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15 Abstract Occurrence of genetic and epigenetic alterations
16 affecting p14ARF and p16INK4A were investigated in tu-
17 mour samples of 37 oral (OSCC) and 28 laryngeal squamous
18 cell cancer (LSCC) patients, and compared to exfoliated buc-
19 cal epithelial cells of 68 healthy controls. Presence of deletions
20 and mutations/polymorphisms affecting exons were examined
21 using sequencing. Methylation status of promoters was
22 assessed by methylation-specific PCR. Chi-square and
23 Fisher’s exact tests were used to compare frequency of events.
24 Exon deletions were found in four controls, one OSCC and 22
25 LSCC patients; the latter significantly differed from controls
26 (p<0.001). Only two mutations (T24610A and C24702A)
27 were in p16 exon 1 of two OSCC patients. Polymorphisms
28 G28575A (Ala140Thr), G31292C (C540G) and G28608A
29 were found in both patient groups. The p14 promoter was
30 unmethylated in 86.7 % of OSCC and in 85.7 % of LSCC
31 patients; for the p16 promoter these rates were 69.0 % and
32 76.2 % for OSCC and LSCC patients, respectively.
33 Combining the two patient groups, unmethylated promoter
34 was significantly less frequent in case of both p14 and p16
35 (p=0.043 and p=0.001, respectively) compared to the control
36 group. In summary, exon deletion may be important in LSCC,

37while promoter methylation was relatively frequent in both
38patient groups.

39Keywords Oral squamous cell cancer . Laryngeal squamous
40cell cancer . Tumour suppressor gene . Promoter methylation

41Introduction

42Head and neck cancer is a heterogeneous group of malignant
43diseases. It is the sixth most common malignancy and ac-
44counting for more than 500,000 new cases annually and
45approximately 350,000 deaths per year [1–3]. Though it is
46widely accepted that mainly chemical carcinogens (especially
47smoking and alcohol consumption) are involved in the
48aetiology of head and neck squamous cell cancer (HNSCC)
49[3–6]; a portion (approximately 15–20 %) of HNSCC de-
50velops in non-smoker and non-drinker patients [7, 8]. This
51suggests the role of additional factors such as dietary habit,
52genetic predisposition as well as oncogenic viruses, e.g. hu-
53man papillomaviruses (HPVs) or the Epstein-Barr virus
54(EBV) [9–13]. As the mentioned viruses interact with the
55tumour suppressor pathways involving the retinoblastoma
56protein (pRB) and the p53 tumour suppressor proteins, the
57concerted action of these viruses with genetic/epigenetic var-
58iations or alterations in the genes of these pathways offers a
59likely explanation for carcinogenesis.
60Such tumour suppressor genes in these pathways are the
61p16INK4A and the p14ARF, encoded by the INK4A/ARF
62locus containing four exons (1α, 1β, 2 and 3) localized on
63chromosome 9p21, which is one of the major sites of chro-
64mosomal abnormalities in human tumours. The p16INK4A is
65encoded by exons 1α, 2 and 3, while p14ARF is encoded by
66exons 1β, 2 (and possibly also by exon 3); the two proteins
67use the second exon with alternative reading frames, thus
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68 sharing a common second [14] and possibly also a third exon
69 [15, 16]. The p16INK4A is a cyclin-dependent kinase inhib-
70 itor and can inhibit cyclin D-Cdk4/6 thus preventing
71 hyperphosphorylation of pRB. The p14 interacts physically
72 withMDM-2 and stabilizes the p53 tumour suppressor protein
73 in the nucleus by blocking its cytoplasmic transport and
74 MDM-2-mediated degradation [14, 15]. In this manner, both
75 p16INK4A and p14ARF plays a role in inhibition of G1 to S
76 transition in the cell cycle.
77 Genetic and epigenetic alterations of tumour suppressor
78 genes, including p16INK4A and p14ARF, were found to
79 contribute to tumourgenesis in various types of cancer
80 [17–20]. Polymorphisms G28575A (Ala140Thr) in the p16
81 gene is generally regarded as neutral [21]; G31292C in the
82 non-coding region (C540G at mRNA level) and C580T
83 shown to be protective in cervical and ovarian cancer, respec-
84 tively [22, 23]. However, C580T or both was shown to be
85 associated with faster progression in pancreatic cancer [24,
86 25] or melanoma [35], respectively. The polymorphisms
87 C540G and C580T were shown to be neutral for squamous
88 head and neck cancers [27].
89 The aim of this study was to determine the frequency of the
90 genetic alterations and promoter inactivation through methyl-
91 ation of p16INK4A and p14ARF tumour suppressor genes in
92 patients with HNSSC of known virological (HPV and EBV)
93 status in an Eastern Hungarian population [28, 29].

