-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by University of Debrecen Electronic Archive

Pexiderized functional equations for vector products
and quaternions

Gébor Nyul*
Institute of Mathematics, University of Debrecen
H-4010 Debrecen P.O.Box 12, Hungary
e-mail: gnyul@science.unideb.hu

June 28, 2013

Abstract

The purpose of the present paper is to solve the pexiderized versions
of functional equations investigated by B. Nyul and G. Nyul [2], raised
by the connection between products of quaternions and products of
three-dimensional vectors.

1 Quaternionic products and vector products

Let H = {r 4+ x1i + x2j + x3k | r,z1, 22,23 € R} be the skew field of quater-
nions with the basic relations i? = j2 = k? = ijk = —1. Throughout this pa-
per we use the following notions for a quaternion h = r+x1i+x2j+x3k € H:
We say that h is purely imaginary if » = 0. The conjugate of h is h =
r—x1i— ) — x3k € H, the absolute value of h is |h| = \/7'2 + 23 + 23 + 3,
and the multiplicative inverse of h is h™! = ﬁgﬁ in case of h # 0. Quater-
nions hy = r + z1t + x2j + x3k, ha = s+ Y17 + y27 + ysk € H are called
orthogonal if 7s 4+ 21y1 + 222 + 23y3 = 0, or equivalently if hihg + hohy = 0.
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If we identify purely imaginary quaternions x1i 4+ x2j + 3k with vectors
(71,22, 23) € R3, then the product of two purely imaginary quaternions is

xy = —(x,y) +xxy (x,y €R’),
more generally the product of two arbitrary quaternions is
(r+x)(s+y)=(rs — (x,y)) + (sx +ry +x xy) (r,s €R,x,y €R’),
where (x,y) and x Xy denote the standard inner product (dot product) and
the cross product of x,y € R3, respectively (see [1], [3], [4]).
Motivated by these connections between vector products and quater-
nions, B. Nyul and G. Nyul [2] solved functional equations
g(x)g(y) = —(x,y) +9(x xy) (x,y €R’) (1)

and
Fr,x)f(s,y) = =(x,¥) + f(rs,sx +ry + x xy) (r,s €ER,x,y €R®) (2)
in functions ¢ : R — H and f: R x R? — H.

In the following theorems we determine all the solutions of the pex-
iderized versions of these equations, namely we completely solve functional
equations

71(x)g2(y) = —(x.¥) + g3(x x y) (x,y €R’) (3)
and
Filrx) fa(s,y) = —{x,y)+ fs(rs, sx+ry+xxy) (rs €R,x,y €R®) (4)
in functions g1, g2, 93 : R — H and f1, fo, f3 : R x R? — H.

Theorem 1. The functions g1, 92,93 : R® — H satisfy (3) if and only if
there exist pairwise orthogonal nonzero quaternions hi, ha, hy € H with equal
absolute values such that

g1 ((z1,22,23)) = x1hy + x2hy + x3h3,
g2 (1,29, 73)) = —x1hy' —xohy ' — x3h3?,
gs ((.731, o, 1’3)) = —:L’lhghgl — xghghl_l — :L’3h1h2_1.

Theorem 2. The functions f1, f2, f3 : R x R® — H satisfy (4) if and only if
there exist pairwise orthogonal nonzero quaternions hi, ha, hy € H with equal
absolute values such that

fi (r, (v1,22,23)) = rhah3'hy +21h1 + 22ho + 23h3,
f2 (’I“, (561, xTo, .%‘3)) = *T‘hflhgh??l — ﬂ?lhfl — $2h51 — l‘gh?jl,
fa(ry(x1,20,23)) = r— xlhghgl — xghghfl — ﬂ?ghlh;l.



2 Proofs

Proof of Theorem 1. We prove this theorem through seven claims.
Claim 1: gn(0) =0 (m =1,2,3), gm(v) =0ifonly if v=0 (m =1,2).
Substitute (x,y) = (0,v), (v,0) and (v, v) into (3) (v € R3):

91(0)g2(v) = g3(0),
91(v)g2(0) = g3(0),
91(V)g2(v) = —(v,v) +g3(0).

