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Abstract—This paper presents the implementation of a 
simulator application for feed forward neural networks which 
was made in Qt application framework. The paper demonstrates 
the object oriented design and the performance of the software. 
The main topics cover the class organization and some test 
results where the Matlab neural network toolbox was used as 
reference. 
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I. INTRODUCTION 

Nowadays, artificial neural network (ANN) is an 
outstanding research area. Many researchers work on ANN 
algorithms and architecture development which require lots of 
tests. Unfortunately, the number of available free of charge 
simulator or tester software is rather limited. The best known 
application is the Matlab neural network toolbox, but it is 
rather costly. On the other hand, the toolbox can be a very 
good reference to test similar applications. 

Our simulator application provides a good possibility to 
test feed forward ANN in education and research. The 
advantages of the application is that it is easy to use and every 
useful parameters of training algorithms are adjustable. 
Moreover, the program supports some well applicable error 
analysis options. In many cases, the parameters play an 
important role in training process. For example, the learning 
rate influences the oscillation of performance or stretching log-
sigmoid transfer function influences the steepness of a neuron 
output.  

The application supports training algorithms for single and 
multi-layer ANN. For single layer network the Hebbian and 
the Widrow-Hoff (LMS), while for multi-layer networks some 
modified backpropagation algorithms were implemented. 

II. USAGE OF THE APPLICATION 

The software was made in Qt. Qt is a cross-platform 
application framework that based on C++. It is well applicable 
for developing software with graphical user interface (GUI). In 
the programming environment the basic GUI elements are 
given, thus the developer can form the GUI easily. The 
simulator application provides a simple GUI where the users 
can set the ANN properties. Fig. 1 shows the "main" GUI of 
the application. 

 

 
Fig. 1. The main GUI of the application 

On the first figure in the architecture area, combo boxes 
contain properties of layers while the network architecture 
table shows the adjusted properties. In the bottom text browser 
the user will see initial values and information about the 
training and the simulation algorithms operation. The software 
reads sample patterns, test patterns and target values from file 
and similarly writes the output (error and result) into file. 

The training process contains an iteration limit (1000). 
Training will stop if the iteration counter reaches the limit or 
the iteration error does not decreases significantly. 
The parameters area on fig. 1 refers to the constant multipliers 
of the implemented training algorithms. For example, α 
denotes the learning rate while γ denotes the momentum in 
weight calculation of LMS and momentum based 
backpropagation algorithm. 

 

                      𝑾(𝑡 + 1) = 𝑾(𝑡) + 2𝛼𝒆(𝑡)𝒑𝑻(𝑡)                   (1) 

       𝛥𝑾𝒌(𝑡 + 1) =  𝛾𝑾𝒌(𝑡) − (1 −  𝛾)𝛼𝒔𝒌(𝑡) �𝒐𝒌−𝟏�𝑇      (2) 
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 In the above equations the bold notations are matrices and 
vectors. The W denotes the weight matrix, e is the error vector 
and p is the input pattern in the t. iteration. In multi-layer 
networks k indicates the layer, o is the output vector of a given 
layer and s is the sensitivity of the error [1]. Obviously, the γ 
and α were used similarly in bias calculation. In addition, the 
sigmoid stretching controls the steepness of the sigmoid 
transfer function. 

                                         𝐹(𝑖𝑘) =  
1

1 +  𝑒−𝜆𝑖𝑘
                             (3) 

 Where ik

 In the equation above (4) o

 is the summarized input of a neuron and λ is equal 
with the sigmoid stretching parameter. Therefore the derivative 
can be written as: 

           𝜆 �1 −  
1

1 +  𝑒−𝜆𝑖𝑘
� �

1
1 + 𝑒−𝜆𝑖𝑘

� =  𝜆(1 −  𝑜𝑘)𝑜𝑘     (4) 

k

 

 denotes the neuron output. 
Moreover, the application includes another two GUIs where 
the user can visualize different types of 2D and 3D graphs. 
One of them is responsible for 2D graphs while the other is 
responsible for 3D graphs. The 2D plots are made with 
QCustomPlot. QCustomPlot is a well applicable C++ widget 
for plotting. It supports some useful possibilities, for instance, 
axis scaling due to mouse scroll. Currently four plotting mode 
are supported (line plot (x, y), line plot (x), impulse and bar 
plot). Plotting algorithms require data file(s) which contain the 
values of the graph. The name of the graph or the function 
depends on the selected file name. Fig. 2 illustrates an example 
how QCustomPlot draws the error function. 

