vectors â1, . . . , âk are defined in the proof of Theorem 3.1

Proof. Since |âi|2 ≤ |bi|2 holds for all bi ∈ âi + Λ⊥, the statement
trivially follows. �
Remark 4. Lemma 4.1 holds for arbitrary values of q, not only for
q = ∞.

Now we indicate how one could approximate efficiently N2,∞(Λ) for
any lattice Λ. Take an arbitrary basis A = (a1, . . . , ak) of Λ. Then by

Lemma 4.1 with the basis Â = (â1, . . . , âk) we have N2,∞(A) = |Â|2,∞.

Further, writing Λ∗ for the lattice generated by Â, by the choice of the
vectors in Â in the proof of Theorem 3.1 we see that Λ∗ is contained in
the orthogonal complement subspace of Λ⊥. Since it is valid for any ba-
sis of Λ, one can easily check thatN2,∞(Λ) = |Λ∗|2,∞ with the particular

Λ∗ defined above. Thus a basis reduction (starting from Â) yielding
a “small” basis of the lattice Λ∗, provides a good approximation of
N2,∞(Λ). For this purpose the LLL-algorithm ([Lenstra et al. 82], see
also [Pohst and Zassenhaus 89]) can be efficiently used. Note that this
approach works for any value of q, not only for q = ∞.

Now we give a heuristic method for which there is no guarantee to
work. However, if it does, it gives N2,∞(Λ) very quickly.

4.1. Algorithm 1 - N2,∞. Starting with an arbitrary basis a1, . . . , ak
of Λ, execute the following steps.

(A1.1) Find the vectors â1, . . . , âk as in the proof of Theorem 3.1.
(A1.2) Compute the successive minima and the corresponding vectors

b1, . . . , bk of the lattice L generated by â1, . . . , âk.
(A1.3) Check whether b1, . . . , bk form a basis of L or not, by computing

whether the determinant of the basis transformation matrix is
±1.
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(A1.4) If this is not the case then output a failure message and termi-
nate. Otherwise, output N2,∞(b1, . . . , bk).

If b1, . . . , bk form a basis, then by Lemma 4.1 we have N2,∞(Λ) =
N2,∞(b1, . . . , bk). Actually, this happens in all the cases we have con-
sidered. It is not surprising, since we have used lattices related to
number fields, and such lattices behave nicely in general. However, it
is well-known that it may happen that the successive minima vectors
do not form a basis of the lattice (see e.g. [Pohst and Zassenhaus 89]).
In that situation we should switch back to Algorithm 0, with p = 2
and q = ∞.

5. The case (p, q) = (1,∞)

For this choice of p and q the situation is more complicated. In what
follows, we develop a method for finding the norm N1,∞(Λ) of a lattice
Λ. Note that in view of Theorem 3.3, we know that N1,∞(Λ) always
exists.

We need to find a system B = (b1, . . . , bk) (a dual system for some
basis A of Λ) such that

|B|1,∞ = max(|b1|1, . . . , |bk|1) = N1,∞(Λ).

We shall in fact construct such a system B. The first algorithm we give
is an adaptation of Algorithm 1 to this case.

5.1. Algorithm 2a - N1,∞. We heuristically expect that the basis
obtained in Algorithm 1 is the one that corresponds to the norm N1,∞,
too. Therefore after executing the first three steps (which are the
same as in Algorithm 1), we continue with this basis and do further
examinations. So starting with some rows a1, . . . , ak of Λ, execute the
following steps.

(A2a.1) Find the vectors â1, . . . , âk as in the proof of Theorem 3.1.
(A2a.2) Compute the successive minima and the corresponding vectors

b1, . . . , bk of the lattice L generated by â1, . . . , âk.
(A2a.3) Check whether b1, . . . , bk form a basis of L or not, i.e., compute

whether the determinant of the basis transformation matrix is
±1.

(A2a.4) If this does not hold then output a failure message and termi-
nate. Otherwise, continue with the following steps.

