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a  b  s  t  r  a  c  t

Landscape  metrics  are  in  varying  correlations  with  each  other.  Several  authors  have  revealed  their  cor-
relation  structure  and  determined  sets  of  metrics  which  can  be used  in  landscape  analysis.  We  assumed
that  correlation  structure  is not  stable  and  is  biased  by  several  factors,  thus,  selection  based  on the  cor-
relation  can  vary  by  case  studies.  In  this  study  we  dealt  with  13  patch  level landscape  metrics  using
three  landscape  types,  consisting  of  9 subregions  with  7 and  14  land  cover  classes,  applying  5  differ-
ent  cell  sizes.  In each  step  of  the  analysis  other  factors  that  can  bias  the  results  were  controlled,  or  the
analyses  were  carried  out separately.  In accordance  with  our  aims,  we  uncovered  the  factor  structure  of
the  metrics  in different  situations,  with  the  parameters  which  might  possibly  bias  the  results.  Results
showed  that  cell  size,  landscape  types  and  number  of  land  cover  classes  had  a greater  or  lesser  effect  on
cross-correlations.  However,  the  greatest  effect  was  experienced  when  variables  were  changed  slightly
(i.e. two  metrics  were  replaced  with  two new  ones).  A comparison  of  factor  structure  was  conducted
with the  coefficient  of  congruence,  rank  order  based  on  factor  loadings,  and  biplots.  According  to  our
findings,  congruence  values  are not  reliable  in all cases,  while  ranks  and  biplots  were  not  sensitive  to
the changes  in  circumstances.  Possible  outcomes  were  tested  with  calculations  of  3 test  areas  (a  large
landscape  from  NE-Hungary  and  two  countries).  Results  can  be relevant  for  landscape  ecologists  dealing
with many  variables  and  multivariate  techniques.

© 2013  Published  by  Elsevier  Ltd.

20

1. Introduction21

Landscape metrics are the quantitative tools of landscape anal-22

ysis, giving a clear, reproducible methodology to quantify the23

features of habitat patches and their spatial distribution, with a24

direct connection to ecological observations and processes (Forman25

and Godron, 1986; Waltz, 2011). Several landscape indices have26

been successfully integrated into ecological studies (Kupfer, 2012;27

Schindler et al., 2013). In general, the simplest metrics, such as28

patch size, perimeter–area ratio, distance from nearest habitat29

patches or total number of species, are widely used (e.g. Magura30

et al., 2001; Szilassi et al., 2010). In the practice of landscape plan-31

ning, metrics of connectivity and fragmentation are applied (Jaeger32

et al., 2008; Girvetz et al., 2008; Penn-Bressel, 2005; Stone, 2007).33

In addition, we should mention that indices have been criticized34

for being redundant (i.e. strong correlation), for having map  scales35

which do not match the scale of processes, for a lack of clear rec-36

ommendations regarding usage and for inconsistent correlation37

∗ Corresponding author. Tel.: +36 52 512900/22326; fax: +36 52 512945.
E-mail addresses: szabo.szilard@science.unideb.hu,

szaboszilard.geo@gmail.com (S. Szabó).

with ecological processes, as well as for producing contradictory 38

results (Cale and Hobbs, 1994; Darmstad, 2009; Haines-Young and 39

Chopping, 1996; Li and Wu,  2004; Tischendorf, 2001). Another crit- 40

icism is that all analyses will produce numerical results and the 41

ecological functionality for most of the metrics has not been proved 42

(Baldwin et al., 2004; Turner, 2005). Furthermore, pixel size, map 43

scale and map  extent also alter the results (Saura and Martinez- Q244

Millán, 2001; Wu et al., 2000). 45

The first software that was  able to derive landscape metrics in 46

bulk was FRAGSTATS (McGarigal and Marks, 1995) and this had 47

a significant influence on landscape analysis. Researchers started 48

to deal with landscape indices in hundreds of papers (e.g. Hargis 49

et al., 1998; Kareiva and Wennergren, 1995). The redundancy of 50

the metrics was  obvious from the beginning, but the new metrics 51

were easier to interpret, or had some additional meaning, or simply 52

correlated with others in spite of measuring different aspects of the 53

landscape. Instead of preferring one index, several authors recom- 54

mended revealing the correlation structure of the metrics through 55

factor analysis and chose the relevant non-correlated indexes. 56

McGarigal and McCombs (1995) and Riitters et al. (1995) were the 57

first to determine the statistical relationships between the metrics 58

with multivariate methods. They, and other authors (e.g. Griffith 59

et al., 2000; Cushman et al., 2008; Schindler et al., 2008; Skånes 60
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and Bunce, 1997; Uueemaa et al., 2011), used principal component61

