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We investigate the temporal and spacial evolution of single bursts and their statistics emerging in

heterogeneous materials under a constant external load. Based on a fiber bundle model we demonstrate

that when the load redistribution is localized along a propagating crack front, the average temporal shape

of pulses has a right-handed asymmetry; however, for long range interaction a symmetric shape with

parabolic functional form is obtained. The pulse shape and spatial evolution of bursts proved to be

correlated, which can be exploited in materials’ testing. The probability distribution of the size and

duration of bursts have power law behavior with a crossover to higher exponents as the load is lowered.

The crossover emerges due to the competition of the slow and fast modes of local breaking being

dominant at low and high loads, respectively.
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Crackling noise is a generic feature of a wide variety
of slowly driven dynamic systems such as ferromagnetic
materials, plastically deforming crystals, superconductors,
fracture processes of heterogeneous materials, and earth-
quakes [1–6]. Analyzing the time series of crackling
events, it was shown that crackling phenomena exhibit a
high degree of universality [1,4]. The size and duration of
events and, furthermore, the waiting times in between are
characterized by power law distributions with the same
exponents in systems of different microscopic dynamics.
Recently, it has been demonstrated for Barkhausen noise
that there are unique features of crackling which go beyond
universality; i.e., the average temporal shape of single burst
pulses proved to provide direct information about the
nature of correlations in the microscopic dynamics
[2,3,7–9]. For systems where the impulsive relaxation
mechanism competes with slow ones, a novel phase of
crackling has been discovered very recently [5]. When
the rate of external driving becomes comparable to the
time scale of slow relaxation, large bursts emerge in a
quasiperiodic manner, which is accompanied by a cross-
over in the statistics of burst sizes and durations.

We present a theoretical investigation of crackling noise
emerging during the creep rupture of heterogeneous mate-
rials focusing on single burst dynamics in the presence
of two competing failure mechanisms. Creep rupture
has a high technological importance for the safety of
construction components, and it is at the core of natural
catastrophes such as landslides as well as stone and snow
avalanches [10]. Crackling during creep is the consequence
of the intermittent nucleation and propagation of cracks
which generate acoustic bursts. Despite the intensive
research on rupture phenomena [4,6,10–17], the temporal
and spatial evolution of single bursts, the effect of the
competition of failure mechanisms with different time
scales, and their relevance for applications still remained
an open fundamental problem.

To investigate the creep rupture of heterogeneous ma-
terials we use a generic fiber bundle model (FBM) intro-
duced recently [18–20]: the sample is discretized as a
bundle of fibers on a square lattice of side length L.
Fibers have a brittle response with identical Young modu-
lus E. The bundle is subject to a constant external load �0

below the fracture strength �c of the system parallel to
the fibers. Fibers break due to two physical mechanisms:
immediate breaking occurs when the local load �i on
fibers exceeds their fracture strength �th

i . Time depen-
dence is introduced such that those fibers, which
remained intact, undergo an aging process accumulating
damage ciðtÞ. The damage mechanism represents the
environmentally induced slowly developing aging of ma-
terials, e.g., thermally activated degradation [18–20]. The
rate of damage accumulation �ci is assumed to have a
power law dependence on the local load �ci ¼ a��

i �t,
where a ¼ 1 is a constant and the exponent � controls the
time scale of the aging process with 0 � � <þ1. Fibers
can tolerate only a finite amount of damage and break
when ciðtÞ exceeds the local damage threshold cthi . Each
breaking event is followed by a redistribution of load over
the remaining intact fibers. To capture the effect of the
inhomogeneous stress field around cracks, we assume
localized load sharing (LLS); i.e., the load of broken
fibers is equally redistributed over their intact nearest
neighbors [20]. The structural disorder of the material is
represented by the randomness of breaking thresholds �th

