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ABSTRACT [Au1: Structured abstract used per style. Pls review and revise 

accordingly] 

Objectives: Antithrombin is a progressive inhibitor of active factor X (FXa) and thrombin (FIIa). Its 

effect is 500- to 1,000-fold accelerated by heparin or heparan sulfate. Heterozygous type I (quantitative) 

and most type II (qualitative) antithrombin deficiencies highly increase the risk of venous 

thromboembolism (VTE), while homozygous mutations are lethal. The functional defect affecting the 

heparin-binding site confers moderate risk of VTE to heterozygous and high risk of VTE to homozygous 

individuals. 

Methods:  Antithrombin activity assays based on the inhibition of FIIa and FXa were compared for their 

efficiency in detecting heparin-binding site defects. 
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Results: With a single exception, in heterozygotes for heparin-binding site defect (n = 20), anti-FIIa 

activities remained in the reference interval, while anti-FXa activities were uniformly decreased. In 

individuals who were homozygous for heparin-binding site mutation (n = 9), anti-FIIa activities were in 

the range of 48% to 80%; the range of anti-FXa activities was 9% to 25%. Anti-FIIa and anti-FXa 

activities in type I deficiencies and type II pleiotropic deficiency did not differ significantly. 

Conclusions: Anti-FXa antithrombin assay is recommended as a first-line test to detect type II heparin-

binding site antithrombin deficiency. 

Antithrombin (AT) is a member of the serine protease inhibitor (serpin) family and is a key regulator of the 

coagulation system.1-3 A prominent feature of AT is its high affinity binding to negatively charged 

glycosaminoglycans, heparin, or heparan sulfate, which contain specific pentasaccharide units. The main 

physiologic function of AT is to inactivate activated coagulation factor X (FXa) and thrombin (FIIa). It also inhibits 

other active clotting factors, like FIXa, FXIa, FXIIa, and FVIIa complexed with tissue factor. AT is a progressive 

inhibitor, the rate of its reaction with the active coagulation factors is slow, but in the presence of heparin or heparan 

sulfate, the rate of inhibition is accelerated 500- to 1,000-fold. A single pentasaccharide unit is sufficient to 

transform AT into a high binding state, which is necessary for the effective formation of the Michaelis complex 

between AT and FXa. Similar to all serpins, AT contains a flexible reactive center loop (RCL) with a scissile bond 

(Arg393-Ser394) at the C-terminal part. The target protease cleaves this bond and then it becomes covalently 

captured by the inhibitor. Part of the antithrombin RCL is entrapped and minimally available for interaction with its 

potential targets. The binding of pentasaccharide or heparin-containing pentasaccharide units to the N-terminal part 

of the molecule induces the expulsion of RCL from its entrapped position. 

AT is an essential thromboprotective molecule; its lack is incompatible with life. Quantitative AT deficiency (type I) 

and most qualitative (type II) deficiencies exist only in heterozygous form. The cumulative prevalence of AT 

deficiencies in the general population is estimated to be between 1 in 2,000 and 1 in 5,000,4,5 whereas among 

patients with venous thromboembolism (VTE), its frequency is between 1 in 20 and 1 in 200.6,7 AT deficiency also 

represents an increased risk for the development of pulmonary embolism and for the recurrence of VTE.7,8 The risk 

of VTE conferred by hereditary AT deficiency is the highest among those with inherited thrombophilias9; however, 

it varies considerably according to the subtypes of AT deficiency. 
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Type I AT deficiencies, most commonly caused by insertions or deletions, occur only in heterozygous form and both 

AT activity and antigen are around 50%. In type II AT deficiencies, commonly caused by missense mutation, AT 

activity is decreased, whereas AT antigen level is in the reference interval or the activity-antigen ratio is 

significantly decreased. There are three subtypes of type II AT deficiency. Mutation may occur in or around the 

reactive site (type II RS deficiency) or may influence the heparin-binding-site (type II HBS deficiency). Mutations 

in a region that is responsible for both the structural and functional integrity of AT exert pleiotropic effects (type II 

PE deficiency).10  

The first-line test for the diagnosis of AT deficiency is a functional assay that should detect both type I and type II 

deficiencies. The generally used AT assay is a chromogenic test in which the inhibition of FIIa or FXa by the 

patient’s plasma is measured by a chromogenic peptide substrate. The amino acid sequences of FIIa and FXa 

peptide substrates resemble the P1-P4 region of the respective native protein substrate and they are C-terminally 

linked to a chromogenic group, p-nitroaniline or 5-amino-2 nitro benzoic acid. The chromogenic leaving group, 

when cleaved off by the enzyme, absorbs strongly in the visible spectral region. The inhibition of the FIIa/FXa-

catalyzed release of chromogenic group is the measure of AT activity. The assays are performed in the presence of 

heparin, ie, in theory, they should detect, among others, type II HBS deficiencies. However, the effect of heparin on 

the interaction of AT with FIIa or FXa involves different mechanisms, therefore the efficiency of AT assays based 

on the inhibition of the two active clotting factors might be different. This study compared the diagnostic efficiency 

of anti-IIa and anti-Xa AT assays in detecting type II HBS AT deficiency. 

