
J. Sütő et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 3-6 3
__

ISSN 1844 – 9689 http://cjece.ubm.ro

A new C++ implemented feed forward neural
network simulator

József Sütő
Faculty of Informatics
University of Debrecen

Debrecen, Hungary
sutojozsef90@gmail.com

Stefan Oniga
Faculty of Informatics
University of Debrecen

Debrecen, Hungary
oniga.istvan@inf.unideb.hu

Abstract—This paper presents the implementation of a
simulator application for feed forward neural networks which
was made in Qt application framework. The paper demonstrates
the object oriented design and the performance of the software.
The main topics cover the class organization and some test
results where the Matlab neural network toolbox was used as
reference.

Keywords— Neural network; Function approximation, C++;
Qt; Object oriented design

I. INTRODUCTION

Nowadays, artificial neural network (ANN) is an
outstanding research area. Many researchers work on ANN
algorithms and architecture development which require lots of
tests. Unfortunately, the number of available free of charge
simulator or tester software is rather limited. The best known
application is the Matlab neural network toolbox, but it is
rather costly. On the other hand, the toolbox can be a very
good reference to test similar applications.

Our simulator application provides a good possibility to
test feed forward ANN in education and research. The
advantages of the application is that it is easy to use and every
useful parameters of training algorithms are adjustable.
Moreover, the program supports some well applicable error
analysis options. In many cases, the parameters play an
important role in training process. For example, the learning
rate influences the oscillation of performance or stretching log-
sigmoid transfer function influences the steepness of a neuron
output.

The application supports training algorithms for single and
multi-layer ANN. For single layer network the Hebbian and
the Widrow-Hoff (LMS), while for multi-layer networks some
modified backpropagation algorithms were implemented.

II. USAGE OF THE APPLICATION

The software was made in Qt. Qt is a cross-platform
application framework that based on C++. It is well applicable
for developing software with graphical user interface (GUI). In
the programming environment the basic GUI elements are
given, thus the developer can form the GUI easily. The
simulator application provides a simple GUI where the users
can set the ANN properties. Fig. 1 shows the "main" GUI of
the application.

Fig. 1. The main GUI of the application

On the first figure in the architecture area, combo boxes
contain properties of layers while the network architecture
table shows the adjusted properties. In the bottom text browser
the user will see initial values and information about the
training and the simulation algorithms operation. The software
reads sample patterns, test patterns and target values from file
and similarly writes the output (error and result) into file.

The training process contains an iteration limit (1000).
Training will stop if the iteration counter reaches the limit or
the iteration error does not decreases significantly.
The parameters area on fig. 1 refers to the constant multipliers
of the implemented training algorithms. For example, α
denotes the learning rate while γ denotes the momentum in
weight calculation of LMS and momentum based
backpropagation algorithm.

 𝑾(𝑡 + 1) = 𝑾(𝑡) + 2𝛼𝒆(𝑡)𝒑𝑻(𝑡) (1)

 𝛥𝑾𝒌(𝑡 + 1) = 𝛾𝑾𝒌(𝑡) − (1 − 𝛾)𝛼𝒔𝒌(𝑡) �𝒐𝒌−𝟏�𝑇 (2)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/160994467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J. Sütő et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 3-6 4
__

ISSN 1844 – 9689 http://cjece.ubm.ro

 In the above equations the bold notations are matrices and
vectors. The W denotes the weight matrix, e is the error vector
and p is the input pattern in the t. iteration. In multi-layer
networks k indicates the layer, o is the output vector of a given
layer and s is the sensitivity of the error [1]. Obviously, the γ
and α were used similarly in bias calculation. In addition, the
sigmoid stretching controls the steepness of the sigmoid
transfer function.

 𝐹(𝑖𝑘) =
1

1 + 𝑒−𝜆𝑖𝑘
 (3)

 Where ik

 In the equation above (4) o

 is the summarized input of a neuron and λ is equal
with the sigmoid stretching parameter. Therefore the derivative
can be written as:

 𝜆 �1 −
1

1 + 𝑒−𝜆𝑖𝑘
� �

1
1 + 𝑒−𝜆𝑖𝑘

� = 𝜆(1 − 𝑜𝑘)𝑜𝑘 (4)

k

 denotes the neuron output.
Moreover, the application includes another two GUIs where
the user can visualize different types of 2D and 3D graphs.
One of them is responsible for 2D graphs while the other is
responsible for 3D graphs. The 2D plots are made with
QCustomPlot. QCustomPlot is a well applicable C++ widget
for plotting. It supports some useful possibilities, for instance,
axis scaling due to mouse scroll. Currently four plotting mode
are supported (line plot (x, y), line plot (x), impulse and bar
plot). Plotting algorithms require data file(s) which contain the
values of the graph. The name of the graph or the function
depends on the selected file name. Fig. 2 illustrates an example
how QCustomPlot draws the error function.

