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Abstract

The purpose of the present paper is to solve the pexiderized versions
of functional equations investigated by B. Nyul and G. Nyul [2], raised
by the connection between products of quaternions and products of
three-dimensional vectors.

1 Quaternionic products and vector products

Let H = {r + x1i + x2j + x3k | r, x1, x2, x3 ∈ R} be the skew field of quater-
nions with the basic relations i2 = j2 = k2 = ijk = −1. Throughout this pa-
per we use the following notions for a quaternion h = r+x1i+x2j+x3k ∈ H:
We say that h is purely imaginary if r = 0. The conjugate of h is h =
r−x1i−x2j−x3k ∈ H, the absolute value of h is |h| =

√
r2 + x2

1 + x2
2 + x2

3,
and the multiplicative inverse of h is h−1 = 1

|h|2 h in case of h 6= 0. Quater-
nions h1 = r + x1i + x2j + x3k, h2 = s + y1i + y2j + y3k ∈ H are called
orthogonal if rs+x1y1 +x2y2 +x3y3 = 0, or equivalently if h1h2 +h2h1 = 0.
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If we identify purely imaginary quaternions x1i+x2j +x3k with vectors
(x1, x2, x3) ∈ R3, then the product of two purely imaginary quaternions is

xy = −〈x,y〉+ x× y (x,y ∈ R3),

more generally the product of two arbitrary quaternions is

(r + x)(s + y) = (rs− 〈x,y〉) + (sx + ry + x× y) (r, s ∈ R,x,y ∈ R3),

where 〈x,y〉 and x×y denote the standard inner product (dot product) and
the cross product of x,y ∈ R3, respectively (see [1], [3], [4]).

Motivated by these connections between vector products and quater-
nions, B. Nyul and G. Nyul [2] solved functional equations

g(x)g(y) = −〈x,y〉+ g(x× y) (x,y ∈ R3) (1)

and

f(r,x)f(s,y) = −〈x,y〉+ f(rs, sx + ry + x× y) (r, s ∈ R,x,y ∈ R3) (2)

in functions g : R3 → H and f : R × R3 → H.
In the following theorems we determine all the solutions of the pex-

iderized versions of these equations, namely we completely solve functional
equations

g1(x)g2(y) = −〈x,y〉+ g3(x× y) (x,y ∈ R3) (3)

and

f1(r,x)f2(s,y) = −〈x,y〉+f3(rs, sx+ry+x×y) (r, s ∈ R,x,y ∈ R3) (4)

in functions g1, g2, g3 : R3 → H and f1, f2, f3 : R × R3 → H.

Theorem 1. The functions g1, g2, g3 : R3 → H satisfy (3) if and only if
there exist pairwise orthogonal nonzero quaternions h1, h2, h3 ∈ H with equal
absolute values such that

g1 ((x1, x2, x3)) = x1h1 + x2h2 + x3h3,

g2 ((x1, x2, x3)) = −x1h
−1
1 − x2h

−1
2 − x3h

−1
3 ,

g3 ((x1, x2, x3)) = −x1h2h
−1
3 − x2h3h

−1
1 − x3h1h

−1
2 .

Theorem 2. The functions f1, f2, f3 : R×R3 → H satisfy (4) if and only if
there exist pairwise orthogonal nonzero quaternions h1, h2, h3 ∈ H with equal
absolute values such that

f1 (r, (x1, x2, x3)) = rh2h
−1
3 h1 + x1h1 + x2h2 + x3h3,

f2 (r, (x1, x2, x3)) = −rh−1
1 h2h

−1
3 − x1h

−1
1 − x2h

−1
2 − x3h

−1
3 ,

f3 (r, (x1, x2, x3)) = r − x1h2h
−1
3 − x2h3h

−1
1 − x3h1h

−1
2 .
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2 Proofs

Proof of Theorem 1. We prove this theorem through seven claims.
Claim 1 : gm(0) = 0 (m = 1, 2, 3), gm(v) = 0 if only if v = 0 (m = 1, 2).

Substitute (x,y) = (0,v), (v,0) and (v,v) into (3) (v ∈ R3):

g1(0)g2(v) = g3(0),
g1(v)g2(0) = g3(0),
g1(v)g2(v) = −〈v,v〉+ g3(0).

If g1(0) 6= 0, then the first equation gives g2(v) = g1(0)−1g3(0). When
g3(0) = 0, we have g2(v) = 0. While in case of g3(0) 6= 0, it follows from
the second equation that g1(v) = g1(0). In both cases the third equation
becomes 0 = −〈v,v〉 for any v ∈ R3, which is a contradiction. This means
that g1(0) = 0.

