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Partial wave expansion of the Coulomb-distorted plane wave is determined and stud-
ied. Dominant and sub-dominant asymptotic expansion terms are given and leading
order three-dimensional asymptotic form is derived. The generalized hypergeometric
function 2F2(a, a; a + l + 1, a − l; z) is expressed with the help of confluent hyper-
geometric functions and the asymptotic expansion of 2F2(a, a; a + l + 1, a − l; z)
is simplified. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803027]

I. INTRODUCTION

Scattering of charged particles is an important and difficult topic in quantum mechanics. Even
the two-body case is exceptional since it does not fit into the conventional time-dependent scattering
theory approach. Several methods are proposed to overcome the difficulties caused by the long range
behavior of the Coulomb interaction. In the time-dependent framework the formalism of Dollard1

modifies the Moller wave operator. In stationary approach the method of van Haaringen2 introduced
Coulomb asymptotic states and Mulherin and Zinnes3 promoted distorted asymptotic states. The
connection of the latter two formalism was also studied.4 Following Refs. 5 and 6 we will call the
asymptotic state of Mulherin and Zinnes3 as Coulomb-distorted plane wave (CDPW).

The recently developed surface integral formalism of quantum scattering theory5–7 is valid not
only for two-body scattering but it can be extended to scattering of three charged particles. Another
advantage of this formalism is that it handles the short and long range interactions on an equal
footing. It is said in Ref. 6 “All the results . . . rely on the asymptotic forms of the plane wave
and the Coulomb-distorted plane waves.” The CDPW indeed plays an important role in the surface
integral formalism. In this framework the full scattering wave function is composed of as a sum
of the CDPW and a so-called scattered part. Furthermore, the surface integral expression of the
scattering amplitude also refers to the CDPW.

A three-dimensional leading order asymptotic form of the CDPW was given in Ref. 5. Mathe-
matical interpretation of this result was presented in Section 5 of Ref. 6. The asymptotic expansion
can be interpreted in distributional sense and the properties of the considered test function space
plays an important role. Based on our convergent partial wave (pw) expansion of the CDPW and the
asymptotic form of the pw components we will derive a three-dimensional leading order asymptotic
form for the CDPW. Our expression is in agreement with the result of Refs. 5 and 6 if the test
function space given by Taylor8 is used.

Interestingly the pw expansion of the CDPW has been given only recently.9 In this work the
pw components are applied for the description of scattering process of two particles based on
the complex scaling method. Here we further study the pw decomposition and derive four different
analytical forms. The asymptotic expansion of the pw component given in Ref. 9 contains a recursion
relation for the expansion coefficients. In this paper we derive an explicit expression for them.
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Our results concerning the CDPW are presented in Sec. II. Since the generalized hypergeometric
function 2F2(a, a; a + l + 1, a − l; z) plays a substantial role in the formalism therefore in the
Appendix the properties of this function are examined in detail. The summary is given in Sec. III.

II. PARTIAL WAVE EXPANSION AND ASYMPTOTIC FORMS

We write the pw expansion of the Coulomb-distorted plane wave in the form

eikr(kr ∓ kr)±iγ =
∞∑

l=0

(2l + 1)τ (±)
l (γ, kr )Pl(cos(ϑ)), (1)

where the upper and lower signs correspond to the post and prior form of the CDPW. The angle
between the vectors k and r is signed by ϑ and the Legendre polynomial is denoted by Pl(x). The
real variable γ in (1) is the Sommerfeld parameter and k is the momentum vector. The bold face
letters k and r denote elements of the three-dimensional Euclidean space R3, while k and r denote
the corresponding magnitudes. The radial function τ

(±)
l (γ, kr ) can be calculated by the integral

τ
(±)
l (γ, kr ) = 1

2
(kr )±iγ

∫ 1

−1
e±ikr x (1 ∓ x)±iγ Pl(x)dx . (2)

A compact expression for the pw component τ
(±)
l (γ, kr ) can be given for arbitrary l. Using (2) and

the formula 2.17.5.6 in Ref. 10 we get

τ
(+)
l (γ, kr ) = (−iγ )l

(1 + iγ )l+1
(2kr )iγ eikr

2 F2(1 + iγ, 1 + iγ ; l + 2 + iγ, 1 + iγ − l; −2ikr ) (3)

and

τ
(−)
l (γ, kr ) = (−1)l (iγ )l

(1 − iγ )l+1
(2kr )−iγ e−ikr

2 F2(1 − iγ, 1 − iγ ; l + 2 − iγ, 1 − iγ − l; 2ikr ),

(4)
where (a)n is the Pochhammer symbol and 2F2 is the generalized hypergeometric function.11 From
the explicit forms (3) and (4) one can notice that τ