Fig. 2. Error function after training

 Under Linux, the programmer can call shell script from Qt
which contains one or more embedded GLE (Graphics Layout
Engine) scripts. GLE is a graphics scripting language that is
available for free of charge. The program uses the GLE to
display error-tester graphs. The user can examine the change of

the output error according to the alteration of one or two
parameters. The error-tester method modifies the selected
parameters in little steps over the entire adjusted range and
stores the measured error into matrix or vector (depends on
how many parameters change). For instance, fig. 3 shows an
error surface which derives from two weight modification. On
fig. 3 there is an arrow which indicates the minimum point of
the surface.

Fig. 3. Error surface

 In addition, the red trajectory refers to the error function.
Thanks to the error-tester option the user can check the
convergence of the error trajectory. Obviously, the training
algorithm works properly if the error trajectory converges to
the minimum point. Another useful graph is the contour
surface. The contour surface shows the convergence of the
error trajectory in another approach. The contour surface can
be seen on fig. 4.

Fig. 4. Contour surface

J. Sütő et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 3-6 5
__

ISSN 1844 – 9689 http://cjece.ubm.ro

III. CLASS ORGANIZATION

The application builds up from classes. While c++ is an
object oriented programming language, the developer can
represent complex structure as an object. Since the training
algorithms are based on matrix operations, thus a matrix class
that includes every necessary methods is indispensable. In
c/c++ the developer should pay attention to memory
management when the program calculates lots of matrix
operations. If the developer would like to represent matrix
dynamically then a pointer array is necessary. Every instance
of the matrix class allocate new memory fields. Usually the
function which performs matrix operation returns with a new
matrix that contains the result. In that case, if the program will
not free temporary matrices (unused memory) the program will
run out of operative memory and the program crashes (or the
whole system). Another undesired situation when the CPU is
unexploited because the memory is loaded and the data
exchange between operative memory and caches is time-
consuming. It is recommended to create matrix pointers which
will point to the newly created matrix and free those after
usage.

In the application every layer is an object, therefore, they
independently manageable. The network input was considered
as a separate layer ("inputlayer" object) with own data types
and methods. Hidden layers are the same objects where the last
adjusted will be the ANN output. In this case, the most data
types of the class are matrices because the algorithms are based
on matrix operations.

Simpler algorithms such as Hebbian or LMS are located in
a header file. In this case, new class creation is not necessary.
Actually, the simulator program supports the following
training algorithms:

• Hebbian

• Widrow-Hoff (LMS)

• Standard backpropagation

• Momentum based backpropagation

• Variable learning rate backpropagation

• Levenberg-Marquardt

IV. TEST RESULTS

The performance of the program was tested by three
function approximation tests. Function approximation is one of
the main application area of neural networks. In the first test
the program approximated a simple exponential function. The
exponential function is the following:

 F1

Where x denotes the interval between -2 and 3. The
program output was compared with the Matlab neural network
fitting tool output. In both cases, 1-2-1 (1 input neuron, 2
hidden neurons and 1 output neuron) architecture was used.
The two outputs are nearly equal to the original. Fig. 5
illustrates the test result of the first function approximation.

(x) = 0.8 exp(x) (5)

Fig. 5. The result of the first test

On the figure above, the three curves are the original
function, the Matlab and the program result.

In the second test, the program approximated a slightly
more complex sinusoidal function. The following equation
describes the function:

 F2

The program output was again compared with Matlab.
Now, the network architecture is 1-4-1. The two results are
almost identical. Fig. 6 shows the second function
approximation test.

(x) = 1 + sin(pi * x) (6)

Fig. 6. The result of the second test

 Another indicator is the adjusted parameters of the
network. If the parameters after the training are equal, the two
training algorithms work similarly. For example, in the

J. Sütő et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 3-6 6
__

ISSN 1844 – 9689 http://cjece.ubm.ro

previous test the weight matrices of the second layer in Matlab
and in the simulator are the following:

 𝑊2
𝑀 = �

−1.5242
1.7996
−1.5715
−1.1648

� (7)

 𝑊2
𝑆 = �

−1.7401
1.5232
−1.3538
−1.1020

� (8)

𝑊2
𝑀refers to the Matlab weight while 𝑊2

𝑆is the weight of
the simulator. The difference between the two matrices is
negligible. It is another evidence for the correct operation of
the simulator.