Similarly, it can be shown that g2(0) = 0, and g3(0) = 0 follows from the
first or the second equation. Then the third equation, g1(v)g2(v) = −〈v,v〉,
implies that g1(v) 6= 0 and g2(v) 6= 0 for v 6= 0.

In the rest of the proof, we shall use Claim 1 without referring to it.
Claim 2 : g1 and g2 are homogeneous.

Substitute (x,y) = (v,v) and (λv,v) into (3) (λ ∈ R, v ∈ R3):

g1(v)g2(v) = −〈v,v〉,
g1(λv)g2(v) = −λ〈v,v〉.

If we multiply the first equation by λ, we easily get g1(λv) = λg1(v) for
v 6= 0. Moreover, it is obviously true when v = 0.

Homogeneity of g2 can be proved similarly.
Claim 3 : g3 is homogeneous.

Let v ∈ R3. Choose w ∈ R3 such that w 6= 0 and v, w being orthogonal.
Then substitute (x,y) = ( 1

‖w‖2 (w × v),w) and ( λ
‖w‖2 (w × v),w) into (3)

(λ ∈ R):

g1(
1

‖w‖2
(w × v))g2(w) = g3(v),

g1(
λ

‖w‖2
(w × v))g2(w) = g3(λv).

Since g1 is homogeneous by Claim 2, it follows that g3 is also homoge-
neous.
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Claim 4 : g1 and g2 are additive.
Substitute (x,y) = (v + w,w), (v,w) and (w,w) into (3) (v,w ∈ R3):

g1(v + w)g2(w) = −〈v + w,w〉+ g3(v ×w),
g1(v)g2(w) = −〈v,w〉+ g3(v ×w),
g1(w)g2(w) = −〈w,w〉.

After adding the second and the third equations, together with the first
one they give that g1(v + w) = g1(v) + g1(w) if w 6= 0. This relation also
holds for w = 0.

It can be deduced similarly that g2 is additive.
Claim 5 : g3 is additive.

Let v,w ∈ R3 be arbitrary vectors. Choose u ∈ R3 such that u 6= 0 and
u is orthogonal to v, w (any nonzero vector from the orthogonal complement
of the subspace generated by v and w). Now substitute (x,y) = ( 1

‖u‖2 (u×
(v + w)),u), ( 1

‖u‖2 (u× v),u) and ( 1
‖u‖2 (u×w),u) into (3):

g1(
1

‖u‖2
(u× (v + w)))g2(u) = g3(v + w),

g1(
1

‖u‖2
(u× v))g2(u) = g3(v),

g1(
1

‖u‖2
(u×w))g2(u) = g3(w).

Then the additivity of g3 is an immediate consequence of the same prop-
erty of g1 by Claim 4.
Claim 6 : Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Furthermore, let
g1(em) = hm ∈ H \ {0} (m = 1, 2, 3). Then g2(em) = −h−1

m , g3(em) =
−hm+1h

−1
m+2 (through Claim 6, subscripts have to be understood modulo

3), and h1, h2, h3 are pairwise orthogonal quaternions with equal absolute
values.

If we substitute (x,y) = (em, em) into (3), we get g1(em)g2(em) = −1,
hence g2(em) = −h−1

m . In addition, substituting (x,y) = (em+1, em+2) into
(3), we obtain g3(em) = g1(em+1)g2(em+2) = −hm+1h

−1
m+2.

Substitution (x,y) = (em+2, em+1) into (3) gives g1(em+2)g2(em+1) =
g3(−em). Using Claim 3 and the previously proved parts of Claim 6, this
yields −hm+2h

−1
m+1 = hm+1h

−1
m+2. Taking absolute values, |hm+2|

|hm+1| = |hm+1|
|hm+2| ,

that is |hm+1| = |hm+2|. Then −hm+2h
−1
m+1 = hm+1h

−1
m+2 is equivalent to
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−hm+2hm+1 = hm+1hm+2, which means that hm+1 and hm+2 are orthogonal
quaternions.
Claim 7 : The solutions of (3) are exactly the functions given in the theorem.

By linearity of gm, gm((x1, x2, x3)) = x1gm(e1) + x2gm(e2) + x3gm(e3)
(m = 1, 2, 3). From Claim 6 we arrive at the desired formulas. Direct
calculation shows that these are indeed solutions of (3).