94 Materials and Methods

95 Patients, Specimens and DNA Extraction

96 Patients and controls were recruited between 2001 and 2007
97 from Department of Maxillofacial and Oral Surgery (oral
98 squamous cell cancer patients) and Department of
99 Periodontology (healthy controls), Faculty of Dentistry, as
100 well as from the Clinic of Otorhinolaryngology and Head
101 and Neck Surgery (laryngeal squamous cell cancer patients)
102 at the University of Debrecen, Hungary. All participants
103 signed an informed consent; the study was conducted under
104 the supervision of the local Ethics Committee (No. of Ethics
105 Committee approval 2273–2004).
106 Thirty-seven patients with oral squamous cell carcinoma
107 (OSCC) (28 male; 9 female; mean age 54.5; age-range 39–80)
108 and 28 patients with laryngeal squamous cell carcinoma
109 (LSCC) (27 male; 1 female; mean age 56.8; age-range 43–
110 71) were enrolled. Individuals of both groups were newly
111 diagnosed and none of the patients received neoadjuvant
112 chemo- or radiotherapy before the surgical intervention and
113 specimen collection. All individuals fulfilling the inclusion
114 criteria and agreeing to participate were enrolled. Fresh tissue
115 samples were obtained from the central part of the tumours
116 during operation.

117As an age-matched control population, 68 healthy individ-
118uals (16 male; 52 female; mean age 52.4; age-range 22–77)
119without history of oral cancer and with healthy mucosa at-
120tending the Faculty of Dentistry for regular oral screening
121were sampled. Exfoliated buccal epithelial cells were collect-
122ed from the controls using cytobrush after a thorough rinse of
123the mouth with physiological saline. Importantly, control in-
124dividuals lived in the same geographical area (Eastern
125Hungary) where the patients came from.
126Occurrence of human papillomaviruses and Epstein-Barr
127virus in these samples has been reported elsewhere [28, 29].
128All samples were frozen immediately after collection
129at −70 °C and stored at this temperature until use. From
130tumour tissue (OSCC and LSCC) samples, the DNA was
131isolated using TRI Reagent (Sigma, St Louis, MO, USA)
132according to manufacturers’ recommendations. Exfoliated
133cells were treated with proteinase K-SDS, proteins were
134removed by 5 M NaCl treatment, and finally, DNA was
135precipitated with 96 % ethanol.

136Polymerase Chain Reaction and Single Strand Conformation
137Polymorphism Analysis (PCR-SSCP)