If g1(0) # 0, then the first equation gives go(v) = g1(0)"1g3(0). When
93(0) = 0, we have go(v) = 0. While in case of g3(0) # 0, it follows from
the second equation that g1(v) = ¢g1(0). In both cases the third equation
becomes 0 = —(v,v) for any v € R?, which is a contradiction. This means
that gl(O) =0.

Similarly, it can be shown that g2(0) = 0, and g3(0) = 0 follows from the

first or the second equation. Then the third equation, g (v)g2(v) = —(v,Vv),
implies that g;(v) # 0 and g2(v) # 0 for v # 0.

In the rest of the proof, we shall use Claim 1 without referring to it.
Claim 2: g1 and g are homogeneous.
Substitute (x,y) = (v,v) and (Av,v) into (3) (A € R, v € R?):

91(v)g2(v) = —(v,v),
g (Av)ga(v) = —=X(v,v).

If we multiply the first equation by A, we easily get g1(Av) = Ag1(v) for
v # 0. Moreover, it is obviously true when v = 0.

Homogeneity of go can be proved similarly.
Claim 3: g3 is homogeneous.

Let v € R?. Choose w € R3 such that w # 0 and v, w being orthogonal.
Then substitute (x,y) = (W(w X v),w) and (W(w X v),w) into (3)
(A € R):

g1<HW1H2<w><v>>gz<w> = W),
m(wﬂ‘?(wxv»gxw) = 50w).

Since g7 is homogeneous by Claim 2, it follows that g3 is also homoge-
neous.



Claim 4: g1 and go are additive.
Substitute (x,y) = (v +w,w), (v,w) and (w,w) into (3) (v,w € R3):

(v +w)ga(w) = —(v+w,w)+g3(vxw),
g(v)g2(w) = —(v,w)+g3(vxw),
g(w)ge(w) = —(w,w).

After adding the second and the third equations, together with the first
one they give that g1 (v +w) = ¢g1(v) + g1(w) if w # 0. This relation also
holds for w = 0.

It can be deduced similarly that go is additive.

Claim 5: g3 is additive.
Let v, w € R? be arbitrary vectors. Choose u € R? such that u # 0 and

u is orthogonal to v, w (any nonzero vector from the orthogonal complement
of the subspace generated by v and w). Now substitute (x,y) = (W(u X

(v+w)),u), (W(u X v),u) and (”ul||2(u X w),u) into (3):

m(HulHQ(ux (v+wW))ga(u) = ga(v+w),
gl<HulH2<uxv>>g2<u> = W),
gl<‘1}H2<uxw>>gg<u> — g(w).

Then the additivity of g3 is an immediate consequence of the same prop-
erty of g; by Claim 4.
Claim 6: Let e; = (1,0,0), e2 = (0,1,0), e3 = (0,0,1). Furthermore, let
gi(em) = hy € H\ {0} (m = 1,2,3). Then ga(en) = —h,!, g3(en) =
—hm+1h;ll+2 (through Claim 6, subscripts have to be understood modulo
3), and hq, ha, hs are pairwise orthogonal quaternions with equal absolute
values.

If we substitute (x,y) = (em,en) into (3), we get g1(em)g2(em) = —1,
hence ga(e,,) = —h,'. In addition, substituting (x,y) = (€m+1,€ms2) into
(3), we obtain gg(em) =4ag1 (em+1)gg(em+2) = *herlh,;ll_’_Q.

Substitution (x,y) = (€m+2,€m+1) into (3) gives gi(emi2)g2(€m+1) =
g3(—en). Using Claim 3 and the previously proved parts of Claim 6, this

: -1 -1 ; hio| _ |hm
yields —hpi2h,, 1 = Rmy1h,, . Taking absolute values, Ihmﬁi = IhmEI’
that is |hm+1] = |hm+2|. Then _hm+2hr_n£r1 = hm+1h;11+2 is equivalent to
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—hm+2hm+1 = hmy1hmt2, which means that Ay,41 and Ay, 42 are orthogonal
quaternions.

Claim 7: The solutions of (3) are exactly the functions given in the theorem.