In the last test a sawtooth wave was approximated with
neural network. In order to the network can approximate the
sawtooth wave it should contain more neurons in the hidden
layer. The domain of the sawtooth is between -2 and 2. The
following equation (9) describes the sawtooth:

 𝐹3(𝑥) = �
2 − |𝑥|, 𝑥 < 0
0 , 𝑥 = 0

 𝑥, 𝑥 > 0
 (9) �

 Now, the applied architecture of the network is 1-20-1. The
result of the last test can be seen on fig. 7.

Fig. 7. The result of the last test

V. CONCLUSION

The test results show that the simulator works properly.
Therefore, it well applicable in the education and in research
works. Some functions and algorithms are specialized for
educational purposes only. One of them is the standard
backpropagation algorithm because the modified

backpropagation algorithms give better solution. On the other
hand, the Levenberg-Marquardt training algorithm can be
useful in research.

One of the main property of the application is the
flexibility. The source code is easily modifiable and the
developer can upgrade the algorithms quickly.

The program was not tested completely. In the future, we
want to test some additional indicators of the program such as
the running time. In addition, we should improve the
implemented algorithms in order to the program provides
reliable solution in all cases.

ACKNOWLEDGMENT

This research was supported by the European Union and
the State of Hungary, co-financed by the European Social
Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001
“National Excellence Program”.

REFERENCES
[1] M. T. Hagan, H. B. Demuth, M. Beale, Neural network design, PWS

Publishing Cmpany, 1996.
[2] M. H. Beale, M. T. Hagan, H. B. Demuth, Neural network toolbox

user’s guide, The MathWork Inc., 2013.
[3] A. Zell, N. Mache, R. Hübner, G. Mamier, M. Vogt, M. Schmalzl, K.

Herrmann, “SNNS (Stuttgart neural network simulator)”, Neural
network Simulation Environments, vol. 254, pp. 165-186, 1994.

[4] B. Kröse, P. Smagt, An introduction to neural networks, University of
Amsterdam, November 1996.

[5] A. Zell, N. Mache, T. Sommer and T. Korb, “Recent developments of
the SNNS neural network simulator”, SPIE Proceedings, Applications
of Artificial Neural Networks II, vol. 1469, 1991.

[6] T. Makino, “A discrete – event neural network simulator for general
neuron models”, Neural Computing & Applications, vol. 11, pp. 210-
223, June 2003.

[7] S. Haykin, Neural networks. A comprehensive foundation. Second
edition, McMaster University, Hamilton, Ontario, Canada, 1999.

[8] M. T. Hagan, M. B. Menhaj, “Training feedforward networks with the
Marquardt algorithm”, Neural Networks, IEEE Transactions, vol. 5, pp.
989-993, August 2002.

[9] P. Peretto, An introduction to the modeling of neural networks,
Cambridge University Press, 1992.

[10] L. M. Hines, N. T. Carnevale, “The NEURON simulation environment”,
Neural Computation, vol. 9, no. 6, pp. 1179-1209, August 1997.

[11] D. Nguyen, B. Widrow, “Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights”, Neural
Networks, 1990 IJCNN International Joint Conference, vol. 3, pp. 21-
26, June 1990.

[12] J. Sütő, S. Oniga, “Testing artificial neural network for gesture
recognition”, Abstracts and Pre-Proceedings, 9

[13] T. Masters, Practical Neural Network Recipes in C++, Academic Press,
1993.

th international
conference on applied mathematics, pp. 21, 2013.

[14] K. Hornik, “Approximation capabilities of multilayer feedforward
networks”, Neural Networks, vol. 4, pp. 251-257.

[15] S. Oniga, I. Orha, “Hardware implemented neural networks used for
hand gestures recognition”, Carpathian Journal of Electronic and
Computer Engineering, vol. 4, no. 1, pp. 93-96, 2011.

[16] A. Tisan, A. Buchman, S. Oniga, C. Gavrincea, “A generic control
block for feedforward neural network with on-chip delta rule learning
algorithm”, Proceedings of the 5th

 WSEAS Int. Conf. on DATA
NETWORKS, COMMUNICATIONS & COMPUTERS, pp. 162-167.

	I. Introduction
	II. Usage of the application
	III. Class organization
	IV. Test results
	Acknowledgment
	References