138Quality of the DNA was confirmed by PCR-amplification of
139the β-globin gene. Exon deletions in the p16INK4A/p14ARF
140locus were analysed by means of PCR assays described earlier
141using primers complementary to intron sequences close to the
142exon boundaries [30–32]. Briefly, the 25 μl PCR mixture was
143composed 1× PCR buffer containing 250–250 μM of each
144dNTP, 25 pmol of each primer, 0.5 U of GoTaq DNA poly-
145merase (Promega, Madison, WI, USA) and 2 μl (100–300 ng)
146template DNA. PCR conditions were 94 °C for 3 min, followed
14735 cycles of 94 °C denaturing for 1 min, annealing at temper-
148atures 56–63 °C depending on the primers used (see Table 1)
149for 1 min, 72 °C elongation for 1 min with a final extension of
1507min at 72 °C. Sensitivity of the four exon-specific PCR assays
151was determined on serial dilutions of DNA extracted from
152primary keratinocyte cell culture and human fibroblast cells to
153exclude bias caused by differences in PCR sensitivity. All
154assays were run in duplicates. Samples repeatedly not yielding
155PCR product was considered as with a deleted respective exon.
156Single nucleotide polymorphisms/point mutations were
157sought for by means of SSCP analyses of the amplified exons
158digested with different restriction enzymes. p16INK4A exon
1591 and 2 PCR products were digested with SmaI (Fermentas,
160Vilnius, Lithuania) while in case of p14ARF exon 1 DdeI
161(Promega, Madison, WI, USA) was applied. Human fibro-
162blast cells were used as a wild-type reference. PCR products
163were diluted in a buffer containing 95 % formamide, 0.05 %
164bromophenol blue and 0.05 % xylene cyanol, heat denatured
165at 95 °C for 5 min and then loaded onto a denaturing 18 %
166polyacrylamide gel. Electrophoresis was performed at 300 V
167for 4–6 h at 4 °C. After electrophoresis, the gel was stained by

A. Kis et al.

JrnlID 12253_ArtID 9775_Proof# 1 - 02/04/2014

Kardos Gábor
Cross-Out

Kardos Gábor
Replacement Text
Dentoalveolar and Maxillofacial

Kardos Gábor
Sticky Note
Marked set by Kardos Gábor

Kardos Gábor
Sticky Note
Marked set by Kardos Gábor

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Cross-Out

Kardos Gábor
Replacement Text
males

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Cross-Out

Kardos Gábor
Replacement Text
females

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Cross-Out

Kardos Gábor
Replacement Text
males

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Cross-Out

Kardos Gábor
Replacement Text
males

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Cross-Out

Kardos Gábor
Replacement Text
females

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Cross-Out

Kardos Gábor
Replacement Text
triplicates

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor

Kardos Gábor
Sticky Note
Accepted set by Kardos Gábor



AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

168 silver precipitation. Fragments with electrophoretic mobility
169 different from the wild type were analysed by direct sequenc-
170 ing to confirm and characterize the nature of the alteration.
171 Exons of tumour suppressor genes were amplified using the
172 abovementioned primers and conditions. PCR products were
173 purified by EZ-10 Spin Column DNA Gel Extraction Kit (Bio
174 Basic Inc., East Markham Ontario, Canada) and sequenced by
175 the Sanger chain termination method using the BigDye
176 Terminator Kit (Life Technologies) in an ABI 3100-Avant
177 Genetic Analyser. Resulting sequences were compared to the
178 GenBank reference sequence (Accession Number NG007485).
179 When sequencing suggested heterozygosity, this was con-
180 firmed by cloning and sequencing of ten clones. TA cloning
181 of the PCR fragments was performed with pGEM-T Easy
182 vector (Promega, Medison, USA). Transformed cells were
183 recovered on duplicate LB agar plates supplemented with am-
184 picillin (100μg/mL). Ten colonies were tested further; plasmids
185 were isolated by PureYield Plasmid Miniprep System
186 (Promega, Medison, USA) kit according to the protocol pro-
187 vided. Sequencing of the inserted PCR fragments was carried
188 out as described above.

189 Methylation Analysis of the p16INK4A and p14 ARF
190 Promoters

191 Promoter hypermethylation of the p16INK4A and p14ARF
192 genes was determined by methylation-specific PCR as de-
193 scribed Herman et al. [33]. First, genomic DNAwas modified
194 with sodium bisulphite. Briefly, 1 μg DNA was treated with
195 NaOH (final concentration 0.3M) for 20min at 42 °C. Freshly
196 prepared 3.8 M sodium bisulphite and 1 nM hydroquinone