Fig. 2. Error function after training 

 Under Linux, the programmer can call shell script from Qt 
which contains one or more embedded GLE (Graphics Layout 
Engine) scripts. GLE is a graphics scripting language that is 
available for free of charge. The program uses the GLE to 
display error-tester graphs. The user can examine the change of 

the output error according to the alteration of one or two 
parameters. The error-tester method modifies the selected 
parameters in little steps over the entire adjusted range and 
stores the measured error into matrix or vector (depends on 
how many parameters change). For instance, fig. 3 shows an 
error surface which derives from two weight modification. On 
fig. 3 there is an arrow which indicates the minimum point of 
the surface. 

 
Fig. 3. Error surface 

 In addition, the red trajectory refers to the error function. 
Thanks to the error-tester option the user can check the 
convergence of the error trajectory. Obviously, the training 
algorithm works properly if the error trajectory converges to 
the minimum point. Another useful graph is the contour 
surface. The contour surface shows the convergence of the 
error trajectory in another approach. The contour surface can 
be seen on fig. 4. 

 
Fig. 4. Contour surface 



J. Sütő  et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 3-6                                               5 
________________________________________________________________________________________________________ 

ISSN 1844 – 9689                                                                                                                                                                 http://cjece.ubm.ro 

III. CLASS ORGANIZATION 

The application builds up from classes. While c++ is an 
object oriented programming language, the developer can 
represent complex structure as an object. Since the training 
algorithms are based on matrix operations, thus a matrix class 
that includes every necessary methods is indispensable. In 
c/c++ the developer should pay attention to memory 
management when the program calculates lots of matrix 
operations. If the developer would like to represent matrix 
dynamically then a pointer array is necessary. Every instance 
of the matrix class allocate new memory fields. Usually the 
function which performs matrix operation returns with a new 
matrix that contains the result. In that case, if the program will 
not free temporary matrices (unused memory) the program will 
run out of operative memory and the program crashes (or the 
whole system). Another undesired situation when the CPU is 
unexploited because the memory is loaded and the data 
exchange between operative memory and caches is time-
consuming. It is recommended to create matrix pointers which 
will point to the newly created matrix and free those after 
usage. 

In the application every layer is an object, therefore, they 
independently manageable. The network input was considered 
as a separate layer ("inputlayer" object) with own data types 
and methods. Hidden layers are the same objects where the last 
adjusted will be the ANN output. In this case, the most data 
types of the class are matrices because the algorithms are based 
on matrix operations. 

Simpler algorithms such as Hebbian or LMS are located in 
a header file. In this case, new class creation is not necessary. 
Actually, the simulator program supports the following 
training algorithms:  

• Hebbian 

• Widrow-Hoff (LMS) 

• Standard backpropagation 

• Momentum based backpropagation 

• Variable learning rate backpropagation 

• Levenberg-Marquardt 

IV. TEST RESULTS 

The performance of the program was tested by three 
function approximation tests. Function approximation is one of 
the main application area of neural networks. In the first test 
the program approximated a simple exponential function. The 
exponential function is the following: 

                                F1

Where x denotes the interval between -2 and 3. The 
program output was compared with the Matlab neural network 
fitting tool output. In both cases, 1-2-1 (1 input neuron, 2 
hidden neurons and 1 output neuron) architecture was used. 
The two outputs are nearly equal to the original. Fig. 5 
illustrates the test result of the first function approximation. 

(x) = 0.8 exp(x)                (5) 

 
Fig. 5. The result of the first test 

On the figure above, the three curves are the original 
function, the Matlab and the program result. 

In the second test, the program approximated a slightly 
more complex sinusoidal function. The following equation 
describes the function: 

                               F2

The program output was again compared with Matlab. 
Now, the network architecture is 1-4-1. The two results are 
almost identical. Fig. 6 shows the second function 
approximation test. 

(x) = 1 + sin(pi * x)                        (6) 

 
Fig. 6. The result of the second test 

 Another indicator is the adjusted parameters of the 
network. If the parameters after the training are equal, the two 
training algorithms work similarly. For example, in the 
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previous test the weight matrices of the second layer in Matlab 
and in the simulator are the following: 

                            𝑊2
𝑀 = �

−1.5242
1.7996
−1.5715
−1.1648

�            (7) 

                             𝑊2
𝑆 = �

−1.7401
1.5232
−1.3538
−1.1020

�                         (8) 

𝑊2
𝑀refers to the Matlab weight while 𝑊2

𝑆is the weight of 
the simulator. The difference between the two matrices is 
negligible. It is another evidence for the correct operation of 
the simulator. 