(−)
l (γ, kr ) = (−1)lτ

(+)
l (γ, kr )∗. In order to further

study the function τ
(±)
l (γ, kr ) the properties of the function 2F2(a, a; a + l + 1, a − l; z) are

investigated in the Appendix. In the case of the post form of CDPW the following identifications
can be made a = 1 + iγ and z = − 2ikr and in the prior form we have a = 1 − iγ , z = 2ikr. Using
Theorem 1 of the Appendix and the formula (3) we can write down three equivalent expressions for
the partial wave component

τ
(+)
l (γ, kr ) = eikr+γπ/2

2ikr

∑l
n=0(−1)n

( l
n

) (l+1)n

n! γ (1 + iγ + n, 2ikr )(2ikr )−n , (5)

τ
(+)
l (γ, kr ) = (−1)l(2kr )iγ eikr

∑l
n=0(−1)n

( l
n

) (l+1)n

(1+iγ )n+1
1F1(1 + iγ, 2 + iγ + n; −2ikr ) , (6)

and

τ
(+)
l (γ, kr ) = eγπ/2

2ikr

(
eikrκ+

l (1 + iγ,−2ikr ) + e−ikrκ−
l (1 + iγ,−2ikr )

)
. (7)

In charge-less case (i.e., γ = 0) the CDPW goes into an ordinary plane wave. Using Proposition
2 of the Appendix we get the expected result for the pw components, i.e., τ (±)

l (0, kr ) = i l jl(kr ), i.e.,
the post and prior forms are identical.

Using Theorem 2 of the Appendix we get for the asymptotic expansion of τ
(±)
l (γ, kr ) as

r → ∞

τ
(+)
l (γ, kr ) ∼ eikr

2ikr
eγπ/2 �(1 + iγ ) 3 F1

(
1 + iγ,−l, l + 1; 1; (2ikr )−1

)

− e−ikr

2ikr
(2kr )iγ (−1)l

∞∑
n=0

d (l)
n

1

(−ikr )n
.

(8)
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and

τ
(−)
l (γ, kr ) ∼ − (−1)l e−ikr

2ikr
eγπ/2 �(1 − iγ ) 3 F1

(
1 − iγ,−l, l + 1; 1; (−2ikr )−1

)

+ eikr

2ikr
(2kr )−iγ

∞∑
n=0

(
d (l)

n

)∗ 1

(ikr )n
.

(9)

The expansion coefficients d (l)
n satisfy the recursion (A20) and (A21) and the solution of the recursion

is given by (A22). In these equations we have to identify a by 1 + iγ (1 − iγ ) for the post (prior)
form of the pw component. The expressions (8) and (9) show both the dominant and sub-dominant
terms and the nature of the terms are determined by the sign of Im(ikr). Instead of the study of the
explicit form of τ

(±)
l (γ, kr ) the asymptotic expansions (8) and (9) can be obtained directly from (2)

with a straightforward but tedious calculation based on Theorem 227 of Ref. 18.
Now we derive a three-dimensional leading order asymptotic form for the CDPW. Substituting

expressions (8) and (9) into (1) and keeping only the leading order terms we get our result in the
form of a distribution

eikr(kr ∓ kr)±iγ ∼ ± 2π

ikr

(
e±ikr eγπ/2�(1 ± iγ )δ(r̂ ∓ k̂) − e∓ikr (2kr )±iγ δ(r̂ ± k̂)

)
. (10)

It is known that the prior form of the CDPW can be simply obtained from the post form expression:
one has to replace k with − k and make complex conjugation. According to (10) this procedure is
valid also for the asymptotic forms.

In charge-less case the three-dimensional asymptotic expression (10) goes into the well known
form17

eikr ∼ 2π

ikr

(
eikrδ(r̂ − k̂) − e−ikrδ(r̂ + k̂)

)
. (11)

On the test function spaces D± of Ref. 6 our result goes into Eqs. (197) and (198) of Ref. 6,

eikr(kr ∓ kr)±iγ ∼ ∓ 2π

ikr
e∓ikr (2kr )±iγ δ(r̂ ± k̂) on D±. (12)

On test functions belong to D± the contribution of the first term of (10) is zero. Our rigorously
derived result (10) differs from the expression of Refs. 5 and 6. However, the surface integral
formalism, as explained in Ref. 6, depends only on the validity of (12).