i ,
cthi , i ¼ 1; . . . ; N ¼ L2. We assume that both thresholds
are uniformly distributed in an interval [1� �, 1þ �],
where � ¼ 1 (high disorder) for �th. To promote the
effect of stress concentrations, lower disorder � ¼ 0:3 is
considered for damage cth, while the exponent � of the
damage law is set to a high value � ¼ 5 [20]. In the
following, simulation results will be presented for
the lattice size L ¼ 401, larger system sizes up to
L ¼ 1201 are considered for finite size scaling analysis.
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Figure 1(a) presents an example of the time evolution of
a crack in our FBM under the load �0=�c ¼ 0:01. The
separation of time scales of the slow damage process and of
immediate breaking leads to a highly complex time evolu-
tion in agreement with experiments [18,19]: after the crack
nucleated, fibers mostly break due to slow damaging and
generate an advancing crack front where the stress of
broken fibers is concentrated. Beyond a certain crack size
the subsequent load increments become sufficient to trig-
ger bursts of immediate breakings locally accelerating the
front. As a consequence, the time evolution of creep rup-
ture occurs as a series of bursts separated by silent periods
of slow damaging. The size of bursts � is defined as the
number of fibers breaking in a correlated trail. For clarity,
in Fig. 1(b) the crack front is presented at several times,
while Fig. 1(c) shows the time series of bursts, i.e., the
burst size � as a function of time t normalized with the
lifetime tf of the system [12–14,19,20]. See Supplemental

Material [21] for an animation of the bursty crack growth.
Single bursts typically start with the immediate breaking

of a few fibers. Because of load redistribution, additional
breakings are triggered so that bursts gradually evolve
through subavalanches and stop when all the intact fibers
along the burst boundary can sustain the local load. This
avalanche dynamics is controlled by the range of interac-
tion so that similar evolution would arise under quasistati-
cally increasing external load, as well [18–20,22]. Figure 2
presents for a burst of size � ¼ 3485 that the outbreak
starts from a small localized spot which then gradually
expands to a broad region followed by the subsequent
reduction of the breaking activity. The temporal profile

of bursts can be characterized by recording the size �s of
subavalanches as a function of the internal time step u over
the duration W of the burst, where 1 � u � W holds.
Comparing �sðuÞ curves of bursts of the same duration
W ¼ 253 in Fig. 2(b) the stochastic nature of avalanche
dynamics is apparent.
The average pulse shape h�sðu;WÞi of bursts is pre-

sented in Fig. 3(a) as a function of time u varying the
pulse duration W. The h�sðu;WÞi curves have a right-
handed asymmetry; i.e., they can be described by a nearly
parabolic shape where the maximum of the inverted pa-
rabola is shifted from the middle (W=2) to higher values.
Figure 3(b) demonstrates that rescaling h�sðu;WÞi with an
appropriate power � of the durationW, the pulse shapes of
different W can be collapsed on a master curve as a
function of the normalized time x ¼ u=W. The good
quality data collapse implies the scaling form

h�sðu;WÞi ¼ W�fðu=WÞ; (1)

where both the scaling function fðxÞ and the scaling
exponent � encode information about the jerky crack
propagation. The right-handed asymmetry of the scaling
function fðxÞ shows that bursts start slowly, then gradually
accelerate, and finally stop suddenly as the front gets
pinned. The average pulse shape can be described by the
function fðxÞ ¼ Axð1� xÞ�, where A determines the ini-
tial acceleration and the exponent �< 1 describes the
observed right-handed asymmetry. In Fig. 3(b) collapse
was achieved with � ¼ 0:7, while the fit of the scaling
function was obtained with A ¼ 4:65 and � ¼ 0:65.
In order to understand the role of the range of load

sharing in shaping temporal pulses, we analyzed the
mean field limit of our FBM [18–20]. In this case the
load of broken fibers is equally shared by all the remaining
intact ones so that no stress concentration, and hence, no
spatial correlation can arise in the bundle [22]. Figure 3(b)
presents the scaling function fðxÞ of the mean field
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FIG. 2 (color online). (a) Temporal and spatial evolution of a
single burst of size � ¼ 3485. The color code represents the
normalized time 0 � u=W � 1. The burst starts from a small
spot of broken fibers (blue-black) at the bottom left corner, then
it gradually expands (green, yellow, red-lighter shades of gray) and
finally stops again in a small spot (white) at the top right corner.
(b) The size of subbursts �s as a function of u=W for a fixed
durationW ¼ 253. The red curve corresponds to the burst of (a).FIG. 1 (color online). (a) Bursting activity during the creep

rupture of a fiber bundle of size L ¼ 401. Slowly damaging fibers
(green-shade of gray in the upper right corner) trigger bursts of
immediate breaking (random colors-shades of gray-different from
green). The crack started in the upper right corner of the figure.
(b) Advancement of the front of the same crack obtained such that
fibers broken in a time interval have the same color. (c) Time series
of bursts of (a) as a stochastic point process.
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simulations of a bundle of N ¼ 107 fibers, where the
symmetric parabolic shape is evidenced with the scaling
exponent � ¼ 1, similarly to mean field avalanches of
slip events in plastically deforming solids, and of particle
rearrangements in sheared granular matter [2–4,7].