197solution (pH 5.0) were added and incubated at 55 °C for 16 h.
198Modified DNAwas purified on Wizard DNA Clean-Up sys-
199tem (Promega, Madison, WI, USA) according to the protocol
200provided by the manufacturer, ethanol precipitated and resus-
201pended in water. The methylation-specific PCR was per-
202formed using primers (Table 1.) and conditions as described
203earlier with minor modifications [33]. Briefly, the 25 μl PCR
204mixture contained 1× AmpliTaq Gold PCR puffer, 250 μM of
205each dNTP, 25 pmol of each primer, 0.5 U AmpliTaq Gold
206DNA polymerase (Applied Biosystems, Foster City, CA,
207USA) and 2 μl template DNA. PCR conditions were as
208follows: 95 °C for 5 min, the 35 cycles of 95 °C for 30 s,
20962 °C for 30 s, 72 °C for 30 s and finally 72 °C for 4 min.
210Methylation status was determined based on the PCR patterns
211seen. BL41 (methylated for p16INK4A; CRL-2323) and
212Ramos (methylated for p14ARF; CRL-1596) as well as
213Namalwa cell lines (CRL-1432) were used as methylated
214and unmethylated controls, respectively.

215Statistical Analysis

216Frequency of genetic differences or epigenetic alterations was
217compared between study populations using chi-square test or
218Fisher exact test, survival was analysed with Kaplan-Meier
219test by means of SPSS for Windows 15.0.

220Results

221Sensitivities of the exon-specific PCR assays were uniformly
222as low as 1 ng total DNA. Among the controls four individuals

t1:1 Table 1Q1 Primers used for
amplification and sequencing of
tumour suppressor gene exons

SSCP: single strand conformation
polymorphism; bp base pairs; F:
forward primer; R: reverse prim-
er; U: unmethylated; M:
methylated

t1:2 Primer ID Primers Product size (bp) Annealing
temperature (°C)