III. SUMMARY

The generalized hypergeometric function 2F2(a, a; a + l + 1, a − l; z) is expressed as a
finite sum of confluent hypergeometric functions. Three equivalent expressions are determined and
so the numerical evaluation can be simplified. Dominant and sub-dominant terms are identified
in the asymptotic expansion. A closed expression is given for the coefficients of the asymptotic
expansion. Using the previous results four equivalent expressions are determined for the partial
wave component of the Coulomb-distorted plane wave. The asymptotic expansion of the partial
wave component is deduced. Rigorously derived leading order three-dimensional asymptotic form
of the Coulomb-distorted plane wave is given.
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APPENDIX: THE HYPERGEOMETRIC FUNCTION 2F2(a, a; a + l + 1, a − l; z)

We will express the function 2F2(a, a; a + l + 1, a − l; z) in terms of finite linear combination
of confluent hypergeometric functions. In order to do this we need a proposition.

Proposition 1. Let l be a non-negative integer and let Xl := {x ∈ Z | x ≤ l}. If z ∈ C\{0} and
a ∈ C\Xl then

l∑
k=0

(−1)k

(
l

k

)
(l + 1)k(1 − a)k 1F1(−k, a − k; z)

z−k

k!
= (−1)l

3F1(1 − a,−l, l + 1; 1; −1/z).

(A1)

Proof. The definition of the confluent hypergeometric function can be turned into the form

1F1(−k, a − k; z) =
k∑

s=0

(−1)s

(
k

s

)
zs

(a − k)s
.

Using this expression we get on the left-hand side of (A1)

l∑
k=0

k∑
s=0

(−1)k+s

(
l

k

)(
k

s

)
(l + 1)k(1 − a)k

k!(a − k)s
zs−k .

We can rearrange the summation indexes and get

(−1)l
l∑

s=0

(
l

s

)
(l + 1)s(1 − a)s

z−s

s!
εl(s) , (A2)

where

εl (s) =
l−s∑
k=0

(−1)k

(
l − s

k

)
(l + 1)l−ks!

(l + 1)s(l − k)!
.

Using the formula 0.160.2 of Ref. 12 we get εl(s) = 1 and we can recognize that the summation in
(A2) gives the function 3F1(1 − a,−l, l + 1; 1; −1/z). �

Theorem 1. Let l be a non-negative integer and let z ∈ C\{0}, a ∈ C\Z then the function 2F2(a,
a; a + l + 1, a − l; z) can be given in the following forms:

(−1)l (a)l+1

(1−a)l

∑l
k=0(−1)k

(l
k

) (l+1)k

(a)k+1
1F1(a, a + k + 1; z), (A3)

(−z)−a (a)l+1

(1−a)l

∑l
k=0

(l
k

) (l+1)k

k! γ (a + k,−z) (z)−k, (A4)

(a)l+1

(1−a)l
(−z)−a

(
κ+

l (a, z) + ezκ−
l (a, z)

)
. (A5)

Here we introduced the notations

κ−
l (a, z) = (−1)l+1

l∑
n=0

(l + n)!

n!(l − n)!

(−1)n

zn
U (−a + 1,−a − n + 1; −z) (A6)

and

κ+
l (a, z) = �(a) 3 F1(a,−l, l + 1; 1; −1/z). (A7)

The confluent hypergeometric function of the second kind11 and the incomplete gamma function11

are signed by U(a, b, z) and γ (a, z), respectively.
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Proof. First we show that (A3) equals (A4). Using the identity 5.3.5.4 of Ref. 10 and the
expression 7.11.3.1 of Ref. 10 we get for (A3)

(−z)−a (a)l+1

(1 − a)l

l∑
k=0

k∑
s=0

(−1)l+k+s

(
l

k

)(
k

s

)
(l + 1)k

k!
γ (a + s,−z)(−z)−s .