Materials and Methods 

Thirty-seven consecutively diagnosed patients with AT deficiency, proven by fluorescent DNA sequencing, were 

recruited for the study. The study protocol was approved by the National Ethics Committee and informed consent 

was obtained from all participants. Heparin cofactor AT activity was determined by measuring the inhibition of FIIa 

or FXa by the patient’s plasma. Dade Behring Berichrom antithrombin III test (Marburg, Germany) was used to 

determine anti-FIIa activity; the reagent kit includes bovine thrombin and tosyl-Gly-Pro-Arg-5-amino-2-

nitrobensoic acid isopropylamide substrate. Anti-FXa activity was performed with two assays: Siemens (Marburg, 

Germany) Innovance antithrombin kit (anti-FXa1) and Labexpert (Debrecen, Hungary) antithrombin H+P assay 

(anti-FXa2). The former uses human FXa with benzoylcarbonyl-D-Leu-Gly-Arg-5-amino-2-nitrobensoic acid 
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methylamide acetate substrate, whereas in the latter kit, FXa is of bovine origin and the substrate is succinyl-Ile-

Glu(γPip)Gly-Arg-paranitroaniline HCl. AT antigen was measured with immunonephelometry (BN ProSpec System 

AT-III, Siemens). For all AT assays WHO AT reference plasma (National Institute for Biological Standards and 

Control, Potter Bar, England) was used as calibrator. AT determination was carried out at least 3 months apart from 

the thrombotic events. Among the recruited patients, seven had type I defect, one had type II PE, and 29 patients had 

type II HBS deficiency. The third group represented 20 families. Among type II HBS-deficient patients nine carried 

the mutation in homozygous form, while 20 patients were heterozygotes �Table 1�. 

Results 

The two anti-FXa AT assays gave practically identical results with all AT-deficient patients (Table 1, �Figure 1�). 

Anti-FIIa and anti-FXa results in type I–deficient patients and in the single type II PE patient (not shown in Figure 

1) did not differ significantly; all were uniformly below 80%, the lower limit of reference interval. In contrast, with 

a single exception, anti-FIIa activity of type II HBS heterozygotes was in the reference interval (range, 76%-128%), 

whereas all anti-FXa activities in this group were below the reference interval (range, 55%-73% for the anti-FXa1 

method and 46%-74% for the anti-FXa2 method). In the case of type II HBS homozygotes all anti-FIIa activities, 

except one, were below the reference interval (range, 48%-80%). It is to be noted that in p.Leu99Phe homozygotes, 

AT antigen levels were in the lowest quartile of the reference interval or below, which suggests that the mutation, in 

addition to interfering with the binding of heparin, somewhat decreases the AT level. Anti-FXa activities were much 

lower than anti-FIIa activities; they were in the ranges of 13% to 25% and 9% to 23% using anti-FXa1 and anti-

FXa2 methods, respectively. Figure 1 demonstrates that a clear distinction can be made between heterozygotes and 

homozygotes using anti-FXa assays. The mean anti-FIIa-to-anti-FXa1 ratio was 4.02 (range, 2.96-5.31) for 

homozygotes, 1.54 (range, 1.24-1.83) for heterozygotes, and 1.16 (range, 0.93-1.34) for the combined type I and 

type II PE group. Using the anti-FXa2 assay, the respective mean ratios were similar: 4.79 (range, 2.56-6.9), 1.59 

(range, 1.19-2.17), and 1.18 (range, 0.93-1.38). 