(A2a.5) By Lemma 5.1, calculate the norm of the system b1, . . . , bk.
That is, for all i = 1, . . . , k find the norm of the shortest vector
in bi +Λ⊥, with respect to |.|1. Observe that since the intersec-
tion of bi + Λ⊥ and the set {x ∈ Rn : |x|1 ≤ 1} is a convex
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polytope, it can be done by solving a standard linear program-
ming problem. Take the maximum of these norms, this is the
norm N1,∞(b1, . . . , bk).

(A2a.6) Find all “short vectors” in the lattice whose Euclidean lengths
are between the largest successive minimum andN1,∞(b1, . . . , bk).

(A2a.7) For all “short vectors” b find the norm of the shortest vector in
b+Λ⊥ with respect to |.|1. If these norms are ≥ N1,∞(b1, . . . , bk)
then set the value of the logical variable “MINIMAL” as “true”;
otherwise put MINIMAL:=false.

(A2a.8) Output the vectors b1, . . . , bk, the norm N1,∞(b1, . . . , bk), and
the variable MINIMAL.

Actually, the vectors b1, . . . , bk obtained in step (A2a.2) do form a
basis in all the cases we have considered. However, as we have men-
tioned already, it is not guaranteed: in such cases we should return to
Algorithm 0, with p = 1 and q = ∞.

If the output value of MINIMAL is “true”, then we have N1,∞(Λ) =
N1,∞(b1, . . . , bk). Otherwise our algorithm fails to find the normN1,∞(Λ).
Unfortunately, it happens several times. (Though note that the value
of the norm N1,∞(b1, . . . , bk) provided by the algorithm is not too far
fromN1,∞(Λ). This can be easily seen from the inequalities between the
norms |.|1 and |.|2.) However, even if the algorithm does find the norm
N1,∞(Λ), it has to list a lot of “short vectors” in Step (A2a.6) (which
can be done by the method of Fincke and Pohst [Fincke and Pohst 85]),
and finding them is very time-consuming. It means that the algorithm
is not efficient enough, therefore we develop another one.

First we prove three statements, which form the basis of this new
algorithm.

Let H be a subspace of Rn and b ∈ Rn be a non-zero vector being
orthogonal to H, and write T = b + H. Further, write H∗ for the
subspace

H∗ = {tb+ h | t ∈ R, h ∈ H}.
The first theorem gives a method to find the shortest element of T

with respect to |.|1.
Lemma 5.1. Let e be a vector in H∗ of the form e = t0b + h with
some t0 > 0 and h ∈ H such that |e|1 = 1 and t0 is maximal with this
property. Then b0 = e/t0 is the shortest element of T with respect to
|.|1, with |b0|1 = 1/t0.

Proof. Obviously, e is well defined, and b0 ∈ H∗. Suppose that b′ ∈ T
and |b′|1 = c < 1/t0 = |b0|1. Write b′ = b + h′. Then letting e′ = b′/c
we have both |e′|1 = 1 and e′ = (1/c)b + (1/c)h′, which by 1/c > t0
contradicts the definition of t0. Hence the assertion follows. �
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The next statement shows that the shortest vector in T w.r.t. |.|1
cannot be “too short”.

Lemma 5.2. For any b′ ∈ T we have |b′|1 ≥ |b|2.

Proof. Since b is orthogonal to H, it is the shortest vector in T w.r.t.
|.|2. Hence for any b′ ∈ T we have

|b′|1 ≥ |b′|2 ≥ |b|2,
and the proof is complete. �

Let now b1, . . . , bk be linearly independent vectors in Rn. The third
statement shows that if a linear combination of these vectors is “short”
w.r.t. |.|2, then the coefficient vector must also be “short”.

Lemma 5.3. Let a = λ1b1 + · · · + λkbk be a linear combination of
b1, . . . , bk with some λ1, . . . , λk ∈ R, such that |a|2 < c with some posi-
tive real number c. Then we have

|λ|2 < c
√
µ,

where λ = (λ1, . . . , λk) and µ is the largest eigenvalue of the matrix
RtrR. Here R is the inverse of the matrix

S = (b1, . . . , bk).