In the last test a sawtooth wave was approximated with 
neural network. In order to the network can approximate the 
sawtooth wave it should contain more neurons in the hidden 
layer. The domain of the sawtooth is between -2 and 2. The 
following equation (9) describes the sawtooth: 

                                   𝐹3(𝑥) =  �
2 − |𝑥|,   𝑥 < 0
0 ,            𝑥 = 0

 𝑥,             𝑥 > 0 
                       (9) � 

 Now, the applied architecture of the network is 1-20-1. The 
result of the last test can be seen on fig. 7. 

 
Fig. 7. The result of the last test 

V. CONCLUSION 

The test results show that the simulator works properly. 
Therefore, it well applicable in the education and in research 
works. Some functions and algorithms are specialized for 
educational purposes only. One of them is the standard 
backpropagation algorithm because the modified 

backpropagation algorithms give better solution. On the other 
hand, the Levenberg-Marquardt training algorithm can be 
useful in research. 

One of the main property of the application is the 
flexibility. The source code is easily modifiable and the 
developer can upgrade the algorithms quickly.   

The program was not tested completely. In the future, we 
want to test some additional indicators of the program such as 
the running time. In addition, we should improve the 
implemented algorithms in order to the program provides 
reliable solution in all cases. 

ACKNOWLEDGMENT  

This research was supported by the European Union and 
the State of Hungary, co-financed by the European Social 
Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 
“National Excellence Program”. 

REFERENCES 
[1] M. T. Hagan, H. B. Demuth, M. Beale, Neural network design, PWS 

Publishing Cmpany, 1996. 
[2] M. H. Beale, M. T. Hagan, H. B. Demuth, Neural network toolbox 

user’s guide, The MathWork Inc., 2013. 
[3] A. Zell, N. Mache, R. Hübner, G. Mamier, M. Vogt, M. Schmalzl, K. 

Herrmann, “SNNS (Stuttgart neural network simulator)”, Neural 
network Simulation Environments, vol. 254, pp. 165-186, 1994. 

[4] B. Kröse, P. Smagt, An introduction to neural networks, University of 
Amsterdam, November 1996. 

[5] A. Zell, N. Mache, T. Sommer and T. Korb, “Recent developments of 
the SNNS neural network simulator”, SPIE Proceedings, Applications 
of Artificial Neural Networks II, vol. 1469, 1991.  

[6] T. Makino, “A discrete – event neural network simulator for general 
neuron models”, Neural Computing & Applications, vol. 11, pp. 210-
223, June 2003. 

[7] S. Haykin, Neural networks. A comprehensive foundation. Second 
edition, McMaster University, Hamilton, Ontario, Canada, 1999. 

[8] M. T. Hagan, M. B. Menhaj, “Training feedforward networks with the 
Marquardt algorithm”, Neural Networks, IEEE Transactions, vol. 5, pp. 
989-993, August 2002. 

[9] P. Peretto, An introduction to the modeling of neural networks, 
Cambridge University Press, 1992. 

[10] L. M. Hines, N. T. Carnevale, “The NEURON simulation environment”, 
Neural Computation, vol. 9, no. 6, pp. 1179-1209, August 1997. 

[11] D. Nguyen, B. Widrow, “Improving the learning speed of 2-layer neural 
networks by choosing initial values of the adaptive weights”, Neural 
Networks, 1990 IJCNN International Joint Conference, vol. 3, pp. 21-
26, June 1990.  

[12] J. Sütő, S. Oniga, “Testing artificial neural network for gesture 
recognition”, Abstracts and Pre-Proceedings, 9 

[13] T. Masters, Practical Neural Network Recipes in C++, Academic Press, 
1993. 

th international 
conference on applied mathematics, pp. 21, 2013.   

[14] K. Hornik, “Approximation capabilities of multilayer feedforward 
networks”, Neural Networks, vol. 4, pp. 251-257. 

[15] S. Oniga, I. Orha, “Hardware implemented neural networks used for 
hand gestures recognition”, Carpathian Journal of Electronic and 
Computer Engineering, vol. 4, no. 1, pp. 93-96, 2011. 

[16] A. Tisan, A. Buchman, S. Oniga, C. Gavrincea, “A generic control 
block for feedforward neural network with on-chip delta rule learning 
algorithm”, Proceedings of the 5th

 

 WSEAS Int. Conf. on DATA 
NETWORKS, COMMUNICATIONS & COMPUTERS, pp. 162-167.  


	I. Introduction
	II. Usage of the application
	III. Class organization
	IV. Test results
	Acknowledgment
	References