Proof of Theorem 2. As we shall see, Theorem 1 will be an important tool
in solving (4).
Claim 1 : Let gm(x) = fm(0,x) (x ∈ R3) (m = 1, 2, 3). Then the statements
of Theorem 1 and the claims in its proof hold for g1, g2, g3.

Substituting (r, s) = (0, 0) into (4), we get

f1(0,x)f2(0,y) = −〈x,y〉+ f3(0,x× y),

which means that g1, g2, g3 satisfy (3).
Claim 2 : f1(λ,0) = λh2h

−1
3 h1, f2(λ,0) = −λh−1

1 h2h
−1
3 and f3(λ,0) = λ

(λ ∈ R).
Substitute (r,x, s,y) = (λ,0, 0, e1), (0, e1, λ,0) and (λ,0, 1,0) into (4):

f1(λ,0)f2(0, e1) = f3(0, λe1),
f1(0, e1)f2(λ,0) = f3(0, λe1),
f1(λ,0)f2(1,0) = f3(λ,0).

From the first equation, using homogeneity of g3 and Claim 6 of Theo-
rem 1, it follows that −f1(λ,0)h−1

1 = −λh2h
−1
3 , thus f1(λ,0) = λh2h

−1
3 h1.

In a similar way, from the second equation we get h1f2(λ,0) = −λh2h
−1
3 ,

hence f2(λ,0) = −λh−1
1 h2h

−1
3 .

Finally, the third equation gives f3(λ,0) = (λh2h
−1
3 h1)(−h−1

1 h2h
−1
3 ) =

λh2h
−1
3 h3h

−1
2 = λ.

Claim 3 : fm(λ,v) = fm(λ,0) + fm(0,v) (λ ∈ R, v ∈ R3) (m = 1, 2).
Substitute (r,x, s,y) = (λ,v, 0,v), (λ,0, 0,v) and (0,v, 0,v) into (4):

f1(λ,v)f2(0,v) = −〈v,v〉+ f3(0, λv),
f1(λ,0)f2(0,v) = f3(0, λv),
f1(0,v)f2(0,v) = −〈v,v〉.

Comparing the first equation with the sum of the other two equations,
we get f1(λ,v) = f1(λ,0) + f1(0,v) if v 6= 0. But this is clearly true for
v = 0, too.
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Similarly, this claim can be shown for f2.
Claim 4 : f3(λ,v) = f3(λ,0) + f3(0,v) (λ ∈ R, v ∈ R3).

Substitute (r,x, s,y) = (λ,v, 1,0), (λ,0, 1,0) and (0,v, 1,0) into (4):

f1(λ,v)f2(1,0) = f3(λ,v),
f1(λ,0)f2(1,0) = f3(λ,0),
f1(0,v)f2(1,0) = f3(0,v).

Now it is straightforward that Claim 3 implies our statement for f3,
because f2(1,0) = −h−1

1 h2h
−1
3 6= 0 by Claim 2.

Claim 5 : The solutions of (4) are precisely the functions given in the theo-
rem.

This is an easy consequence of Claims 1, 2, 3, 4, and a direct verification
that these functions are indeed solutions of (4).

3 Special cases

As a special case, if we are interested in solving the partially pexiderized
version of (3) with g1 = g2, that is the functional equation

g1(x)g1(y) = −〈x,y〉+ g3(x× y) (x,y ∈ R3) (5)

in functions g1, g3 : R3 → H, we can easily describe its solutions.

Corollary. The functions g1, g3 : R3 → H satisfy (5) if and only if there
exist pairwise orthogonal purely imaginary quaternions h1, h2, h3 ∈ H with
absolute values 1 such that

g1 ((x1, x2, x3)) = x1h1 + x2h2 + x3h3,

g3 ((x1, x2, x3)) = x1h2h3 + x2h3h1 + x3h1h2.

Proof of Corollary. For g1 = g2 in Theorem 1, we need to have hm = −h−1
m

(m = 1, 2, 3). Taking absolute values, we get |hm| = 1
|hm| , hence |hm| = 1.

Then hm = −h−1
m is equivalent to hm = −hm, in other words hm is purely

imaginary.
On the other hand, it can be checked that the given functions are solu-

tions of (5).

6



Remark. As a consequence, we obtain that g : R3 → H is a solution of
functional equation (1) if and only if there exist orthogonal purely imaginary
quaternions h1, h2 ∈ H with absolute values 1 such that g ((x1, x2, x3)) =
x1h1 + x2h2 + x3h1h2, which is a reformulation of Theorem 1 in [2].
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gested to study the pexiderized versions of (1) and (2) after reading our
paper [2].
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