# Pexiderized functional equations for vector products and quaternions 

Gábor Nyul*<br>Institute of Mathematics, University of Debrecen<br>H-4010 Debrecen P.O.Box 12, Hungary<br>e-mail: gnyul@science.unideb.hu

June 28, 2013


#### Abstract

The purpose of the present paper is to solve the pexiderized versions of functional equations investigated by B. Nyul and G. Nyul [2], raised by the connection between products of quaternions and products of three-dimensional vectors.


## 1 Quaternionic products and vector products

Let $\mathbb{H}=\left\{r+x_{1} i+x_{2} j+x_{3} k \mid r, x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}$ be the skew field of quaternions with the basic relations $i^{2}=j^{2}=k^{2}=i j k=-1$. Throughout this paper we use the following notions for a quaternion $h=r+x_{1} i+x_{2} j+x_{3} k \in \mathbb{H}$ : We say that $h$ is purely imaginary if $r=0$. The conjugate of $h$ is $\bar{h}=$ $r-x_{1} i-x_{2} j-x_{3} k \in \mathbb{H}$, the absolute value of $h$ is $|h|=\sqrt{r^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$, and the multiplicative inverse of $h$ is $h^{-1}=\frac{1}{|h|^{2}} \bar{h}$ in case of $h \neq 0$. Quaternions $h_{1}=r+x_{1} i+x_{2} j+x_{3} k, h_{2}=s+y_{1} i+y_{2} j+y_{3} k \in \mathbb{H}$ are called orthogonal if $r s+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=0$, or equivalently if $h_{1} \overline{h_{2}}+h_{2} \overline{h_{1}}=0$.

[^0]If we identify purely imaginary quaternions $x_{1} i+x_{2} j+x_{3} k$ with vectors $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, then the product of two purely imaginary quaternions is

$$
\mathbf{x y}=-\langle\mathbf{x}, \mathbf{y}\rangle+\mathbf{x} \times \mathbf{y} \quad\left(\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}\right)
$$

more generally the product of two arbitrary quaternions is

$$
(r+\mathbf{x})(s+\mathbf{y})=(r s-\langle\mathbf{x}, \mathbf{y}\rangle)+(s \mathbf{x}+r \mathbf{y}+\mathbf{x} \times \mathbf{y}) \quad\left(r, s \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}\right)
$$

where $\langle\mathbf{x}, \mathbf{y}\rangle$ and $\mathbf{x} \times \mathbf{y}$ denote the standard inner product (dot product) and the cross product of $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}$, respectively (see [1], [3], [4]).

Motivated by these connections between vector products and quaternions, B. Nyul and G. Nyul [2] solved functional equations

$$
\begin{equation*}
g(\mathbf{x}) g(\mathbf{y})=-\langle\mathbf{x}, \mathbf{y}\rangle+g(\mathbf{x} \times \mathbf{y}) \quad\left(\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(r, \mathbf{x}) f(s, \mathbf{y})=-\langle\mathbf{x}, \mathbf{y}\rangle+f(r s, s \mathbf{x}+r \mathbf{y}+\mathbf{x} \times \mathbf{y}) \quad\left(r, s \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}\right) \tag{2}
\end{equation*}
$$

in functions $g: \mathbb{R}^{3} \rightarrow \mathbb{H}$ and $f: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{H}$.
In the following theorems we determine all the solutions of the pexiderized versions of these equations, namely we completely solve functional equations

$$
\begin{equation*}
g_{1}(\mathbf{x}) g_{2}(\mathbf{y})=-\langle\mathbf{x}, \mathbf{y}\rangle+g_{3}(\mathbf{x} \times \mathbf{y}) \quad\left(\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1}(r, \mathbf{x}) f_{2}(s, \mathbf{y})=-\langle\mathbf{x}, \mathbf{y}\rangle+f_{3}(r s, s \mathbf{x}+r \mathbf{y}+\mathbf{x} \times \mathbf{y}) \quad\left(r, s \in \mathbb{R}, \mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}\right) \tag{4}
\end{equation*}
$$

in functions $g_{1}, g_{2}, g_{3}: \mathbb{R}^{3} \rightarrow \mathbb{H}$ and $f_{1}, f_{2}, f_{3}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{H}$.
Theorem 1. The functions $g_{1}, g_{2}, g_{3}: \mathbb{R}^{3} \rightarrow \mathbb{H}$ satisfy (3) if and only if there exist pairwise orthogonal nonzero quaternions $h_{1}, h_{2}, h_{3} \in \mathbb{H}$ with equal absolute values such that