t1:3 PCR-SSCP

t1:4 p14 exon 1β F: CTGCTCACCTCTGGTGCCAA

R: TCTCCTCCTCCTCCTAGCCT

367 62

t1:5 p16 exon 1α F: GGAGGAAGAAAGAGGAGGG

R: ACTTCGTCCTCCAGAGTCG

316 63

t1:6 p16 exon 2 F: GCTCTGACCATTCTGTTCTC

R: CTCAGATCATCAGTCCTCAC

355 56

t1:7 p16 exon 3 F: GTAGGGACGGCAAGAGA

R: ACCTTCGGTGACTGATG

159 60

t1:8 Methylation-specific PCR

t1:9 p14 U F: TTTTTGGTGTTAAAGGGTGGTGTAGT

R: CACAAAAACCCTCACTCACAACAA

132 61

t1:10 p14 M F: GTGTTAAAGGGCGGCGTAGC

R: AAAACCCTCACTCGCGACGA

122 61

t1:11 p16 U F: TTATTAGAGGGTGGGGTGGATTGT

R: CAACCCCAAACCACAACCATAA

151 63

t1:12 p16 M F: TTATTAGAGGGTGGGGCGGATCGC

R: GACCCCGAACCGCGACCGTAA

150 63

Frequency of genetic and epigenetic alterations of p14ARF
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223 were found lacking one or more exon-specific amplimers; one
224 showed p16 exon 1α deletion, another exhibited lack of p16
225 exon2 amplimer, two individuals has deletion in two exons,
226 one in p16 exon 1α and 2, another in p14 exon1β and p16
227 exon3. Out of the 37 patients with OSCC, only one patient
228 showed lack of p16 exon1α, all other exons were detected in
229 all other patients. In patients with LSCC, deletion of at least
230 one of the three exons (exon1α, 2 and 3) of p16INK4A was
231 observed in 21 cases (75.0%), while 10 cases (35.7%) showed
232 p14 exon1β deletion; ten of 28 LSCC samples showed dele-
233 tion in p14ARF exon1β; 19 in exon1α; nine in exon2 and only
234 two samples in exon3 of p16INK4A. Regarding inactivation
235 by exon deletion, p14 is inactivated in three controls, none of
236 the OSCC, and 14 of the LSCC patients; p16 is inactivated in
237 four controls, one OSCC and 21 LSCC patients; both are lost
238 in three controls, none of the OSCC and thirteen of the LSCC
239 patients. This corresponds to a significantly different distribu-
240 tion of deletions in LSCC as compared to the controls or to
241 OSCC patients (p<0.001 in both comparisons).
242 The SSCP alterations confirmed the presence of two mu-
243 tations, a homozygous T24610A nucleotide change in the
244 non-coding region of p16 exon1α and a heterozygous
245 C24702A change in the coding region of p16 exon1α, leading
246 to an Ala13Asp acid change. Three polymorphisms were
247 identified. A G28575A polymorphism in exon2 correspond-
248 ing to alanine and threonine variants at codon 140, all present
249 heterozygously. A G31292C polymorphism was found in the
250 non-coding region of exon3 found in homozygous and het-
251 erozygous forms in six and seven patients, respectively; this
252 correspond to the C540G polymorphism at the mRNA level.
253 The third polymorphism G28608A was detected in the non-
254 coding region of exon2, always heterozygously. The occur-
255 rence of mutations/polymorphisms in the patients and controls
256 is shown in Table 2.
257 Examining the promoter methylation patterns, bisulphite
258 modification was successful in case of the p14 promoter for all
259 68 controls, for 30 of 37 OSCC and for all 28 LSCC samples;
260 in case of the p16 promoter success rates were 68 of 68, 29 of
261 37, and 21 of 28 for control, OSCC and LSCC samples,
262 respectively.
263 Neither p14 nor p16 promoter was found to be completely
264 methylated in samples obtained from healthy individuals; the
265 p14 and the p16 promoters were unmethylated in 97.1 % (66/
266 68) and 95.6 % (65/68) of the controls, respectively. Two and
267 three individuals showed partial methylation of p14 and p16
268 promoters, respectively.
269 In OSCC tumour samples, p14 promoter was unmethylated
270 in 86.7 % (26/30) of the patients; complete and partial meth-
271 ylation was found in one and three patients, respectively. The
272 p16 promoter was unmethylated in 69.0 % (20/29) of patients,
273 which correspond to complete and partial methylation in three
274 and six patients. Thus, unmethylated promoters were signifi-
275 cantly less frequent in case of p16 promoter (p=0.001) as

276compared to the control group. In case of the p14ARF
277unmethylated promoters were also less frequent, but this was
278not significant statistically (p=0.069).
279In case of LSCC, the p14 promoter was unmethylated in
28085.7 % (24/28) of patients; one and three patients had
281completely methylated promoters and partial methylation,
282respectively. The p16 promoter was unmethylated in 76.2 %
283(16/21) of the patients, five patients showed partial methyla-
284tion of the promoter; complete promoter methylation was not
285found. Similarly to OSCC, these data differ significantly from
286the healthy controls regarding the methylation status of the
287p16 (p=0.016) but not of the p14 (p=0.058) promoter.
288Between the methylation status of the two patient groups there
289was no statistically significant difference in either comparison.
290Combining the two patient groups to a group of head and
291neck cancer patients, unmethylated promoter was significantly

t2:1Table 2 Distribution of mutations and polymorphisms in p16INK4A
exons of patients. Patients not shown did not carry mutations and poly-
morphisms; mutations or polymorphisms in the p14ARF were not found.
In case of heterozygous alterations the nucleotides of both strands are
shown separated by a slash

t2:2Exon p16 exon1α p16 exon2 p16
exon3

t2:3Nucleotide position 24610 24702 28575 28608 31292

t2:4Reference (Accession
number NG007485)