To quantify the degree of asymmetry of pulse shapes we
calculated the skewness S as a function of W, where S is
defined as the ratio of the third cumulant and the 3=2 power
of the second cumulant of the pulse [2]. In Fig. 3(c) the
skewness S of pulse shapes is negative in agreement with
the observed right-handed asymmetry; however, the value
of S has a strong dependence on the pulse durationW: short
pulses are flat and symmetric; hence, S � 0 follows in this
range. Bursts of high duration tend again to be symmetric,
since as they evolve the structural disorder of the material
becomes dominating, which favors symmetric pulse
shapes [2–4,7]. The most remarkable feature is that at
each load a characteristic time scale Wmax emerges where
the degree of asymmetry jSj has a maximum. Both the
characteristic duration Wmax and strength of asymmetry
jSjmax of pulses have a strong dependence on the external
load �0=�c, and they reach a maximum nearly at the same
load �0=�c � 0:01.

After starting from a localized spot, an avalanche has
more chance to advance if subbursts involve overloaded
fibers at the front, as well, instead of just propagating
forward ahead of the crack front [see Figs. 1(a) and 1(b)].

Consequently, the temporal profile and the geometry of
avalanches with respect to the local position along the crack
front get correlated. To quantify this correlation we mea-
sured the number of those perimeter sitesL�

p of burstswhich

are located at the crack front. In Fig. 3(d) the value of the
ratio L�

p=W is plotted as a function of the skewness S of

the corresponding pulse. For symmetric pulses (S � 0) the
ratio L�

p=W has a low value which shows that these bursts

were mainly moving forward where structural disorder
dominates. However, for asymmetric pulses L�

p=W

increases so that these avalanches involve a large fraction
of overloaded fibers at the crack front which accelerates
spreading. Our result has the important consequence
that by measuring pulse shapes one can infer the spatial
propagation of bursts.
Equation (1) implies that the average burst size h�imust

scale with the duration as h�i �W1þ�. To verify the
scaling structure we determined the function h�i (W)
numerically by directly averaging the size of bursts � at
fixed durations W. It can be observed in Fig. 4(a) that the
simulation results agree very well with the analytic pre-
diction; however, the asymptotic value of the power law
exponent depends on the external load: at low loads the
average burst size proved to be proportional to the duration
h�i �W with � ¼ 0. Consequently, in this load range the
pulse shape is not parabolic, but instead it has a flat,
symmetric functional form [15–17] in agreement with the
skewness value S � 0 [see also Fig. 3(c)]. During the creep
process the external load controls the relative importance
of slow damaging and immediate breaking. At high load
�0 ! �c already a few damage breakings are sufficient to
trigger extended bursts so that their size increases faster
with the duration characterized by a higher exponent
h�i �W1:7 with � ¼ 0:7 [see Fig. 4(a)]. This crossover
has also important consequences for the statistics of the
size and duration of bursts. In Figs. 5(a) and 5(b) the
probability distribution of the burst size pð�Þ and duration
pðWÞ have power law functional form at all load values
followed by a cutoff
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FIG. 3 (color online). (a) Average pulse shapes for durations
W ¼ 50, 100, 200, 300, 400, 500, 600 for LLS FBMs obtained at
the load �0=�c ¼ 0:01. (b) Scaling collapse of average pulse
shapes of different duration for LLS. The white continuous line
represents the fit with the scaling function fðxÞ. The dashed black
line presents the scaling function of the mean field limit of FBM
for comparison. (c) SkewnessS of pulse shapes as a function of the
durationW at different loads. (d) The number of perimeter sites of
bursts touching the crack front L�

p divided by the durationW as a

function of the corresponding skewness of bursts.
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FIG. 4 (color online). (a) Average size of bursts h�i as a
function of the duration W for several load values �0. (b) The
fraction of fibers breaking due to damage nd and to avalanches
nb as function of �0.
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pð�Þ ¼ ���gð�=�0Þ; pðWÞ ¼ W�zhðW=W0Þ; (2)

where the functions gðxÞ and hðxÞ can be well approxi-
mated by exponentials. A very important feature of the
results is that not only do the cutoffs �0 andW0 depend on
the external load �0, but also the distributions exhibit a
crossover between two regimes of different exponents. The
crossover point ��

0=�c ¼ 0:025ð4Þ falls close to the load

where bursts reach the highest asymmetry [compare to
Fig. 3(c)]. It is important to note that the crossover emerges
due to the competition of the slow and fast breaking modes
of fibers as the external load is varied, in a close analogy to
the mechanism which leads to the self-organized avalanche
oscillator in crystal plasticity [5]. At high loads �0 >��

