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Abstract 

The vanilloid transient receptor potential channel TRPV3 differs in several aspects from other 

members of the TRPV subfamily. This Ca
2+

, ATP and calmodulin regulated channel constitutes a 

target for many natural compounds and has a unique expression pattern as the most prominent 

and important TRP channel in keratinocytes of the skin. Although TRPV3 is considered as a 

thermosensitive channel, its function as a thermosensor in the skin is challenged. Nevertheless, it 

plays important roles in other skin functions such as cutaneous sensations, hair development and 

barrier function. More recently, mutations in TRPV3 were link with a rare genodermatosic disorder 

known as the Olmsted syndrome. This review gives an overview on properties of TRPV3 and its 

functions in the skin and skin diseases.  

TRPV3 identity 

The vanilloid transient receptor potential (TRPV) subfamily comprise 6 homologous cation 

channels (Nilius & Owsianik, 2011) (Figure 1A). The founding member of this subfamily, TRPV1, 

was identified as vanilloid receptor (VR1) constituting a target for capsaicin, a vanilloid found in 

chilli pepers. The TRPV3 gene (ENSG00000167723) spans 18 exons that might be differentially 
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spliced, yielding 790, 791 and 765 amino acid (aa) variants in humans. The most prevalent form 

of TRPV3 (790 aa) shares 43% sequence homology with TRPV1 and has been originally 

described as a thermosensitive channel (Peier et al., 2002; Smith et al., 2002; Xu et al., 2002). 

Similar to other TRP channels, TRPV3 seems to form tetrameric complex in which each subunit 

contains 6 transmembrane spanning segments (S1-6) and cytoplasm fasing amino- (N-) and 

carboxy- (C-) termini. The putative cation permeable pore is believed to be located between S5 

and S6 segments. The N terminal part of the channel (from aa 167-363) comprises 6 ankyrin 

repeats (AR) that form an ankyrin repeat domain (ARD) involved in protein-protein interactions 

(more detailed information see (Clapham et al., 2009) and TRP channel data base 

Clapham/Owsianik/Nilius). Very likely, all TRPVs seem to share structural similarity with recently 

obtain cryo-electronmicroscopic structure of TRPV1 that shows fourfold symmetry and has two 

distinct regions: a large open basket-like domain, likely corresponding to the cytoplasmic N- and 

C-terminal portions, and a more compact transmembrane domain (Figure 1B) (Moiseenkova-Bell 

et al., 2008). A region between AR2 and AR3 of TRPV3 as well as TRPV1 comprises a 

conserved site that is involved in binding of ATP and calmodulin (CaM) (Figure 2A, B) (Phelps et 

al., 2010).  

So far, TRPV3 has been identified as an interacting partner of A-kinase anchor protein 5 (AKAP-

5) (Zhang et al., 2008), CaM (Phelps et al., 2010), epithelial growth factor receptor (EGFR) 

(Cheng et al., 2010), and TRPV1 (Smith et al., 2002). However, like other TRPV members it can 

form heteromeric complexes with other TRP channels such as TRPC1 and TRPP2 (Gaudet, 

2008; Köttgen et al., 2008; Ma et al., 2011).  

TRPV3 is highly expressed in the skin, mainly in keratinocytes and in cells surrounding the hair 

follicles (Valdes-Rodriguez et al., 2013). Its expression has been also detected in other organs 

such as the tongue, testis, the cornea, the distal colon, the larynx, and the inner ear (Peier et al., 

2002; Xu et al., 2002; Moqrich et al., 2005; Hamamoto et al., 2008; Ishibashi et al., 2008; Ueda et 

al., 2009; Borbiro et al., 2011; Mergler et al., 2011). In sensory neurons of dorsal root (DRG) and 

trigeminal ganglia (TG) TRPV3 expression is rather low comparing to other TRP channels and 

results in formation of heteromeric channels with TRPV1. Heteromeric TRPV1/TRPV3 channels 

display distinct single-channel conductance and voltage-dependence from homomeric channels 

and are activated by heat and capsaicin (Cheng et al., 2012).  