$$
\begin{aligned}
g_{1}\left(\left(x_{1}, x_{2}, x_{3}\right)\right) & =x_{1} h_{1}+x_{2} h_{2}+x_{3} h_{3} \\
g_{2}\left(\left(x_{1}, x_{2}, x_{3}\right)\right) & =-x_{1} h_{1}^{-1}-x_{2} h_{2}^{-1}-x_{3} h_{3}^{-1} \\
g_{3}\left(\left(x_{1}, x_{2}, x_{3}\right)\right) & =-x_{1} h_{2} h_{3}^{-1}-x_{2} h_{3} h_{1}^{-1}-x_{3} h_{1} h_{2}^{-1} .
\end{aligned}
$$

Theorem 2. The functions $f_{1}, f_{2}, f_{3}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{H}$ satisfy (4) if and only if there exist pairwise orthogonal nonzero quaternions $h_{1}, h_{2}, h_{3} \in \mathbb{H}$ with equal absolute values such that

$$
\begin{aligned}
& f_{1}\left(r,\left(x_{1}, x_{2}, x_{3}\right)\right)=r h_{2} h_{3}^{-1} h_{1}+x_{1} h_{1}+x_{2} h_{2}+x_{3} h_{3} \\
& f_{2}\left(r,\left(x_{1}, x_{2}, x_{3}\right)\right)=-r h_{1}^{-1} h_{2} h_{3}^{-1}-x_{1} h_{1}^{-1}-x_{2} h_{2}^{-1}-x_{3} h_{3}^{-1} \\
& f_{3}\left(r,\left(x_{1}, x_{2}, x_{3}\right)\right)=r-x_{1} h_{2} h_{3}^{-1}-x_{2} h_{3} h_{1}^{-1}-x_{3} h_{1} h_{2}^{-1}
\end{aligned}
$$

## 2 Proofs

Proof of Theorem 1. We prove this theorem through seven claims.
Claim 1: $g_{m}(\mathbf{0})=0(m=1,2,3), g_{m}(\mathbf{v})=0$ if only if $\mathbf{v}=\mathbf{0}(m=1,2)$.
Substitute $(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{v}),(\mathbf{v}, \mathbf{0})$ and $(\mathbf{v}, \mathbf{v})$ into (3) $\left(\mathbf{v} \in \mathbb{R}^{3}\right)$ :

$$
\begin{aligned}
g_{1}(\mathbf{0}) g_{2}(\mathbf{v}) & =g_{3}(\mathbf{0}) \\
g_{1}(\mathbf{v}) g_{2}(\mathbf{0}) & =g_{3}(\mathbf{0}) \\
g_{1}(\mathbf{v}) g_{2}(\mathbf{v}) & =-\langle\mathbf{v}, \mathbf{v}\rangle+g_{3}(\mathbf{0}) .
\end{aligned}
$$

If $g_{1}(\mathbf{0}) \neq 0$, then the first equation gives $g_{2}(\mathbf{v})=g_{1}(\mathbf{0})^{-1} g_{3}(\mathbf{0})$. When $g_{3}(\mathbf{0})=0$, we have $g_{2}(\mathbf{v})=0$. While in case of $g_{3}(\mathbf{0}) \neq 0$, it follows from the second equation that $g_{1}(\mathbf{v})=g_{1}(\mathbf{0})$. In both cases the third equation becomes $0=-\langle\mathbf{v}, \mathbf{v}\rangle$ for any $\mathbf{v} \in \mathbb{R}^{3}$, which is a contradiction. This means that $g_{1}(\mathbf{0})=0$.

Similarly, it can be shown that $g_{2}(\mathbf{0})=0$, and $g_{3}(\mathbf{0})=0$ follows from the first or the second equation. Then the third equation, $g_{1}(\mathbf{v}) g_{2}(\mathbf{v})=-\langle\mathbf{v}, \mathbf{v}\rangle$, implies that $g_{1}(\mathbf{v}) \neq 0$ and $g_{2}(\mathbf{v}) \neq 0$ for $\mathbf{v} \neq \mathbf{0}$.