Proof. Observe that we have a = Sλ, whence Ra = λ. Thus writing
||R|| for the operator norm of R, i.e., ||R|| = sup|x|2≤1 |Rx|2, and using
the well-known assertion ||R|| = √

µ, we get

|λ|2 = |Ra|2 ≤ ||R|| · |a|2 =
√
µ|a|2 < c

√
µ,

and the statement follows. �

5.2. Algorithm 2b - N1,∞. Starting for any rows a1, . . . , ak of Λ,
execute the following steps.

(A2b.1) Find the vectors â1, . . . , âk as in the proof of Theorem 3.1. Ini-
tially, put B = (â1, . . . , âk).

(A2b.2) By Lemma 5.1, calculate the norm N1,∞ of this system. Write
c for this value.

(A2b.3) Observe that by Lemma 5.2, if the actual systemB = (b1, . . . , bk)
is not best possible, then there exists an unimodular matrix U ,
such that for the system B′ = (b′1, . . . , b

′
k) with B′tr = UBtr,

|b′i|2 < c holds for all i = 1, . . . , k. Then by Lemma 5.3, we
get that the |.|2-norm of each row of U is < c

√
µ. Checking all

possible matrices U , we find the best basis B, and hence also
the norm N1,∞(Λ).
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(a) Actually, we start by checking special matrices U who dif-
fer from the identity matrix in only one row. This row
contains 1 as the main diagonal entry and all the other
entries are zeros except for one value. The absolute value
of the exceptional entry is smaller than

√
c2µ− 1. (That

is, the absolute value of the exceptional entry is chosen not
to violate the property that the |.|2-norm of each row of U
is < c

√
µ.)

(b) After doing Step (A2b.3)(a) as many times as possible, we
check the unimodular matrices U of general shape having
the property that the |.|2-norm of each row is < c

√
µ.

Step (A2b.3)(a) is the heart of the algorithm. Practically speaking
Step (A2b.3)(a) means that we would like to change the longest basis
vector to another one which is a sum of this vector and a constant
multiple of another basis vector. This can be done very quickly every
time. We expect that after doing so as many times as possible, the
basis obtained gives the norm N1,∞ of the lattice. Actually, this re-
ally happens in the considered cases, and it is demonstrated in Step
(A2b.3)(b). Indeed, after executing Step (A2b.3)(b), in each consid-
ered case we get the same basis as after executing Step (A2b.3)(a).
Note that Step (A2b.3)(b) is very time-consuming but must be done
to have all possible bases checked that can give the norm N1,∞ of the
lattice. In contrast with Algorithm 2a, Algorithm 2b never fails to find
N1,∞(Λ).

6. Examples

In our numerical investigations we work with lattices corresponding
to the unit group of number fields and random lattices with real and
integer entries. We apply the algorithms given in the previous sections
to compute the norms N1,∞ and N2,∞ of the lattices under considera-
tion. The algorithms were implemented in the computer algebra pack-
age MAGMA and were run on a PC having two INTEL XEON 3.00
GHz processors. Thus the comparison of the efficiency of the different
methods is realistic.

Let K be an algebraic number field of degree n. We have s real and
t pairs of complex embeddings K → C with n = s + 2t. Order them
as σ1, . . . , σs being the real ones and σs+1, σs+1, . . . , σs+t, σs+t being the
pairs of complex ones. For α ∈ K write

|α(i)| =

{
|σi(α)|, for i = 1, . . . , s,

|σi(α)|2, for i = s+ 1, . . . , s+ t.
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The units of the ring of integers of K form a group. As is well-known,
this group is finitely generated of rank r = s + t − 1. Therefore any
unit η ∈ UK can be written as

η = εb00 ε
b1
1 · · · εbrr .