In contrast to TRPV5 and TRPV6, the only highly Ca
2+

 selective channels in the entire TRP 

family, TRPV3, like other TRPVs, is modestly permeable to Ca
2+

 (the PCa/PNa permeability ratio 

~10 (Gees et al., 2010). Similar to TRPV1, the pore of TRPV3 seems to be prone for a pore 

dilation during stimulation, rendering permeability for large cations (Chung et al., 2008). As for all 

TRPVs, negatively charged amino acids in the pore play a central role for cation permeation and, 

furthermore, the opened pore is blocked by both extra- and intracellular Mg
2+

. This effect is 
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attenuated by neutralization of the aspartic acid residue in the extracellular pore loop or two 

glutamic acidic in the inner pore region (Cao et al., 2012).  

Single channel properties of TRPV3 are strongly temperature dependent. At room temperature 

TRPV3 has an inward and outward slope conductance of 201 and 147 pS, respectively, whereas 

at 39°C, both conductances are respectively increased to 337 and 256 pS (Chung et al., 2004). 

TRPV3 is unique in its activition properties. In contrast to other TRPV channels that desensitize 

during repetitive activation, TRPV3 channel activity  successively increases upon repeated 

stimulation (Peier et al., 2002; Xu et al., 2002; Chung et al., 2004) (Xiao et al., 2008a) (see Figure 

2A for action sites of different TRPV3 modulators). This TRPV3 sensitivity and potentiation by 

repeated agonist stimulations is reduced by ATP. In contrast, TRPV1 is sensitized by ATP. 

Although ATP and CaM competitively bind to a very conserved binding site within the ARD they 

both generate different sensitivity and adaptation profiles of TRPV1 and TRPV3 (Phelps et al., 

2010). The opposite effect of ATP on both channels might be due to changes in Ca
2+

 dependent 

inactivation. TRPV3 sensitization during repetitive activation is due to a decrease in Ca
2+

-

dependent channel inhibition resulting from TRPV3-dependent increases of intracellular Ca
2+

 

concentration ([Ca
2+

]I) (Xiao et al., 2008a). At low [Ca
2+

]I, CaM binds at the ARD domain of 

TRPV3 and inhibits the channel. An increase in [Ca
2+

]I supports Ca
2+

 binding to CaM, which is 

then released from the channel and mediates sensitization (Xiao et al., 2008a; Phelps et al., 

2010). Besides this Ca
2+

 dependent mechanism, TRPV3 sensitization is also an intrinsic propertiy 

of the channel. In cell-free patches (i.e. in a membrane delimited manner), 1,2-bis(o-

aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), a fast calcium chelator, accelerates 

the sensitization by a direct potentiation effect on channel activation (Liu et al., 2011).  

TRPV3, similarily to TRPV1 and TRPV2 (and, albeit not yet shown, for TRPV4) has an intrinsic 

voltage dependence. Depolarization activates the channel at very positive potentials with a half 

maximal activation of ~+50mV. TRPV3 currents evoked by channel agonists such as 2-

aminoethoxydiphenyl borate (2-APB) are potentiated by Gq/11-coupled receptor stimulation in 

HEK-293 cells and human keratinocytes (Xu et al., 2006). Exposure of human keratinocytes to 

the purinergic P2Y receptor agonist ATP also induced a dramatic increase of currents through 

TRPV3 (Doerner et al., 2011). This increase is due to a more than 60 mV shift of the midpoint of 

the potentials at steady state activation toward more negative potentials, e.g. shifting TRPV3 

activation into a more physiological voltage range. In addition, the fraction of constitutive open 

channels is also increased. Similarly, activation of muscarinic M1-receptors with carbamylcholin 

(CCh) caused a more than 100 mV shift of TRPV3 activation towards negative potentials. This 

shift is decreased in the absence of intracellular Ca
2+

. This dramatic modulation of the voltage 

dependence is explained by a depletion of phosphatidyl inositol (4,5) bisphosphate (PI(4,5)P2). 