0

large avalanches are triggered with longer durations; how-
ever, when approaching the critical load �c it gets more
likely that once an avalanche started it cannot stop and
leads to catastrophic failure. Consequently, the power law
exponents � and z have relatively low values � ¼ 1:75 and
z ¼ 1:82, and the cutoffs�0 andW0 decrease with increas-
ing load �0 [see Figs. 5(a) and 5(b)]. On the contrary, low
load �0 <��

0 favors the damage breaking; i.e., long dam-

age sequences are needed to trigger bursts which have
rather limited sizes. Hence, this regime is characterized
by higher exponents � ¼ 2:4 and z ¼ 2:55 of the distribu-
tions Pð�Þ and PðWÞ and the cutoffs �0 and W0 increase

when approaching the crossover load from below. To
quantify the relative importance of the slow and fast failure
modes we determined the fraction of fibers breaking due to
damage nd and in avalanches nb as a function of load. It
can be seen in Fig. 4(b) that the fraction nd of damage
breakings monotonically decreases with �0, while nb first
increases and has a maximum at �0=�c ¼ 0:045ð6Þ. Note
that the two fractions become equal nd ¼ nb at the load
�0=�c ¼ 0:018ð5Þ, which falls very close to the crossover
point supporting the above arguments. To analyze the finite
size dependence of the distributions pð�Þ and pðWÞ we
carried out simulations at fixed loads for several lattice
sizes L ¼ 401, 601, 801, 1001, 1201. As representative
examples, Fig. 5(c) presents for two load values �0=�c ¼
0:1 and 0.001 that the cutoff burst size of pð�; LÞ increases
with the system size L. Rescaling the two axis with appro-
priate powers of L a high quality data collapse is obtained
in Fig. 5(d) which implies the scaling structure pð�; LÞ ¼
����ð�=L�Þ. The cutoff exponent � has the values 2.4,
1.3 (�0 <��) and 1.6, 1.0 (�0 >��), for the distribution
of burst sizes and durations, respectively. The analysis
demonstrates the robustness of the critical exponents �
and z of the system.
In conclusion, investigating the dynamics of single

bursts in FBMs we revealed a rich spectrum of novel
aspects of rupture processes. The average shape of burst
pulses proved to be sensitive to the range of load redis-
tribution. Since the evolution of bursts is controlled by the
overloads at the avalanche frontier, we revealed that from
the temporal pulse shape one can infer the spatial advance-
ment of bursts. The statistics of burst sizes and durations is
characterized by power law distributions; however, the
competition of the failure modes with widely separated
time scales leads to the emergence of a crossover between
two regimes of different exponents: approaching the
critical load large bursts are triggered implying low expo-
nents for the distributions, while below a characteristic
load slow damaging dominates giving rise to higher expo-
nents. A very interesting future extension of our study is to
perform tests where �0 is increased at a constant rate r.
The current calculations are at the limiting case r ¼ 0.
Under such conditions avalanche precursors are expected
in the time series as r increases, namely, quasiperiodic
large avalanches, before rupture, as predicted and observed
in the modeling and experimental approach of Ref. [5]
in the context of crystal plasticity and consistently
observed in granular experiments of avalanches in jammed
granular matter at an incline [23]. The quasiperiods of
events emerge due to the dynamic competition between
the two time scales of the external driving and the intrinsic
aging [5].
We are thankful for Projects No. TAMOP-4.2.2.A-11/1/

KONV-2012-0036, No. TAMOP-4.2.2/B-10/1-2010-0024,
No. TAMOP 4.2.4.A/2-11-1-2012-0001, No. OTKA
K84157, and No. ERANET_HU_09-1-2011-0002.
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FIG. 5 (color online). Probability distribution of burst size
pð�Þ (a) and duration pðWÞ (b) varying the external load �0.
The lines are fits with Eqs. (2). (c) Burst size distributions for
different system sizes L obtained at two load values �0=�c ¼
0:1 and 0.001 for the upper and lower groups of curves, respec-
tively. (d) High quality collapse of the distributions of (c)
obtained by rescaling with L using the scaling exponents
� ¼ 1:6, � ¼ 1:75 and � ¼ 2:4, � ¼ 2:4 for the lower and upper
curves, respectively. The straight lines represent power laws of
slope �. In (a) and (b) the vertical axis, while in (d) both axis are
arbitrarily rescaled to better see the data.
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