In the rest of the proof, we shall use Claim 1 without referring to it.
Claim 2: $g_{1}$ and $g_{2}$ are homogeneous.
Substitute $(\mathbf{x}, \mathbf{y})=(\mathbf{v}, \mathbf{v})$ and $(\lambda \mathbf{v}, \mathbf{v})$ into (3) $\left(\lambda \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^{3}\right)$ :

$$
\begin{aligned}
g_{1}(\mathbf{v}) g_{2}(\mathbf{v}) & =-\langle\mathbf{v}, \mathbf{v}\rangle \\
g_{1}(\lambda \mathbf{v}) g_{2}(\mathbf{v}) & =-\lambda\langle\mathbf{v}, \mathbf{v}\rangle
\end{aligned}
$$

If we multiply the first equation by $\lambda$, we easily get $g_{1}(\lambda \mathbf{v})=\lambda g_{1}(\mathbf{v})$ for $\mathbf{v} \neq \mathbf{0}$. Moreover, it is obviously true when $\mathbf{v}=\mathbf{0}$.

Homogeneity of $g_{2}$ can be proved similarly.
Claim 3: $g_{3}$ is homogeneous.
Let $\mathbf{v} \in \mathbb{R}^{3}$. Choose $\mathbf{w} \in \mathbb{R}^{3}$ such that $\mathbf{w} \neq \mathbf{0}$ and $\mathbf{v}, \mathbf{w}$ being orthogonal. Then substitute $(\mathbf{x}, \mathbf{y})=\left(\frac{1}{\|\mathbf{w}\|^{2}}(\mathbf{w} \times \mathbf{v}), \mathbf{w}\right)$ and $\left(\frac{\lambda}{\|\mathbf{w}\|^{2}}(\mathbf{w} \times \mathbf{v}), \mathbf{w}\right)$ into (3) $(\lambda \in \mathbb{R}):$

$$
\begin{aligned}
& g_{1}\left(\frac{1}{\|\mathbf{w}\|^{2}}(\mathbf{w} \times \mathbf{v})\right) g_{2}(\mathbf{w})=g_{3}(\mathbf{v}) \\
& g_{1}\left(\frac{\lambda}{\|\mathbf{w}\|^{2}}(\mathbf{w} \times \mathbf{v})\right) g_{2}(\mathbf{w})=g_{3}(\lambda \mathbf{v})
\end{aligned}
$$

Since $g_{1}$ is homogeneous by Claim 2, it follows that $g_{3}$ is also homogeneous.

Claim 4: $g_{1}$ and $g_{2}$ are additive.
Substitute $(\mathbf{x}, \mathbf{y})=(\mathbf{v}+\mathbf{w}, \mathbf{w}),(\mathbf{v}, \mathbf{w})$ and $(\mathbf{w}, \mathbf{w})$ into $(3)\left(\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}\right)$ :

$$
\begin{aligned}
g_{1}(\mathbf{v}+\mathbf{w}) g_{2}(\mathbf{w}) & =-\langle\mathbf{v}+\mathbf{w}, \mathbf{w}\rangle+g_{3}(\mathbf{v} \times \mathbf{w}) \\
g_{1}(\mathbf{v}) g_{2}(\mathbf{w}) & =-\langle\mathbf{v}, \mathbf{w}\rangle+g_{3}(\mathbf{v} \times \mathbf{w}) \\
g_{1}(\mathbf{w}) g_{2}(\mathbf{w}) & =-\langle\mathbf{w}, \mathbf{w}\rangle
\end{aligned}
$$

After adding the second and the third equations, together with the first one they give that $g_{1}(\mathbf{v}+\mathbf{w})=g_{1}(\mathbf{v})+g_{1}(\mathbf{w})$ if $\mathbf{w} \neq \mathbf{0}$. This relation also holds for $\mathbf{w}=\mathbf{0}$.

It can be deduced similarly that $g_{2}$ is additive.
Claim 5: $g_{3}$ is additive.
Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$ be arbitrary vectors. Choose $\mathbf{u} \in \mathbb{R}^{3}$ such that $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{u}$ is orthogonal to $\mathbf{v}, \mathbf{w}$ (any nonzero vector from the orthogonal complement of the subspace generated by $\mathbf{v}$ and $\mathbf{w})$. Now substitute $(\mathbf{x}, \mathbf{y})=\left(\frac{1}{\|\mathbf{u}\|^{2}}(\mathbf{u} \times\right.$ $(\mathbf{v}+\mathbf{w})), \mathbf{u}),\left(\frac{1}{\|\mathbf{u}\|^{2}}(\mathbf{u} \times \mathbf{v}), \mathbf{u}\right)$ and $\left(\frac{1}{\|\mathbf{u}\|^{2}}(\mathbf{u} \times \mathbf{w}), \mathbf{u}\right)$ into (3):