T C G G G

t2:5Control K36 G/A

t2:6OSCC patients M03 A

t2:7M54 C/A

t2:8M20 G/A

t2:9M23 G/A G/A

t2:10M33 G/A

t2:11M68 G/A

t2:12M37 C

t2:13M65 C

t2:14M76 G/C

t2:15M29 G/C

t2:16M30 C

t2:17M71 G/C

t2:18LSCC patients T67 G/A

t2:19T38 G/A G/C

t2:20T12 G/C

t2:21T16 C

t2:22T17 C

t2:23T35 G/C

t2:24T47 G/C

t2:25T54 C

t2:26Amino acid
change in
coding
regions

Ala13Asp Ala140Thr

OSCC: oral squamous cell cancer; LSCC: laryngeal squamous cell cancer
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292 less frequent in case of both p14 and p16 (p=0.043 and
293 p=0.001, respectively) compared to the control group.
294 Table 3. summarizes the number of individuals in each
295 group showing mutational inactivation of the tumour suppres-
296 sor genes or promoter hypermethylation. Association of ge-
297 netic events or promoter hypermethylation with presence or
298 absence of human papillomaviruses or Epstein-Barr virus was
299 not found.
300 Mean tumour-free survival time was 870 (93–1,807) days
301 and 951 (167–2,988) days for OSCC and LSCC patients,
302 respectively. Exon deletions in case of LSCC and p16 pro-
303 moter methylation in case of OSCC led to poorer tumour free
304 survival, but neither was statistically significant (p=0.054 and
305 0.108, respectively).

306 Discussion

307 Major inactivating mechanism of p14ARF and p16INK4A
308 gene is deletion, mutation and/or promoter methylation.
309 Promoter methylation of p16INK4Awas shown to be a rela-
310 tively early event in the development of OSCC [34]. A num-
311 ber of authors reported data on the prevalence of genetic as
312 well as epigenetic alterations (mostly on promoter methyla-
313 tion) affecting these genes in head and neck cancer, but the
314 occurrence of these alterations varies widely among the stud-
315 ies; e.g. promoter methylation rates vary from 5 to 68 % and
316 14–34 % in case of p16ink4A and p14ARF, respectively, as
317 reviewed by Demokan et al. [3]. As the majority of these
318 studies concentrated on prevalence and used few or no healthy
319 controls or other means to allow for statistical evaluation, the
320 importance of genetic or functional inactivation of p16INK4A
321 and/or p14ARF remains controversial in head and neck
322 cancers.
323 According to the hereby presented data, major deletions
324 may be important inactivation mechanisms for both genes in
325 LSCC but not in OSCC; deletions in p16 may even affect
326 survival. This is in agreement with a number of earlier studies

327on OSCC or head and neck cancer [18, 35, 36]. In contrast,
328some studies reported relatively high deletion rates in OSCC
329[20, 36, 37]. The difference between the present results and
330the cited Japanese and Indian data may represent geographical
331differences, while the contrast with data derived from studies
332of mainly Caucasian patients may be due to differences in
333exposure to chemical carcinogens (smoking or dietary habits),
334which were unfortunately unrecorded in the cited studies.
335Published studies reporting deletion rates specifically in
336LSCC were not found.
337Curiously, results suggesting major deletions were also
338found in a small number of healthy individuals. These may
339be regarded as individuals with higher risk of tumours, or as
340results due to less important genetic events, e.g. polymor-
341phism, mutation or deletion in primer binding sites. This also
342points to a potential limitation of studies using such an ap-
343proach (including the present one), i.e. a repeatedly negative
344PCR assay may not only be due to lack of amplifiable se-
345quences. This study tried to minimize such a possibility by
346running the assays in triplicates and by assessing PCR sensi-
347tivity to exclude negative results due to low sensitivity caused
348e.g. by mutations affecting primer binding sites. Another
349limitation of the approach is that only homozygous deletions
350can be detected.
351The role of p14ARF and p16INK4A mutations in
352tumourgenesis seems to be small, as only two mutations were
353found.Most alterations found correspond towell-known poly-
354morphisms of the exons involved. Though such polymor-
355phisms were shown to play a role in some cancers [23, 26],
356in the study population they do not seem to be important, as all
357alterations found in the coding region were heterozygous and
358mutations consistently associated with tumour tissue were not
359found. Previous studies report similarly low mutation carriage
360rates in the two genes in head and neck cancer patients [36, 38,
36139]. Occurrence of mutations was shown to be slightly higher
362in recurrent tumours [40]. Moreover, two of the three poly-
363morphisms detected were previously shown to be neutral in
364head and neck cancer [27].