Rearranging the summation we have

(−z)−a (a)l+1

(1 − a)l

l∑
s=0

(−1)s

(
l

s

)
(l + 1)s

s!
γ (a + s,−z) (−z)−s εl(s)

and using that εl(s) = 1 we get (A4).
Next we show that 2F2(a, a; a + l + 1, a − l; z) equals (A4). Using the

p Fq

(
(ap−1), σ + l

(bq−1), σ

∣∣∣∣∣ z

)
=

l∑
k=0

(
l

k

)
zk

(σ )k

∏
(ap−1)k∏
(bq−1)k

p−1 Fq−1

(
(ap−1) + k

(bq−1) + k

∣∣∣∣∣ z

)
(A8)

identity, which was proved in Ref. 13, we get for 2F2(a, a; a + l + 1, a − l; z)

(−z)−a
l∑

k=0

l∑
s=0

(−1)k+s

(
l

k

)(
l

s

)
(a)l+1

l!(a − l)k
γ (a + k + s,−z)(−z)−s . (A9)

The following expression, valid for k > 0, can be easily established using the formula 8.356.9 of12

γ (b + k, z) = (b)kγ (b, z) − e−z zb
k−1∑
m=0

(b)k

(b)m+1
zm (A10)

and for k = 0 we have γ (b + 0, z) = (b)0γ (b, z) = γ (b, z). Choosing b = a + s in (A10) and
substituting it into (A9) we get

(−z)−a (a)l+1

(1 − a)l

l∑
s=0

(−1)s

(
l

s

)
(l + 1)s

s!
γ (a + s,−z) (−z)−s+

− (a)l+1

l!
ez

l∑
k=1

k−1∑
m=0

(−1)k

(
l

k

)
�(a + k)�(l + m + 1 − k)(−z)m

(a − l)k�(l + a + m + 1)

1

�(−[k − 1 − m])
.

(A11)

In the derivation of this expression we used 0.160.2 of Ref. 12. We have to consider the case a ∈ C\Z
and l ≥ k ≥ 1 so we have that k − 1 − m is a non-negative integer. We get that the double sum in
(A11) is zero and this means that 2F2(a, a; a + l + 1, a − l; z) is identical with (A4).

Finally we show that (A5) equals (A3). Applying the expression 7.2.2.2 of Ref. 10 we get
for (A5)

(a)l+1

(1 − a)l

(
l∑

n=0

(−1)n+l

(
l

n

)
(l + 1)n

(a)n+1
1F1(a, a + 1 + n; z) + (−z)−a�(a)εl(a, z)

)
, (A12)

where

εl(a, z) =3 F1(a,−l, l + 1; 1; −1/z)

− (−1)l
l∑

n=0

(−1)n

(
l

n

)
(l + 1)n(a)n 1F1(−n,−a + 1 − n; z)

z−n

n!
.

According to Proposition 1 εl(a, z) = 0 and so we derived (A3) from (A5). �
In order to show that the pw component of CDPW is proportional to the spherical Bessel

function in the case of charge-less particles we will need the following statement.
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Proposition 2. Let l be a non-negative integer and let z ∈ C\{0} and a ∈ C\Z then

lim
a→1

(1 − a)l 2 F2(a, a; a + l + 1, a − l; z) = i l(l + 1)! ez/2 jl(i z/2). (A13)

Proof. It is easy to establish that (1)l+1ezκ−
l (1, z)/z = −i l (l + 1)!ez/2h(2)

l (i z/2)/2 and
(1)l+1κ

+
l (1, z)/z = −i l (l + 1)!ez/2h(1)

l (i z/2)/2 using 10.1.16 and 10.1.17 of Ref. 11. From these
facts and from (A5) the claim follows. �

Theorem 2. Let l ≥ 0 integer, a ∈ C, 0 < Re(a) < l + 2 then the asymptotic expansion of the
function 2F2(a, a; a + l + 1, a − l; z) at |z| → ∞ can be written in the form

2 F2(a, a; a + l + 1, a − l; z) ∼ (a)l+1

(1 − a)l
(−z)−aκ+

l (a, z)+

(−1)l (a)l+1

(1 − a)l

ez

z

∞∑
n=0

(1 − a)n(a)l

(a − n)l
3 F2

( −l, −l, −n

1, 1 − a − l

∣∣∣∣∣ 1

)
1

zn
.

(A14)

Proof. We will use the expression (A5) to determine the asymptotic expansion. First we no-
tice that κ+

l (a, z) is a finite sum, it is a polynomial of order l in the variable 1/z. This means that
(a)l+1

(1−a)l
(−z)−aκ+

l (a, z) can be considered as an asymptotic expansion at |z| → ∞ with respect to the

asymptotic sequence14 z− a/zn. The function κ−
l (a, z), according to Eq. (A6), is a finite linear com-

bination of confluent hypergeometric functions of second kind and since the asymptotic expansion
of U(a, b, z) is given by 15.5.2 of Ref. 11 we can properly rearrange the summation indexes and we
can write

κ−
l (a, z) ∼ (−1)l (−z)a

z

∞∑
n=0

(
min(n,l)∑

m=0

(−1)m (l + m)!

m!(l − m)!