$$
\begin{aligned}
g_{1}\left(\frac{1}{\|\mathbf{u}\|^{2}}(\mathbf{u} \times(\mathbf{v}+\mathbf{w}))\right) g_{2}(\mathbf{u}) & =g_{3}(\mathbf{v}+\mathbf{w}) \\
g_{1}\left(\frac{1}{\|\mathbf{u}\|^{2}}(\mathbf{u} \times \mathbf{v})\right) g_{2}(\mathbf{u}) & =g_{3}(\mathbf{v}) \\
g_{1}\left(\frac{1}{\|\mathbf{u}\|^{2}}(\mathbf{u} \times \mathbf{w})\right) g_{2}(\mathbf{u}) & =g_{3}(\mathbf{w})
\end{aligned}
$$

Then the additivity of $g_{3}$ is an immediate consequence of the same property of $g_{1}$ by Claim 4 .
Claim 6: Let $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$. Furthermore, let $g_{1}\left(\mathbf{e}_{m}\right)=h_{m} \in \mathbb{H} \backslash\{0\}(m=1,2,3)$. Then $g_{2}\left(\mathbf{e}_{m}\right)=-h_{m}^{-1}, g_{3}\left(\mathbf{e}_{m}\right)=$ $-h_{m+1} h_{m+2}^{-1}$ (through Claim 6, subscripts have to be understood modulo 3 ), and $h_{1}, h_{2}, h_{3}$ are pairwise orthogonal quaternions with equal absolute values.

If we substitute $(\mathbf{x}, \mathbf{y})=\left(\mathbf{e}_{m}, \mathbf{e}_{m}\right)$ into (3), we get $g_{1}\left(\mathbf{e}_{m}\right) g_{2}\left(\mathbf{e}_{m}\right)=-1$, hence $g_{2}\left(\mathbf{e}_{m}\right)=-h_{m}^{-1}$. In addition, substituting $(\mathbf{x}, \mathbf{y})=\left(\mathbf{e}_{m+1}, \mathbf{e}_{m+2}\right)$ into (3), we obtain $g_{3}\left(\mathbf{e}_{m}\right)=g_{1}\left(\mathbf{e}_{m+1}\right) g_{2}\left(\mathbf{e}_{m+2}\right)=-h_{m+1} h_{m+2}^{-1}$.

Substitution $(\mathbf{x}, \mathbf{y})=\left(\mathbf{e}_{m+2}, \mathbf{e}_{m+1}\right)$ into (3) gives $g_{1}\left(\mathbf{e}_{m+2}\right) g_{2}\left(\mathbf{e}_{m+1}\right)=$ $g_{3}\left(-\mathbf{e}_{m}\right)$. Using Claim 3 and the previously proved parts of Claim 6, this yields $-h_{m+2} h_{m+1}^{-1}=h_{m+1} h_{m+2}^{-1}$. Taking absolute values, $\frac{\left|h_{m+2}\right|}{\left|h_{m+1}\right|}=\frac{\left|h_{m+1}\right|}{\left|h_{m+2}\right|}$, that is $\left|h_{m+1}\right|=\left|h_{m+2}\right|$. Then $-h_{m+2} h_{m+1}^{-1}=h_{m+1} h_{m+2}^{-1}$ is equivalent to
$-h_{m+2} \overline{h_{m+1}}=h_{m+1} \overline{h_{m+2}}$, which means that $h_{m+1}$ and $h_{m+2}$ are orthogonal quaternions.
Claim 7: The solutions of (3) are exactly the functions given in the theorem.
By linearity of $g_{m}, g_{m}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1} g_{m}\left(\mathbf{e}_{1}\right)+x_{2} g_{m}\left(\mathbf{e}_{2}\right)+x_{3} g_{m}\left(\mathbf{e}_{3}\right)$ $(m=1,2,3)$. From Claim 6 we arrive at the desired formulas. Direct calculation shows that these are indeed solutions of (3).

Proof of Theorem 2. As we shall see, Theorem 1 will be an important tool in solving (4).
Claim 1: Let $g_{m}(\mathbf{x})=f_{m}(0, \mathbf{x})\left(\mathbf{x} \in \mathbb{R}^{3}\right)(m=1,2,3)$. Then the statements of Theorem 1 and the claims in its proof hold for $g_{1}, g_{2}, g_{3}$.