t3:1 Table 3 Distribution of genetic and epigenetic alterations in the different study groups

t3:2 p14ARF p16INK4A

t3:3 Control OSCC LSCC Control OSCC LSCC

t3:4 Exon deletions 4.4 % (3/68) ND 50.0 % (14/28) 5.9 % (4/68) 2.7 % (1/37) 75.0 % (21/28)

t3:5 Mutations ND ND ND ND 5.4 % (2/37) ND

t3:6 Polymorphisms ND ND ND 1.5 % (1/68) 27.0 % (10/37) 28.6 % (8/28)

t3:7 Promoter methylation status m ND 3.3 % (1/30) 3.6 % (1/28) ND 10.3 % (3/29) ND

t3:8 m/u 2.9 % (2/68) 10.0 % (3/30) 10.7 % (3/28) 4.4 % (3/68) 20.7 % (6/29) 23.8 % (5/21)

t3:9 u 97.1 % (66/68) 86.7 % (4/30) 85.7 % (4/28) 95.6 % (3/68) 69 % (20/29) 76.2 % (16/21)

OSCC: oral squamous cell cancer; LSCC: laryngeal squamous cell cancer; m: methylated promoter; m/u: partially methylated promoter; u: unmethylated
promoter; ND: not detected
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365 Methylation status of the promoters suggests an at least
366 moderate importance of promoter methylation in functional
367 inactivation of P16INK4a; less in case of p14ARF. Many of
368 these samples exhibited partial methylation similarly to the
369 findings of Shintani et al. and Kulkarni et al. [18, 41]. This
370 may be caused not only by partial methylation of the promoter
371 and consequent false priming, but also by heterogeneity of the
372 sample tissue, e.g. the bulk or a part of the tumour
373 hypermethylated, while the normal tissue present in the ex-
374 cised section (or part of the tumour) with very low or no
375 methylation level [18, 21].
376 Methylation of the p16INK4A and the p14ARF promoters
377 is a generally recognized epigenetic event in the literature in
378 many cancer types including squamous cell cancer of the head
379 and neck [39, 40] or the oesophagus [42], as well as in lung
380 cancer [17]. Association of promoter methylation with dietary
381 habits characteristic to certain geographical regions was dem-
382 onstrated in case of oesophageal squamous cell cancer [42].
383 High frequency of hypermethylation of p16 promoter was
384 even shown in oral epithelial dysplasia [43]. In the present
385 study, p16 promoter methylation was significantly more fre-
386 quent both in OSCC and LSCC than in healthy individuals; in
387 OSCC it may also affect survival unfavourably. Methylation
388 of the p14 promoter was also more frequent, but statistical
389 significance was seen only in case of OSCC.
390 It was shown that promoter methylation at critical CpG
391 islands is the main epigenetic silencing mechanism;
392 hypermethylated promoters are always inactive [44].
393 Acetylation and methylation of histone proteins modify gene
394 expression only in case of promoters where most or all CpG
395 islands are unmethylated [44]; micro RNAs play an exclu-
396 sively inhibitory role by promoting degradation of mRNA
397 [45]. Consequently, the gene expression levels suffer some
398 decrease even in case of partially methylated promoters;
399 therefore our data represent a conservative estimate of the
400 importance of epigenetic inactivation.
401 These data suggest that the importance of different genetic
402 events as well as of promoter methylation affecting the
403 p16INK4A and p14ARF tumour suppressor genes differs in
404 different types of head and neck cancer. Exon mutations seem
405 to be infrequent and consequently unimportant events both in
406 LSCC and OSCC. In OSCC, promoter methylation seems to
407 be the most frequent event, especially in case of the p16
408 promoter. In LSCC, both promoter methylation (mainly af-
409 fecting the p16 promoter) and exon deletions seem to play a
410 role in gene inactivation. The effect of these events on survival
411 needs to be confirmed in larger cohorts. The findings are
412 strengthened by the low rate of these events in the healthy
413 control population.
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