Here ε1, . . . , εr is a fundamental system of units and ε0 is a primitive
root of unity in K. The lattice corresponding to the unit group of K is

generated by the vectors
(
log |ε(1)i |, . . . , log |ε(r+1)

i |
)
, (i = 1, . . . , r).

In Subsections 6.1 and 6.2 we present our results concerning these
unit lattices for maximal real subfields of cyclotomic fields and number
fields of the form Q( n

√
2), respectively. In both cases we use Algorithm

1, Algorithm 2a and Algorithm 2b described in the previous sections
to find N2,∞ and N1,∞ of the lattices in question. We summarize the
results of our computations in Tables 1-6.

In Subsection 6.3 we consider a large number of random lattices
with integer entries. In the random case we used again the algorithms
described in Subsections 4.1, 5.1 and 5.2 to find N2,∞ and N1,∞ of the
lattices in question, respectively.

6.1. Maximal real subfields of cyclotomic fields. Let Q(ζn) de-
note the n-th cyclotomic field (n > 2), i.e. the field obtained by ad-
joining a primitive n-th root of unity ζn to the rational numbers. Note
that [Q(ζn) : Q] = φ(n), where φ(n) denotes Euler’s totient function.
The maximal real subfield of Q(ζn) is Q(ζn)

+ = Q(ζn+ζ−1
n ) which is of

degree φ(n)/2. Consider the unit lattice of Q(ζn)
+. Note that the unit

rank is φ(n)/2− 1 since we have only real embeddings. We summarize
the results of our computations in Tables 1-3.

In Table 1 in distinct columns the value of n, the rank of the lattice
Λ in question, the norm N2,∞(Λ) obtained by Algorithm 1 and the
processing time in each case are given.

In distinct columns of Table 2 we indicate the value of n, the rank of
the lattice Λ in question, whether the vectors corresponding to the suc-
cessive minima form a basis or not, whether the vectors corresponding
to the successive minima form a basis of minimal norm or not, (to be
more precise, this means, that the “successive basis” is of minimal norm
if the algorithm finds that there are no “short vectors” whose norm |.|1
is smaller than this value; however, as it will be seen later, sometimes
it happens that the “successive basis” is the optimal basis, but the al-
gorithm cannot prove this), the norm N1,∞ obtained by Algorithm 2a
and corresponding to the “successive basis”, and the processing time,
respectively. The table shows that in about one quarter of the cases
Algorithm 2a does not solve the problem of finding the norm N1,∞ of
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n Rank
of Λ

N2,∞
Time
(sec)

n Rank
of Λ

N2,∞
Time
(sec)

5 1 1.469 0.02 15 3 1.039 0.11
7 2 1.126 0.02 16 3 0.709 0.25
8 1 0.802 0.00 17 7 0.597 7.71
9 2 0.886 0.02 18 2 0.886 0.01
10 1 1.469 0.01 19 8 0.559 4.32
11 4 0.798 0.33 20 3 1.039 0.11
12 1 0.537 0.02 21 5 0.874 0.69
13 5 0.711 0.49 22 4 0.798 0.33
14 2 1.126 0.02

Table 1. The norm N2,∞ of the unit lattices of maximal real
subfields of cyclotomic fields using Algorithm 1

the lattice, i.e., the norm corresponding to the “successive basis” is not
best possible. Therefore we needed to develop another method.

As it can be seen from Table 3, Algorithm 2b fulfills the required
task, i.e., it finds the norm of the lattice in all the cases. Table 3
contains the following data: the value of n, the rank of the lattice Λ
in question, the initial norm obtained in Step (A2b.2), the number of
iterations in Step (A2b.3)(a) required to find the optimal basis. We
mention here that Step (A2b.3)(b) never provides a smaller norm than
the one obtained in Step (A2b.3)(a), however, it must be executed. We
remark that we stopped the computations in Algorithm 2b at n = 22
because of time consumption problems. The rows of n = 20 in Tables
2 and 3 show that both algorithms actually find the optimal basis but
it is not proved by Algorithm 2a, it is done only by Algorithm 2b.