Discussion 

The mechanism of Michaelis complex formation between FIIa and AT is somewhat different from that of FXa and 

AT. In the former case, the conformational change of AT induced by the allosteric effect of pentasaccharide is not 
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sufficient, and probably not even required. FIIa also binds to heparin, and the bridging effect of heparin consisting of 

18 saccharide units or more is essential for the high affinity interaction between FIIa and AT.11-13 For this reason, a 

mutation in the HBS might have a more profound effect on the anti-FXa than on the anti-FIIa activity of AT in the 

presence of heparin. In type II HBS AT deficiency, in the absence of heparin binding, AT exerts a progressive anti-

FXa and anti-FIIa activity. However, a much higher concentration of AT, that is, much less diluted plasma, and 

longer incubation time would have been needed to detect such activity.14 The plasma is highly diluted in all assays 

(50- to 100-fold) and the incubation of diluted plasma with FXa in the Siemens anti-FXa assay was 180 seconds, 

similar to the incubation time with FIIa in the Siemens anti-FIIa assay. The incubation time in the Labexpert anti-

FXa assay was even shorter (60 sec). Thus, differences in the assay conditions would not be predicted to account for 

different sensitivities between anti-FXa and anti-FIIa assays in detecting type II HBS defect. 

Heterozygous type II HBS deficiency confers a lower risk of thrombosis compared with the other subtypes.15,16 

Homozygous patients with type II HBS usually survive, but may develop thrombosis even earlier (frequently in 

childhood) than patients with heterozygous type I or other type II deficiencies. To detect this type of AT deficiency 

and to distinguish it from other AT deficiencies is of clinical importance. The results of this study suggest that anti-

FIIa assays cannot detect heterozygous type II HBS AT deficiency and might even miss some homozygotes. For this 

reason, in countries such as Hungary, where type II HBS deficiency occurs with high frequency (although the 

frequency is not yet known for most other countries), we recommend the use of anti-FXa assay as the first-line test. 

We found only a single publication on the occurrence of type II HBS deficiency in the general population; it claims 

a frequency of 1 in 2,500 to 1 in 3,200 for this defect,14 but no supporting data are provided. To our knowledge, no 

large-scale study has been reported on the percentage of type II HBS deficiency among AT-deficient patients. The 

high percentage of type II HBS deficiency among our patients, and the predominant occurrence of p.Leu99Phe 

mutation originally described as antithrombin III Budapest 3,17 very likely reflects the general situation in Hungary. 

Among symptomatic AT-deficient patients diagnosed in our laboratory during the last 4 years (n = 110), 81% 

(89/110) proved to be type II HBS deficient, 88% of whom (78/89) possessed the p.Leu99Phe mutation 

(unpublished data, 2013 [Au2: Pls provide date of unpublished findings]). Haplotype analysis of four 

unrelated kindreds with p.Leu99Phe mutation suggested a founder effect.18 An ongoing large-scale population study 
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in our laboratory seeks to establish the prevalence of this mutation in the Hungarian population and in the population 

of neighboring countries. 

The situation might vary among different geographical areas with regard to first-line functional assay detection of 

AT deficiency. In the British and Spanish population, the Cambridge II mutation (p.Ala384Ser), which results in 

moderate thrombosis risk and a moderate decrease in AT activity, is the most prevalent cause of AT deficiency.4,19 

Anti-FIIa AT activity assay seems to be more sensitive for the detection of Cambridge II AT defect than anti-FXa 

assay, although even with this assay there is an overlap between controls and heterozygotes.19,20 The diagnosis of 

Cambridge II deficiency could be reliably established only by means of molecular genetic methods. 

Twelve type II HBS AT mutations have been reported in the AT mutation database 

(http://www1.imperial.ac.uk/departmentofmedicine/divisions/experimentalmedicine/haematology/coag/antithrombin

/). A limitation of the present study is the inclusion of a limited number of the known type II HBS AT mutations. 

Another limitation is the inclusion of only one anti-FIIa assay in comparison studies. Studies on patients with other 

type II HBS mutations and with more anti-FIIa reagent kits could further strengthen the conclusion drawn from this 

study. 

This study was supported by grants from the Hungarian National Research Fund (OTKA K62087 and PD10120), the National 

Development Agency (TÁMOP 4.2.2.A-11/1/KONV-2012-0045), and the University of Debrecen (MEC-3/2011). Zsuzsanna 

Bereczky is a recipient of János Bólyai fellowship from the Hungarian Academy of Sciences. 

Address reprint requests to Dr Muszbek: Clinical Research Center, University of Debrecen, Medical and Health Science Center, 

98 Nagyerdei Krt 4032 Debrecen, Hungary; muszbek@med.unideb.hu. 

Acknowledgments: The authors thank Gizella Haramura and Annamária Bereczky for skillful technical assistance. 