Contrary to the most of TRP channels, PI(4,5)P2 hydrolysis or pharmacological inhibition of PI 4 

kinase, which blocks PI(4,5)P2 synthesis, potentiates TRPV3. PI(4,5)P2 directly binds to a 
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specific residues in the TRP box of  TRPV3 (R696 and K705), resulting in reduced open channel 

probability. Mutations of both residues to alanines (R696A and K705A) diminish the PI(4,5)P2 

depletion-induced channel activation while 2-APB–activated and voltage-dependent whole cell 

currents are unchanged (Doerner et al., 2011). On the other hand, 17(R)-resolvin D1 (17R-

RvD1), a naturally occurring pro-resolving lipid, specifically inhibits the TRPV3 activity at 

nanomolar and micromolar ranges due to a shift of the voltage dependence of TRPV3 to more 

positive potentials (Bang et al., 2012).  

 

Does TRPV3 really play a role in thermosensation? 

TRPV3 is activated by innocuous warm temperatures above 30-33 °C and, therefore, it was 

proposed as a putative thermo-sensor in the skin. Unlike TRPV1, TRPV3 is sensitized by 

repeated stimulations with temperature (Xu et al., 2002). Furthermore, Trpv3 knockout mice show 

strong deficits in responses to innocuous and noxious heat whereas other sensory modalities are 

not affected (Moqrich et al., 2005). Sensitization of TRPV3 to warm temperatures is also 

influenced by different endogenous pro-inflammatory agents as bradykinin, histamine, ATP 

(binding to ARD), the protein kinase C isoenzyme PKC and prostaglandin E2 (PGE2) (Mandadi 

et al., 2006; Huang et al., 2008; Phelps et al., 2010). Thus, an obvious puzzle emerged, how 

activation of a channel expressed in keratinocytes can signal to thermo-sensing C-type nerve 

fibers. First, heating of keratinocytes causes ATP release that activates purinergic receptors in 

these nerves fibers. In Trpv3 knockout mice, this signaling pathway is defective (Mandadi et al., 

2009). Second, activation of TRPV3 also results in the release of an intercellular messenger, 

PGE2 (Huang et al., 2008), which in addition to ATP release, might function as a missing 

intercellular signaling molecule. This suggests that TRPV3 might also play a role in thermal 

hyperalgesia during inflammation. However, it has been recently shown that accumulation of 

interstitial ATP does not occur during local heating of the skin (Gifford et al., 2012) . Therefore, 

TRPV3 might not have a role in temperature sensation or the related vasodilator responses in the 

skin.  

Another open question, evident for the so-called “thermoTRPs”, concerns a mechanism of 

temperature sensation. From a total of more than 14.000 random mutant clones of mouse 

TRPV3, only five single point mutations abolish activation of TRPV3 by heat whereas all other 

activation mechanisms, such as chemical activation of the voltage dependence, remain intact. 

These mutations are located in a putative S6 and an extracellular part of the pore region, 

suggesting that a specific TRPV3 region accounts for temperature sensing (Grandl et al., 2008). 

However, the molecular requirement for such a “thermosensing module” is highly speculative and 

so far does not reveal any mechanistic inside insight to temperature sensing  (Voets, 2012).  
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Therefore, it is speculated whether the activation of skin TRPV3 has any physiological effects in 

thermo-regulation. Intragastric application of natural TRPV3 stimulators, thymol and ethyl vanillin, 

does not exert changes in thermogenesis or heat dissipation, indicating a restricted effects of 

TRPV3 on autonomic thermoregulation (Masamoto et al., 2009). In addition, investigations on 

another stain of TRPV3 knockout mice with defined backgrounds revealed that these animals 

exhibit minor (if any) alterations in thermal preference behavior, again strongly indicating that 

TRPV3 and TRPV4, also found in keratinocytes, are not involved in thermoregulation (Huang et 

al., 2011). Nevertheless, TRPV3 seems to play a role in the evolution of thermoregulation. In 

lower vertebrates such as a frog Xenopus tropicalis, TRPV3 is not activated by heat but detects 

noxious cold temperatures of these cold blooded animals (Saito et al., 2011). In contrast, TRPV3 

of mammals and other warm booded animals senses innocuous warm that is close to an optimal 

environmental temperature, indicating flexibility of the TRPV3 channel function during evolution. 

