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Abstract. Let x1 and x2 be integers divisible only by some fixed primes.

Is it possible that x1 + x2 is a perfect power? Special cases of the equation

x1 +x2 = yk were formerly considered over Z. In this paper we develop an
algorithm to solve this equation over global algebraic function fields. Our

method is illustrated by two explicit examples.

1. Introduction

Let K be a number field and consider the equation

x1 + x2 = 1

in units x1, x2 of K. This equation is called unit equation and plays an essential
role in the resolution of several important types of diophantine equations, like
Thue equations, norm form equations, index form equations etc, see [2].

B.M.M. de Weger [8] considered an analogous equation which can be treated
as a generalization of unit equations. Let S be a finite set of primes and denote by
HS the set of those integers which are only divisible by primes from S. Consider
the equation

x1 + x2 = y2

in x1, x2 ∈ HS and y ∈ Z. The more general equation

x1 + x2 = yk (1)

in x1, x2 ∈ HS , y ∈ Z and unknown exponent k appears in the book of Shorey
and Tijdeman [7] (Chapter 9). As a preparatory step to the study of Catalan’s
equation they show that the prime divisors of the exponent k can be bounded
by an explicit constant.
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Recently, we extended the study of unit equations in two and more variables
to the case of algebraic function fields over finite fields, see [3], [4]. This gives
the basis to consider equations of type (1) over global function fields.

In our paper we develop an algorithm to solve equations of type (1) over
function fields. We illustrate our method by two detailed examples. For the
explicit calculations we used KANT [1].

2. The function field

Let Fq be a finite field with q = p` elements. We denote by K the rational
function field Fq(t). Our arguments are also valid if K is a finite extension of
Fq(t) having only one infinite valuation. Such extensions are e.g. Artin-Schreier
extensions, see [6] (Section VI.6) and Example 2.
OK will denote Fq[t] if K = Fq(t) and the integral closure of Fq[t] in K

otherwise. We denote by g the genus of K, which is zero if K = Fq(t).
The set of all (exponential) valuations of K is denoted by V , the single infinite

valuation by v∞. For a non-zero element f ∈ K we denote by v(f) the value of
f at v. For the normalized valuations vN (f) = v(f) · deg v the product formula∑

v∈V

vN (f) = 0, for all f ∈ K \ {0}

holds. The height of a non-zero element f of K is defined as

H(f) :=
∑
v∈V

max{0, vN (f)} = −
∑
v∈V

min{0, vN (f)} .

3. Formulating the statement

Let S be a finite set of valuations of K including the infinite valuation. Denote
by HS the set of those elements of OK which have zero values for all valuations
outside S, that is

HS = {α ∈ K | v(α) = 0 for all v ∈ V \ S, v(α) ≥ 0 for all v ∈ S \ {v∞}}.

In case K = Fq(t) the set S consists of finite valuations corresponding with some
irreducible polynomials and the degree (infinite) valuation. The set HS is just
the set of those polynomials in Fq[t] that are only divisible by these polynomials.

We consider the equation

x1 + x2 = c · yk in x1, x2 ∈ HS , 0 6= c ∈ Fq, y ∈ OK \ Fq, 2 ≤ k ∈ Z. (2)

Note that in characteristic p an equation x1 + x2 = yk implies xp
1 + xp

2 = ypk.
Also, for z ∈ HS , we have zkx1 + zkx2 = (zy)k. Therefore, to avoid infinitely
many solutions for trivial reasons we assume that

k ≥ 2, p 6 |k, v(y) = 0 for all v ∈ S \ {v∞}. (3)
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Remark. Instead of p 6 |k it would also be possible to assume that x1/y
k is

not a p-th power.

Our main result is the following theorem.

Theorem 1. Under the assumptions above equation (2) has (up to constant
factors) only finitely many solutions that can be explicitely determined. Any
solution satisfies

max(H(x1), H(x2)) ≤ 2 ·

(
2g − 2 +

∑
v∈S

deg v

)
. (4)

In our proof we shall use the following Lemma on unit equations in two
variables. This is valid in any algebraic function field K over finite fields. Let
W be a finite set of valuation of K including the infinite valuations. Note that
a W -unit is an element of K having zero values for all valuations outside W .