6.2. Unit lattice of K = Q( n
√
2). Consider the unit lattice of the

number field K = Q( n
√
2). Now the unit rank is ⌊n/2⌋, since we have

one or two real embeddings depending on the parity of n and all the
other embeddings are complex ones. We summarize the results of our
computations in Tables 4-6. We remark that we stopped the compu-
tations at n = 17 because of time consumption problems in Algorithm
2b. Tables 4-6 contain the same type of data as Tables 1-3. It is
obvious from the tables that we could go further with the value of n
with Algorithm 2b. Indeed, Algorithm 2a caused a memory overflow
already in case of n = 15. Furthermore, we can see e.g. from the rows
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n Rank
of Λ

Basis?
Of minimal
norm?

Norm N1,∞
of the suc-
cessive basis

Time
(sec)

5 1 yes no 2.159 0.01
7 2 yes yes 1.541 0.02
8 1 yes yes 1.135 0.01
9 2 yes yes 1.245 0.02
10 1 yes no 2.159 0.01
11 4 yes yes 1.356 0.38
12 1 yes yes 0.759 0.01
13 5 yes yes 1.410 0.84
14 2 yes yes 1.541 0.02
15 3 yes yes 2.078 0.15
16 3 yes no 1.166 0.25
17 7 yes yes 1.284 24.28
18 2 yes yes 1.245 0.03
19 8 yes yes 1.344 288.11
20 3 yes no 2.078 0.14
21 5 yes yes 1.763 1.29
22 4 yes yes 1.356 0.38

Table 2. Result of Algorithm 2a in case of maximal real
subfields of cyclotomic fields

of n = 13, 14 in Tables 5 and 6 that even when both programs solve
the problem, Algorithm 2b is much faster than Algorithm 2a.

6.3. Random lattices. We considered a large number of random lat-
tices of rank k in Zn (0 < k ≤ n) with entries of the lattice vectors in
the range [−10, 10]. We started with running both Algorithms 2a and
2b and it turned out that Algorithm 2a is much slower and less efficient
also in this case. Therefore we used Algorithm 2b in our computations.

We considered pairs (n, k) that satisfy 5 ≤ n ≤ 10 and n− 4 ≤ k ≤
n− 1. For each pair (n, k) we generated 1000 random lattices and ran
Algorithm 2b for them. The outputs were evaluated by the program
Microsoft Excel. Since the cases are similar to each other, we show
only one example. Let n = 7 and k = 5. Figure 1 is a histogram
which shows the frequencies of the distinct values of the number of
iterations needed in Step (A2b.3)(a) to calculate N1,∞(Λ). It seems
that the diagram (as well as the diagrams obtained for other values of
n and k) follows a normal distribution.
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n Rank
of Λ

Initial norm
obtained in
Step (A2b.2)

No. of iter-
ations in Step
(A2b.3)(a)

N1,∞
Time
(sec)

5 1 2.078 0 2.078 0.01
7 2 1.541 0 1.541 0.02
8 1 1.135 0 1.135 0.01
9 2 1.245 0 1.245 0.03
10 1 2.078 0 2.078 0.01
11 4 1.608 3 1.356 0.60
12 1 0.759 0 0.759 0.02
13 5 1.946 5 1.410 2.15
14 2 1.541 0 1.541 0.03
15 3 2.078 0 2.078 0.20
16 3 1.166 2 1.135 0.31
17 7 1.910 8 1.284 75.64
18 2 1.245 0 1.245 0.03
19 8 1.873 15 1.344 1091.30
20 3 2.078 0 2.078 0.21
21 5 2.040 3 1.763 4.16
22 4 1.608 3 1.356 0.57

Table 3. The norm N1,∞ of the unit lattices of maximal real
subfields of cyclotomic fields using Algorithm 2b
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Figure 1. Number of iterations needed to calculate N1,∞
for random lattices of rank k = 5 in Z7
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