 

 TRPV3 modulation 

TRPV channels show a complex pharmacology including compounds that range from very 

selective agonists such as capsaicin for TRPV1 to less selective ones that activate or inhibit more 

than one TRPV channel. Ruthenium red blocks voltage-dependently (i.e. at negative potentials) 

all TRPV channels, albeit with variable potency (for a review see Vennekens et al., 2008). 2-APB 

activates TRPV3 but also, to a lesser extent, TRPV2 and TRPV1 (see for a comprehensive 

review Vriens et al., 2009). It likely binds to two TRPV3 cytoplasmic sites, H426 in the N terminus 

and R696 in the TRP box (Chung et al., 2004; Hu et al., 2004; Hu et al., 2009). Mutations of 

corresponding residues in TRPV4 to TRPV3 analogues, N426H and W737R, renders 2-APB-

insensitivity of TRPV4 into TRPV3-like 2-APB activation pattern. The structurally related 

compounds such as diphenylboronic anhydride (DPBA) and diphenyltetrahydrofuran (DPTHF) 

can also modulate TRPV3. DPBA acts as a TRPV3 agonist whereas DPTHF is a potent 

antagonist. All activators show a biphasic time course, i.e. a sensitizing phase is followed by an 

abrupt transition to a secondary phase with different biophysical properties of the channels. The 

second phase is probably due to alteration on the pore during activation (Chung et al., 2005). 

TRPV3 is activated by protons. The N-terminal histidine residue, H426, which also participate to 

the TRPV3 channel activation by 2-APB, is critical for sensing intracellular proton levels. -

hydroxyl acids (AHAs, e.g. glycolic acid) from natural sources that are used as in the cosmetic 

industry penetrate the skin and act as proton donors (Cao et al., 2012). AHAs cause exfoliation 

that has been used for many years to help skin maintainance. In this process, the oldest dead 

skin cells on the skin's outermost surface are removed and fresh skin cells are exposed. 
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Intracellular acidification causes activation of TRPV3 that leads to keratinocyte cell death and 

hence promotes exfoliation.  

Monoterpenes are a class of terpenes which comprise natural compounds like camphor, borneol 

or menthol derived from two isoprene units. TRPV3 is activated by aromatic monoterpens such 

as camphor laurel (from Cinnamomum camphora), carvacrol (from Origanum vulgare and 

Satureja), thymol and its derivatives (from thyme, Thymus vulgaris), eugenol (from the evergreen 

tree Syzygium aromaticum), cresol (a phenol from coal or wood tar), cinnamon (from the bark of 

Cinnamon verum), menthol (from mint Mentha piperita), borneol (from the genus Artemisia), and  

thujone (from the genus Thuja) (Moqrich et al., 2005);(Macpherson et al., 2006; Xu et al., 2006; 

for a review see Vriens et al., 2009). In many cases these compounds also potentiate 

temperature response of TRPV3 (Macpherson et al., 2006; Xu et al., 2006). Non-aromatic 

monocyclic monoterpenes, e.g. dihydrocarveol, carveol, and acyclic monoterpens, e.g. linalool, 

gerianool, and also propofol are also potent TRPV3 activators (Vogt-Eisele et al., 2007). On the 

other hand, prolonged exposure of TRPV3 with monoterpenoids results in agonist-specific 

desensitization of the channel, whereas the non-terpenoid agonist such 2-APB induces 

sensitization, demonstrating an agonist-dependent modulation of TRPV3 (Sherkheli et al., 2009). 

Incensole and incensole acetate are found in incense, crude extracts from incense species like 

Boswellia papyrifera. Burning of Boswellia resin as incense has been part of religious and cultural 

ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with 

such events. Both compounds are potent bioactive diterpenic cembrenoids that activate TRPV3. 

Incensole acetate causes anxiolytic-like and antidepressive-like behavioral effects in mice that 

are absent in Trpv3 knockout animals (Moussaieff et al., 2008; Paul & Jauch, 2012).  

Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), modulate most, 

if not all TRPV channels. CBD and tetrahydrocannabivarin (THCV) stimulate TRPV3 with high 

efficacy and potency whereas the derivates cannabigerovarin (CBGV) and cannabigerolic acid 

(CBGA) desensitize the channel (De Petrocellis et al., 2012). 

Farnesyl pyrophosphate (FPP) is an endogenous substance produced in the mevalonate 

pathway that plays an important role in the maintenance of cell membranes. It has been shown 

that FPP is a specific activator of TRPV3. Interestingly, isopentenyl pyrophosphate (IPP), an 

upstream metabolite in the same pathway, is an inhibitor of TRPV3, suggesting possible 

requirement of highly controled TRPV3 function in this process (Bang et al., 2010, 2011). Since 

the super-cooling agent icilin, a potent activator of TRPM8, was shown to inhibit TRPV3 at low 

concentrations (Sherkheli et al., 2012), it was also postulated that application of such agents to 

the skinmight be beneficial in diseases with an increased TRPV3 activity. Novel inhibitors of 

TRPV3 have promising analgesic effects which (as also shown below) implicates that TRPV3 is 

involved in the nociceptive signaling as well (Reilly & Kym, 2011). 
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TRPV3: role in skin physiology and pathology 

A growing body of evidence implicates the role of TRPV3, which is most abundantly expressed by 

skin cells, in multiple cutaneous mechanisms. In addition, TRPV3 was also associated with 

certain skin diseases and symptoms. Since we have recently detailed these TRPV3-coupled 

(patho)physiological regulatory mechanisms in a quite comprehensive review (Nilius & Biro, 

2013), here we only highlight some of these processes. 

TRPV3 is a central player in regulating the physiological skin homeostasis. 

 It regulates proliferation, differentiation, and apoptosis of human (as well as mouse) 

epidermal keratinocytes (Cals-Grierson & Ormerod, 2004; Radtke et al., 2011); 

(Miyamoto et al., 2011) (Cao et al., 2012). Specifically, its activation results in the 

inhibition of keratinocyte proliferation and the induction of apoptosis. 

 Its activation was shown to control keratinocyte migration and wound healing, most 

probably via the release of nitric oxide (Miyamoto et al., 2011). 

 It is involved in both hair morphogenesis (mouse) and hair follicle cycling (human and 

mouse) (Borbiro et al., 2011) (Cheng et al., 2010) (Asakawa et al., 2006) (Xiao et al., 

2008b). Indeed, activation of TRPV3 in human hair follicle organ culture leads to 

premature, apoptosis-driven organ-involution (catagen). Likewise, “gain-of-function” 

(Gly573Ser) mutation of the channel results in a hairless phenotype in rodents. 

 In mice, as part of the epidermal growth factor (EGFR) and transforming growth factor-α 

(TGF-α) signaloplex, TRPV3 was found to play a role in the formation of the epidermal 

barrier (Cheng et al., 2010) (Denda et al., 2007). 

 

Besides its physiological regulatory roles, altered TRPV3 channel activites was also associated to 

certain pathological cutaneous conditions. These diseases and symptoms further strengthen the 

concept on the central role of TRPV3-coupled signaling in numerous skin functions. 

 Multiple “gain-of-funtion” mutations (the above G573S as well as G573C and W692G) of 

TRPV3 were identified in Olmsted syndrome, the first cutaneous TRPathy (Lin et al., 

2012) (Lai-Cheong et al., 2012). This rare genodermatosis is characterized by the 

development of hyper-orthokeratosis and (mostly periorifical) keratomas, diffuse alopecia, 

and extreme pruritus (which symptoms perfectly mirror those found in mice bearing 

similar “gain-of-funtion” mutations of the Trpv3 gene, see above) (Figure 3). 