Lemma 2. Let γ1, γ2 be W -units satisfying

γ1 + γ2 = 1.

Then either γ1, γ2 are in Kp or their heights are bounded:

max(H(γ1), H(γ2)) ≤ 2g − 2 +
∑
v∈W

deg v . (5)

For the proof of the Lemma see [3].

Proof of the theorem
Equation (2) implies

x1

cyk
+

x2

cyk
= 1. (6)

Let

S(y) = {v | v(y) > 0, v 6∈ S}

and set S1 = S∪S(y). Then both terms on the left-hand side of (6) are S1-units.
By our assumptions in (2) and (3) y is non-constant, p 6 |k and in x1, x2 and
y only distinct finite valuations can attain positive values. Therefore, x1/y

k,
x2/y

k are not p-th powers. Hence, the Lemma implies that for i = 1, 2 we have

H

(
xi

yk

)
≤ 2g − 2 +

∑
v∈S

deg v +
∑

v∈S(y)

deg v. (7)
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Utilizing again that by (2) for infinite valuations v the inequality v(y) > 0 is
tantamount to v(yk/xi) > 0 and those values coincide for i = 1, 2 we get

k ·
∑

v∈S(y)

deg v = k ·
∑

v(y)>0, v finite

deg v

≤ k ·
∑

v(y)>0, v finite

v(y) deg v =
∑

v(y)>0, v finite

v(yk) deg v

=
∑

v(yk/xi)>0, v finite

v

(
yk

xi

)
deg v ≤

∑
v(yk/xi)>0

v

(
yk

xi

)
deg v

= H

(
yk

xi

)
= H

(
xi

yk

)
≤ 2g − 2 +

∑
v∈S

deg v +
∑

v∈S(y)

deg v,

where the last inequality follows from (7). As a consequence we have

(k − 1)
∑

v∈S(y)

deg v ≤ 2g − 2 +
∑
v∈S

deg v. (8)

This inequality implies an upper bound for k and
∑

v∈S(y) deg v which allows to
determine the possible valuations in S(y). Combining this with (7) we obtain

H

(
xi

yk

)
≤
(

1 +
1

k − 1

)(
2g − 2 +

∑
v∈S

deg v

)
. (9)

For our purposes we proceed as follows. In the first step we use our assumption
that K has only one infinite valuation. Then the conditions in (2) imply

H(xi) =
∑

v(xi)>0, v finite

v(xi) deg v =
∑

v(xi/yk)>0, v finite

v

(
xi

yk

)
deg v

=
∑

v(xi/yk)>0

v

(
xi

yk

)
deg v = H

(
xi

yk

)

≤
(

1 +
1

k − 1

)(
2g − 2 +

∑
v∈S

deg v

)
. (10)

In the last step we used (9). Inequality (10) implies the assertion (4) in the
theorem. The proof is complete since inK there exist only finitely many elements
of bounded height which can be explicitely determined. �

4. The algorithm to determine the solutions

As we know an upper bound for the heights of x1, x2 ∈ HS , it is very easy
and fast to enumerate all possible x1 and x2. This is done just by taking the
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divisors corresponding to the finite valuations of S, composing power products
of them with non negative exponents and with heights under the given bound.
We check if the divisor is a principal divisor of K generated by a single element.
Listing all possible values of x1, x2 we can test if their sum is a perfect power
satisfying the assumptions.

5. Examples

We illustrate our results by two detailed examples.

5.1. Example 1. Consider the polynomials x1, x2 over F5 that are only divisible
by t+ 1 and t2 + t+ 2. For which x1 and x2 do we have

x1 + x2 = cyk

a perfect power?
The rational function field K = F5(t) has genus 0. S consists of the two

irreducible polynomials t+ 1 and t2 + t+ 2 having degrees 1 and 2, respectively,
and the infinite (degree) valuation of degree 1. The theorem gives

H(xi) ≤ 2(−2 + 4) = 4.