References 

 1. Abildgaard U. Antithrombin: early prophecies and present challenges. Thromb Haemost. 2007;98:97-104. 

 2. Bock SC. Antithrombin III and heparin cofactor II. In: Colman RW, Clowes AW, Goldhaber SZ, et al, eds. 

Hemostasis and Thrombosis. Philadelphia, PA: Lippincott; 2006:235-248. 

 3. Muszbek L, Bereczky Z, Kovács B, et al. Antithrombin deficiency and its laboratory diagnosis. Clin Chem 

Lab Med. 2010;48(suppl 1):S67-S78. 

 4. Tait RC, Walker ID, Perry DJ, et al. Prevalence of antithrombin deficiency in the healthy population. Br J 

Haematol. 1994;87:106-112. 



 7 

 5. Abildgaard U. Antithrombin and related inhibitors of coagulation. In: Poller L, ed. Recent Advances in 

Blood Coagulation. Edinburgh, Scotland: Churchill Livingstone; 1981:151-173. 

 6. Mateo J, Oliver A, Borrell M, et al. Laboratory evaluation and clinical characteristics of 2,132 consecutive 

unselected patients with venous thromboembolism: results of the Spanish Multicentric Study on Thrombophilia (EMET-Study). 

Thromb Haemost. 1997;77:444-451. 

 7. Rossi E, Za T, Ciminello A, et al. The risk of symptomatic pulmonary embolism due to proximal deep 

venous thrombosis differs in patients with different types of inherited thrombophilia. Thromb Haemost. 2008;99:1030-1034. 

 8. Brouwer JL, Lijfering WM, Ten Kate MK, et al. High long-term absolute risk of recurrent venous 

thromboembolism in patients with hereditary deficiencies of protein S, protein C or antithrombin. Thromb Haemost. 

2009;101:93-99. 

 9. Vossen CY, Conard J, Fontcuberta J, et al. Risk of a first venous thrombotic event in carriers of a familial 

thrombophilic defect: The European Prospective Cohort on Thrombophilia (EPCOT). J Thromb Haemost. 2005;3:459-464. 

 10. Lane DA, Bayston T, Olds RJ, et al. Antithrombin mutation database: 2nd (1997) update. For the Plasma 

Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on 

Thrombosis and Haemostasis. Thromb Haemost. 1997;77:197-211. 

 11. Johnson DJ, Li W, Adams TE, et al. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric 

mechanism of antithrombin activation. EMBO J. 2006;25:2029-2037. 

 12. Dementiev A, Petitou M, Herbert JM, et al. The ternary complex of antithrombin-anhydrothrombin-heparin 

reveals the basis of inhibitor specificity. Nat Struct Mol Biol. 2004;11:863-867. 

 13. Li W, Johnson DJ, Esmon CT, et al. Structure of the antithrombin-thrombin-heparin ternary complex reveals 

the antithrombotic mechanism of heparin. Nat Struct Mol Biol. 2004;11:857-862. 

 14. Rossi E, Chiusolo P, Za T, et al. Report of a novel kindred with antithrombin heparin-binding site variant (47 

Arg to His): demand for an automated progressive antithrombin assay to detect molecular variants with low thrombotic risk. 

Thromb Haemost. 2007;98:695-697. 

 15. Finazzi G, Caccia R, Barbui T. Different prevalence of thromboembolism in the subtypes of congenital 

antithrombin III deficiency: review of 404 cases. Thromb Haemost. 1987;58:1094. 

 16. Girolami A, Lazzaro AR, Simioni P. The relationship between defective heparin cofactor activities and 

thrombotic phenomena in AT III abnormalities. Thromb Haemost. 1988;59:121. 

 17. Olds RJ, Lane DA, Boisclair M, et al. Antithrombin Budapest 3: an antithrombin variant with reduced 

heparin affinity resulting from the substitution L99F. FEBS Lett. 1992;300:241-246. 



 8 

 18. Olds RJ, Lane DA, Chowdhury V, et al. (ATT) trinucleotide repeats in the antithrombin gene and their use in 

determining the origin of repeated mutations. Hum Mutat. 1994;4:31-41. 

 19. Corral J, Hernandez-Espinosa D, Soria JM, et al. Antithrombin Cambridge II (A384S): an underestimated 

genetic risk factor for venous thrombosis. Blood. 2007;109:4258-4263. 

 20. Perry DJ, Daly ME, Tait RC, et al. Antithrombin cambridge II (Ala384Ser): clinical, functional and 

haplotype analysis of 18 families. Thromb Haemost. 1998;79:249-253. 