Substituting $(r, s)=(0,0)$ into (4), we get

$$
f_{1}(0, \mathbf{x}) f_{2}(0, \mathbf{y})=-\langle\mathbf{x}, \mathbf{y}\rangle+f_{3}(0, \mathbf{x} \times \mathbf{y})
$$

which means that $g_{1}, g_{2}, g_{3}$ satisfy (3).
Claim 2: $f_{1}(\lambda, \mathbf{0})=\lambda h_{2} h_{3}^{-1} h_{1}, f_{2}(\lambda, \mathbf{0})=-\lambda h_{1}^{-1} h_{2} h_{3}^{-1}$ and $f_{3}(\lambda, \mathbf{0})=\lambda$ $(\lambda \in \mathbb{R})$.

Substitute $(r, \mathbf{x}, s, \mathbf{y})=\left(\lambda, \mathbf{0}, 0, \mathbf{e}_{1}\right),\left(0, \mathbf{e}_{1}, \lambda, \mathbf{0}\right)$ and $(\lambda, \mathbf{0}, 1, \mathbf{0})$ into (4):

$$
\begin{aligned}
f_{1}(\lambda, \mathbf{0}) f_{2}\left(0, \mathbf{e}_{1}\right) & =f_{3}\left(0, \lambda \mathbf{e}_{1}\right), \\
f_{1}\left(0, \mathbf{e}_{1}\right) f_{2}(\lambda, \mathbf{0}) & =f_{3}\left(0, \lambda \mathbf{e}_{1}\right), \\
f_{1}(\lambda, \mathbf{0}) f_{2}(1, \mathbf{0}) & =f_{3}(\lambda, \mathbf{0}) .
\end{aligned}
$$

From the first equation, using homogeneity of $g_{3}$ and Claim 6 of Theorem 1, it follows that $-f_{1}(\lambda, \mathbf{0}) h_{1}^{-1}=-\lambda h_{2} h_{3}^{-1}$, thus $f_{1}(\lambda, \mathbf{0})=\lambda h_{2} h_{3}^{-1} h_{1}$.

In a similar way, from the second equation we get $h_{1} f_{2}(\lambda, \mathbf{0})=-\lambda h_{2} h_{3}^{-1}$, hence $f_{2}(\lambda, \mathbf{0})=-\lambda h_{1}^{-1} h_{2} h_{3}^{-1}$.

Finally, the third equation gives $f_{3}(\lambda, \mathbf{0})=\left(\lambda h_{2} h_{3}^{-1} h_{1}\right)\left(-h_{1}^{-1} h_{2} h_{3}^{-1}\right)=$ $\lambda h_{2} h_{3}^{-1} h_{3} h_{2}^{-1}=\lambda$.
$\operatorname{Claim} 3: f_{m}(\lambda, \mathbf{v})=f_{m}(\lambda, \mathbf{0})+f_{m}(0, \mathbf{v})\left(\lambda \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^{3}\right)(m=1,2)$.
Substitute $(r, \mathbf{x}, s, \mathbf{y})=(\lambda, \mathbf{v}, 0, \mathbf{v}),(\lambda, \mathbf{0}, 0, \mathbf{v})$ and $(0, \mathbf{v}, 0, \mathbf{v})$ into (4):

$$
\begin{aligned}
f_{1}(\lambda, \mathbf{v}) f_{2}(0, \mathbf{v}) & =-\langle\mathbf{v}, \mathbf{v}\rangle+f_{3}(0, \lambda \mathbf{v}) \\
f_{1}(\lambda, \mathbf{0}) f_{2}(0, \mathbf{v}) & =f_{3}(0, \lambda \mathbf{v}) \\
f_{1}(0, \mathbf{v}) f_{2}(0, \mathbf{v}) & =-\langle\mathbf{v}, \mathbf{v}\rangle
\end{aligned}
$$

Comparing the first equation with the sum of the other two equations, we get $f_{1}(\lambda, \mathbf{v})=f_{1}(\lambda, \mathbf{0})+f_{1}(0, \mathbf{v})$ if $\mathbf{v} \neq \mathbf{0}$. But this is clearly true for $\mathbf{v}=\mathbf{0}$, too.