Therefore
xi = ci(t+ 1)ri(t2 + t+ 2)si

where ri, si are non negative and ri + 2si ≤ 4. Testing all possible x1 + x2 we
get the following solutions:

1 + 3(t2 + t+ 2) = 3(t+ 3)2

1 + 3(t2 + t+ 2)(t+ 1) = 3(t+ 4)3

(t+ 1)2 + (t2 + t+ 2) = 2(t+ 2)2

(t+ 1)3 + 2(t2 + t+ 2) = t3.

All other solutions are obtained from those upon multiplication by a constant
or by interchanging x1 and x2.

5.2. Example 2. Consider the function field K generated by a root α of the
polynomial

f(y) = y3 − y − t
over F3(t). This is a so called Artin-Schreier extension, see [6]. F has genus
zero, in F there is only one infinite valuation v∞ of degree 1 and there are three
valuations v1, v2, v3 of degree 2 extending the valuation of F3[t] corresponding
to the polynomial t2 + 1. Let

S = {v∞, v1, v2, v3}.
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Consider the equation

x1 + x2 = c · yk in x1, x2 ∈ HS , 0 6= c ∈ Fq, y ∈ OK \ Fq, 2 ≤ k ∈ Z, 3 6 |k.

We have
H(xi) ≤ 2(−2 + 7) = 10.

Up to constant factors there are 56 elements in HS satisfying this condition. We
tested all x1 + x2 (with all possible constant factors) and obtained the solutions
listed below. In the table we list x1, x2, c, y (c a constant) satisfying

x1 + x2 = c · y2.

(Note that for some x1 +x2 we also obtained cubes but these were excluded be-
cause of the assumption p 6 |k). For x1, x2, y we give their coefficients (u0, u1, u2)
in the basis 1, α, α2 of K. One of the lines correspond to the trivial solution

(t2 + 1) + 2 = t2

which was the initiative of this example. All further solutions are given by
constant multiples of these or by interchanging x1 and x2.

x1, x2 c, y
(2, 0, 0), (2, 1, 1) 1, (2, 1, 0)
(1, 0, 0), (1, 1, 2) 2, (1, 1, 0)
(1, 0, 0), (2, 2t, 2) 2, (0, 0, 1)
(1, 0, 0), (2, 0, 2) 2, (0, 1, 0)

(1, 0, 0), (2t+ 1, 2t+ 1, 2) 2, (2, 1, 2)
(1, 0, 0), (t+ 1, 2t+ 2, 2) 2, (1, 1, 1)

(1, 0, 0), (2t2 + 2, 0, 0) 2, (t, 0, 0)
(1, 0, 0), (2t2 + 2, 2t3 + 2t, 2t2 + 2) 2, (0, 2, t)

(1, 0, 0), (2t3 + t2 + 2t+ 1, 2t3 + t2 + 2t+ 1, 2t2 + 2) 2, (t+ 2, 2t+ 2, t)
(1, 0, 0), (t3 + t2 + t+ 1, 2t3 + 2t2 + 2t+ 2, 2t2 + 2) 2, (t+ 1, t+ 2, t)

(1, t, 1), (1, t, 0) 2, (2, 0, 1)
(1, t, 1), (2, 2t, 0) 1, (0, 1, 0)

(t+ 1, t, 0), (t+ 2, t+ 2, 1) 2, (0, 2, 1)
(t+ 1, t, 0), (2t+ 1, 2t+ 1, 2) 2, (1, 1, 0)

(t+ 1, t, 0), (1, t, 0) 2, (2, 1, 1)
(2t+ 1, t, 0), (t+ 1, t, 0) 2, (1, 0, 1)

(2t+ 1, t, 0), (2t+ 2, t+ 1, 1) 2, (0, 1, 1)
(2t+ 1, t, 0), (t+ 1, 2t+ 2, 2) 2, (2, 1, 0)

(2t+ 1, t, 0), (1, t, 0) 2, (1, 1, 2)
(2t2 + 1, 2t, t2), (2, t, 2t2) 2, (t, 0, 0)

(t2 + t+ 1, t2 + 2t, t2), (2t+ 2, 2t2 + t, 2t2) 1, (t, 0, 0)
(t2 + 2t+ 1, 2t2 + 2t, t2), (t+ 2, t2 + t, 2t2) 1, (t, 0, 0)
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6. Computational aspects

In our calculations we used KANT [1]. All computations took just some
seconds.
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