By linearity of gm, gm((x1,%2,23)) = T1gm(€1) + z2gm(e2) + z39m(e3)
(m = 1,2,3). From Claim 6 we arrive at the desired formulas. Direct
calculation shows that these are indeed solutions of (3). O

Proof of Theorem 2. As we shall see, Theorem 1 will be an important tool
in solving (4).

Claim 1: Let gm(x) = fim(0,%) (x € R?) (m = 1,2,3). Then the statements
of Theorem 1 and the claims in its proof hold for g1, g2, g3.

Substituting (7, s) = (0,0) into (4), we get

fl(oax)fQ(Ovy) = _<XaY> + fg(O,X X y)v
which means that g1, g2, g3 satisfy (3).
Claim 2: fi(\,0) = Mhohg'hy, fo(N,0) = —Ahythohz! and f3()\,0) = A
(A €R).

Substitute (r,x,s,y) = (},0,0,e1), (0,e1,A,0) and (A, 0,1,0) into (4):

y)
fi(X,0)f2(0,e1) = f3(0, Aeq),
f1(0,e1) f2(A,0) = f5(0, Aey),
f1(X,0)f2(1,0) = f5(),0).
From the first equation, using homogeneity of g3 and Claim 6 of Theo-
rem 1, it follows that —f1(\, 0)h;" = —Ahohgz ', thus fi(),0) = Ahghg 'hy.
In a similar way, from the second equation we get hy f2(A,0) = —Ahahs L
hence fa(\,0) = —Ahjthohst.
Finally, the third equation gives f3(\,0) = (Ahohz hi)(—hy  hehz') =
Ahohg thahyt = A
Claim 3: (A, V) = fin(A,0) + fm(0,v) (A ER, v €R3) (m =1,2).
Substitute (r,x,s,y) = (A, v,0,v), (A,0,0,v) and (0,v,0,v) into (4):

Sidv)f2(0,v) = —({v,v) + f3(0,Av),
J1(A,0)f2(0,v) = f3(0,Av),
f1(0,v) fa(0,v) = —(v,v).
Comparing the first equation with the sum of the other two equations,

we get fi(\,v) = fi(A,0) + f1(0,v) if v # 0. But this is clearly true for
v = 0, too.



Similarly, this claim can be shown for fs.
Claim 4: f3(\,v) = f3(\,0) + f3(0,v) (A €R, v € R3).
Substitute (r,x,s,y) = (A,v,1,0), (\,0,1,0) and (0,v,1,0) into (4):

fl()‘av)f2(170) = f3()‘av)v
fl()‘ao)f2(1a0) = f3()‘30)a
fl(O,V)fg(l,O) = f3(0av)'

Now it is straightforward that Claim 3 implies our statement for fs,
because fa(1,0) = —h hahg! # 0 by Claim 2.
Claim 5: The solutions of (4) are precisely the functions given in the theo-
rem.

This is an easy consequence of Claims 1, 2, 3, 4, and a direct verification
that these functions are indeed solutions of (4). O

3 Special cases

As a special case, if we are interested in solving the partially pexiderized
version of (3) with g1 = g2, that is the functional equation

g (X)qi(y) = —(x,y) +gs(x xy) (x,y €R’) (5)
in functions g1, g3 : R? — H, we can easily describe its solutions.

Corollary. The functions g1,gs : R® — H satisfy (5) if and only if there
exist pairwise orthogonal purely imaginary quaternions hi, he, hy € H with
absolute values 1 such that

g1 ((z1,22,23)) = x1h1 + 22h2 + 23h3,

93 ((x1,22,23)) = x1hohg + w2h3hy + x3h1hs.
Proof of Corollary. For g; = g in Theorem 1, we need to have h,, = —h. !
(m = 1,2,3). Taking absolute values, we get |h,,| = ﬁ, hence |h,,| = 1.
Then h,, = —h,jll is equivalent to h,, = —h,, in other words h,, is purely

imaginary.
On the other hand, it can be checked that the given functions are solu-
tions of (5). O



Remark. As a consequence, we obtain that g : R®> — H is a solution of
functional equation (1) if and only if there exist orthogonal purely imaginary
quaternions hy,hy € H with absolute values 1 such that g ((z1,z2,23)) =
x1h1 4+ x2he + x3hihg, which is a reformulation of Theorem 1 in [2].
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