Similarly, this claim can be shown for $f_{2}$.
Claim $_{4}: f_{3}(\lambda, \mathbf{v})=f_{3}(\lambda, \mathbf{0})+f_{3}(0, \mathbf{v})\left(\lambda \in \mathbb{R}, \mathbf{v} \in \mathbb{R}^{3}\right)$.
Substitute $(r, \mathbf{x}, s, \mathbf{y})=(\lambda, \mathbf{v}, 1, \mathbf{0}),(\lambda, \mathbf{0}, 1, \mathbf{0})$ and $(0, \mathbf{v}, 1, \mathbf{0})$ into (4):

$$
\begin{aligned}
f_{1}(\lambda, \mathbf{v}) f_{2}(1, \mathbf{0}) & =f_{3}(\lambda, \mathbf{v}), \\
f_{1}(\lambda, \mathbf{0}) f_{2}(1, \mathbf{0}) & =f_{3}(\lambda, \mathbf{0}), \\
f_{1}(0, \mathbf{v}) f_{2}(1, \mathbf{0}) & =f_{3}(0, \mathbf{v}) .
\end{aligned}
$$

Now it is straightforward that Claim 3 implies our statement for $f_{3}$, because $f_{2}(1, \mathbf{0})=-h_{1}^{-1} h_{2} h_{3}^{-1} \neq 0$ by Claim 2 .
Claim 5: The solutions of (4) are precisely the functions given in the theorem.

This is an easy consequence of Claims $1,2,3,4$, and a direct verification that these functions are indeed solutions of (4).

## 3 Special cases

As a special case, if we are interested in solving the partially pexiderized version of (3) with $g_{1}=g_{2}$, that is the functional equation

$$
\begin{equation*}
g_{1}(\mathbf{x}) g_{1}(\mathbf{y})=-\langle\mathbf{x}, \mathbf{y}\rangle+g_{3}(\mathbf{x} \times \mathbf{y}) \quad\left(\mathbf{x}, \mathbf{y} \in \mathbb{R}^{3}\right) \tag{5}
\end{equation*}
$$

in functions $g_{1}, g_{3}: \mathbb{R}^{3} \rightarrow \mathbb{H}$, we can easily describe its solutions.
Corollary. The functions $g_{1}, g_{3}: \mathbb{R}^{3} \rightarrow \mathbb{H}$ satisfy (5) if and only if there exist pairwise orthogonal purely imaginary quaternions $h_{1}, h_{2}, h_{3} \in \mathbb{H}$ with absolute values 1 such that

$$
\begin{aligned}
& g_{1}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1} h_{1}+x_{2} h_{2}+x_{3} h_{3}, \\
& g_{3}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{1} h_{2} h_{3}+x_{2} h_{3} h_{1}+x_{3} h_{1} h_{2} .
\end{aligned}
$$

Proof of Corollary. For $g_{1}=g_{2}$ in Theorem 1, we need to have $h_{m}=-h_{m}^{-1}$ ( $m=1,2,3$ ). Taking absolute values, we get $\left|h_{m}\right|=\frac{1}{\left|h_{m}\right|}$, hence $\left|h_{m}\right|=1$. Then $h_{m}=-h_{m}^{-1}$ is equivalent to $h_{m}=-\overline{h_{m}}$, in other words $h_{m}$ is purely imaginary.

On the other hand, it can be checked that the given functions are solutions of (5).

Remark. As a consequence, we obtain that $g: \mathbb{R}^{3} \rightarrow \mathbb{H}$ is a solution of functional equation (1) if and only if there exist orthogonal purely imaginary quaternions $h_{1}, h_{2} \in \mathbb{H}$ with absolute values 1 such that $g\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=$ $x_{1} h_{1}+x_{2} h_{2}+x_{3} h_{1} h_{2}$, which is a reformulation of Theorem 1 in [2].

Acknowledgment The author thanks Professor Gyula Maksa, who suggested to study the pexiderized versions of (1) and (2) after reading our paper [2].

## References

[1] I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers, SpringerVerlag (New York, 1989).
[2] B. Nyul and G. Nyul, Functional equations for vector products and quaternions, Aequat. Math. 85 (2013), 35-39.
[3] J. Vince, Quaternions for Computer Graphics, Springer-Verlag (London, 2011).
[4] J. P. Ward, Quaternions and Cayley Numbers, Kluwer Academic Publishers (Dordrecht, 1997).


[^0]:    *Research was supported in part by Grant 100339 from the Hungarian Scientific Research Fund.

    Keywords and phrases: functional equation, vector product, quaternion.
    Mathematics Subject Classification: 39B52, 16K20.