(m + 1)n−m(1 − a)n−m

(n − m)!

)
1

zn
. (A15)

Using the formulas 7.2.3.15 and 7.3.5 of Ref. 10 we can carry out the summation over m on the
right-hand side of (A15) and get

κ−
l (a, z) ∼ (−1)l (−z)a

z

∞∑
n=0

(1 − a)n(a)l

(a − n)l
3 F2

( −l, −l, −n

1, 1 − a − l

∣∣∣∣∣ 1

)
1

zn
. (A16)

�
The expressions (A14) shows that if Im(z) > 0 than the dominant term is given by the second

term of the right-hand side of (A14) and if Im(z) < 0 then the roles of the terms in (A14) interchange.
The complete asymptotic expansion of the function 2F2(a1, a2; b1, b2; z) was given by Luke in

Chapter 5.11.3 of Ref. 15. However in our case the numerator parameters are equal to each others
and we cannot use this result. We rewrite the function 2F2(a, a; a + l + 1, a − l; z) in terms of
Meijer’s G function (see 5.11.1(1) in Ref. 15),

2 F2(a, a; a + l + 1, a − l; z) = (−1)l(a)l+1

(1 − a)l
G1,2

2,3

(
−z

∣∣∣∣∣
1 − a, 1 − a

0, −a − l, l + 1 − a

)
. (A17)

For the asymptotic expansion of the Meijer’s G function we can use formula 5.10(10) of Ref. 15 and
if we apply 5.7.(13-15) and 5.9.2 of Ref. 15 we get

2 F2(a, a; a + l + 1, a − l; z) ∼ − (−1)l(a)l+1

(1 − a)l
H2,2(−z). (A18)

Taking into account 5.11.1(18) and 5.11.3(4) in Ref. 15 we can write

H2,2(−z) = −ez

z

∞∑
n=0

d (l)
n 2n 1

zn
. (A19)
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The coefficients d (l)
n satisfy the recurrence relation (see 5.11.3(6) in Ref. 15)

4(n + 1)d (l)
n+1 = 2(2n2 − n(2a − 3) − l2 − l − a + 1)d (l)

n − n(n − l − a)(n + l + 1 − a)d (l)
n−1

(A20)

with initial conditions (see 5.11.1(18-20) in Ref. 15)

d (l)
0 = 1 , d (l)

1 = 1

2

(
1 − l2 − l − a

)
. (A21)

The asymptotic expansion (A18) is valid in the region −π
2 + δ ≤ arg(−z) ≤ 3π

2 − δ where δ > 0.
We will show that our asymptotic expansion (A14) and formula (A18) are identical in the

considered z region. Among the two terms at the right-hand side of (A14) the second one is the
dominant in the considered z region and the first one can be neglected. To rewrite (A18) and (A19)
we have to solve the recurrence relation (A20).

Theorem 3. Let l and n be non-negative integers and let a ∈ C, 0 < Re(a) < l + 2 then the
solution of the recurrence relation (A20) with initial conditions (A21) is

d (l)
n = (1 − a)n(a)l

2n(a − n)l
3 F2

( −l, −l, −n

1, −a − l + 1

∣∣∣∣∣ 1

)
. (A22)

Proof. We prove this theorem by induction. With direct calculation it is easy to check that the
claim is satisfied for n = 0, 1, 2. Assuming that (A22) is true for n = s and n = s + 1 the claim,
after some trivial simplification, is reduced to the validity of the equation

(s + 2)(s + 2 − l − a)3 F2

( −l, −l, −s − 2

1, −a − l + 1

∣∣∣∣∣ 1

)
=

= [
2(s + 1)2 − (s + 1)(2a − 3) − l2 − l − a

]
3 F2

( −l, −l, −s − 1

1, −a − l + 1

∣∣∣∣∣ 1

)

− (s + 1)(s + 2 + l − a)3 F2

( −l, −l, −s

1, −a − l + 1

∣∣∣∣∣ 1

)
.

This equation, however, is known to be true.16 �
Using Theorem 3 and Eq. (A19) we see that (A18) and the second term on the right-hand side

of (A14) are indeed identical.
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