 Besides the hereditary Olmsted syndrome, TRPV3 is also involved in the development of 

several acquired skin diseases and symptoms. Indeed, activation of TRPV3 on 
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keratinocytes lead to the release of a plethora of algogenic and pruritogenic substances 

(e.g. certain interleukins, ATP, PGE2) which, by acting as intercellular messengers, 

stimulate the adjacent sensory afferents of the skin and hence induce cutaneous pain 

and itch (Mandadi et al., 2009) (Xu et al., 2006) (Huang et al., 2008) (Mandadi et al., 

2006) (Phelps et al., 2010). In good aggrement with these findings, the above “gain-of-

function” TRPV3 mutations in mice also leads to severe itching (Asakawa et al., 2006) 

(Xiao et al., 2008b) (Yoshioka et al., 2008) and TRPV3-KO animals exhibited a markedly 

suppressed itch-associated behavior (Yamamoto-Kasai et al.). Furthermore, it is 

notheworthy that the aforementioned endogenous activator of the keratinocyte TRPV3 

(FPP) – similar to the irritative effects of topically applied natural plant-derived TRPV3 

activators – induced pain and irritation whereas the TRPV3 antagonists (IPP, 17R-RvD1) 

inhibited nociceptive behavior in experimental models (Bang et al., 2010, 2011). 

Accordingly, small molecule novel inhibitors of TRPV3 are now in clinical trials as potent 

analgesic agents (Moran et al., 2011) (Ferrer-Montiel et al., 2012). 

 The above intercellular messengers, released from keratinocytes upon TRPV3 

stimulation, exert not only algogenic and pruritogenic effects but also profound pro-

inflammatory actions (Xu et al., 2006) (Huang et al., 2008). Moreover, as detailed above, 

multiple pro-inflammatory agents (e.g. ATP, bradykinin) were shown to sensitize TRPV3 

expressed by keratinocytes. Of further importance, mice with the above “gain-of-function” 

TRPV3 mutations develop various degrees of cutaneous inflammation which resembles 

to the characteristic symptoms of human atopic dermatitis (Asakawa et al., 2006) (Xiao et 

al., 2008b) (Yoshioka et al., 2008). These data collectively argue for that TRPV3 is also 

involved in the pathogenesis of cutaneous inflammation. 

 Finally, it should be mentioned that TRPV3 expression is markedly upregulated in 

rosacea, a chronic inflammatory skin condition (Sulk et al., 2012). 
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Legends 

 

 

 

 

Figure 1.  

TRPV3 is a member of vanilloid subfamily of TRP channels. A) Phylogenetic relationship between 

TRPV channels. B) Electron cryomicroscopy structure of TRPV1 channel (Moiseenkova-Bell et 

al., 2008). Docking of the high-resolution structure of Kv1.2 transmembrane domains (maroon; 

PDB entry 2A79) and TRPV1 ankyrin domains (green; PDB entry 2PNN; two of four such 

domains are shown) into TRPV1 3D reconstruction (adopted with permissions from 

(Moiseenkova-Bell et al., 2008). 
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Figure 2. 

Predicted structural topology of TRPV3. A) Localization of major functional domains and residues 

in TRPV3. Residues involved in heat activation (Ile644, Asn647, and Tyr661), activation by 2-

APB (His426 and Arg696), and calcium sensitivity (Arg696) as well as the extracellular site 

Asp641 are indicated. B) ARD of TRPV3 shows an insertion and 2 deletions (indicated by green 

and blue, respectively) when compared to TRPV1 ARD structure. ATP binding site with docked 

ATP are colored in purple, between AR2 and AR3, established by K169, K174, L177, Y213, 

Q216, I221, E224 (adopted with permission from (Phelps et al., 2010). 
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Figure 3. 

Missense mutations in TRPV3 are involved in the Olmsted syndrome. A) Linear representation of 

TRPV3 with annotations of OLM mutations. B) Transgenic mouse with the G573S mutation (right 

picture) shows hyperkeratosis and thickening of the back skin when compared to the control DS 

animals (left picture; adopted with permissions from (Yoshioka et al., 2008)). C) Keratoderma 

involving most of the palmar and plantar aspects in 12 year-old boy with the Olmsted syndrome 

(adopted with permissions from (Lai-Cheong et al., 2012)). 
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