analysis (PCA) to reduce the number of indices, providing a method-62

ology to choose the most meaningful metrics. A different evaluation63

was conducted by Baranyai et al. (2011):  they used an ordinal clus-64

tering algorithm and non-metric multidimensional scaling (NMDS)65

to reveal the relations between 14 connectivity measures.66

Multivariate techniques such as PCA, NMDS or cluster analysis67

are effective tools to reduce the number of variables, but results68

are not consistent. As in other areas of the environment where the69

environmental variables are not constant (Leitao and Ahern, 2002),70

results are influenced by the scale, dominant patch size, minimum71

mapping unit, number of land use classes, cell size of the raster72

coverages, etc. Therefore, only the methodology can be constant,73

and findings should often be handled as case studies. As we  have74

described, many authors have dealt with the question of correla-75

tion or redundancy but there has been no research on correlation76

dependencies. It was merely supposed the correlations of landscape77

metrics can change with the input parameters.78

In the present work we dealt with the correlation stability of the79

indices, focusing on their correlation structure. We assumed that80

both correlation structure, and consequently the principal com-81

ponents as well, changes with the properties of input data. If the82

changes are not significant, landscape metric selection can be based83

on correlation techniques; however if this is not case, this kind of84

selection produces different results that cannot be extrapolated.85

Our aim was to provide a justification for this assumption; accord-86

ingly, we tested the effects of resolution, the number of land cover87

classes, different sets of variables and map  extent. We  provided a88

method to control the changes.89

2. Methods90

2.1. Study sites91

Nine study areas next to each other were selected along the River92

Tisza. Over the past 20,000 years the river has changed its chan-93

nel frequently in the Great Hungarian Plain (Marosi and Szilárd,94

1969). These changes produced significant shifts in the direction95

of the riverbed. The river widened its floodplain, eroding the orig-96

inal Pleistocene sand dunes. In the Holocene, three of the selected97

study areas were floodplains, three areas were sandy islands with-98

out inundation, as their surface was higher than the flood level,99

and three were loess terrains (formed in the former floodplain of100

the river; Gábris and Túri, 2008). According to the different origins101

of landscape evolution, the landscape pattern was different, in spite102

of their close location (Fig. 1).103

The boundaries of the study areas were determined using the104

edges of habitat patches, considering natural or artificial borders105

(e.g. roads, channels). In this way we were able to avoid the splitting106

of habitat patches, which can cause skewed results when calculat-107

ing areas and shape indices.108

The study areas had different characteristics and their utiliza-109

tion was exploited taking this into account. As the area is a plain110

and, following water regulation in the 19th century, the whole area111

became available for agricultural production (Table 1), the domi-112

nant land use type was consequently arable land (generally above113

50%). There were only a low percentage of areas of natural vegeta-114

tion (generally below 10%). In the case of sand dunes #2 residential115

areas are mainly recreational gardens with small houses in a rural116

environment, arable lands being the second largest land use type.117

We  defined our nomenclature in the following way: landscape118

types (floodplains, loess based terrains and sand dunes), subre-119

gions (all landscape types were divided into three parts according120

to Fig. 1) and the smallest units were the land cover patches (the121

landscape metrics were calculated using these).122

Fig. 1. Location of the study areas and subregions.

2.2. Land use data and landscape metrics 123

We  vectorized all the identifiable habitat patches using digital 124

ortophotos from the year 2005 (0.5 m resolution) in GIS environ- 125

ment (with ArcGIS, ESRI, 2008) applying visual interpretation. The 126

minimum mapping unit was  0.0025 ha. We  applied the nomencla- 127

ture (generally the second level; in some cases – e.g. forests – the 128

third level) of the CLC database in order to use a uniform system 129

and to avoid having too many, and overspecified, land use/land 130

cover (LULC) classes. Altogether there were 14 LULC classes that 131

can be interpreted in the statistical analysis: residential area, indus- 132

trial area, mine/dump/construction site, artificial green area, arable 133

land, vineyard/orchard, grassland, coniferous forest, deciduous for- 134

est, mixed forests, shrub, wetland, water body. We  reduced the 135

number of classes, as, given their similarity, these can be aggregated 136

into seven categories: artificial surface (residential and industrial 137

areas, mines), forest (mixed, coniferous, deciduous forests), arable 138

land, orchard, grassland, shrub and water. If we do not differentiate 139

between mixed, coniferous and deciduous forests we can simply 140

use the term ‘forest’. In many cases when we  have to use histor- 141

ical maps or old aerial photos for large areas, there is no way of 142

distinguishing forest types; we  can only recognize that there was a 143

forest there. Shrubby areas and wetlands, and, additionally, agricul- 144

tural and mixed agricultural areas, cannot be distinguished without 145

knowing the area (and can hardly be recognized in old black and 146

white aerial photos). 147

We  converted our vector overlays to raster format and processed 148

them in FRAGSTATS 3.4 (McGarigal and Marks, 1995). We  applied 149

5, 10, 25, 50 and 100 m cell sizes for raster layers for each study 150

area and calculated landscape indices. 13 patch level metrics were 151

calculated. 152

According to our aims, we  chose patch level metrics: we aimed 153

to identify patches based on their individual spatial characteris- 154

tics. Identification supposes the existence of the uniqueness of the 155

patches from a given point of view. 156

Landscape metrics were the following (for a detailed description 157

see McGarigal and Marks, 1995): 158

- Area and edge metrics: Area (AREA), Perimeter (PERIM); 159

- Shape related metrics: Perimeter Area ratio (PARA), Radius of 160

Gyration (GYRATE), Shape index (SHAPE), Related Circumscrib- 161

ing Circle (CIRCLE), Contiguity Index (CONTIG), Perimeter-Area 162

Fractal Dimension (PAFRAC); 163
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Table  1
Main features of the study sites.

Study sites Area (ha) Number of patches Mean patch size (ha) Largest patch area (ha) Dominating land cover type (%)

Floodplain #1 2241 218 10.28 792.28 Plough land (59%)
Floodplain #2 2575 530 4.86 445.28 Plough land (58%)
Floodplain #3 4455 457 9.75 771.77 Plough land (68%)
Sand  dunes #1 2138 585 3.65 640.30 Orchard (50%)
Sand dunes #2 970 1006 0.96 167.35 Residential (28%)
Sand  dunes #3 1107 726 1.52 140.16 Plough land (42%)
Loess  based terrain #1 2838 223 12.72 1013.67 Plough land (77%)
Loess  based terrain #2 2542 325 7.82 1000.14 Plough land (79%)
Loess  based terrain #3 5518 203 27.18 2041.84 Plough land (89%)

- Core area metrics: Core Area (CORE), Number of Core Areas164

(NCORE), Core Area Index (CAI);165

- Aggregation metrics: Euclidean Nearest-Neighbour (ENN), Prox-166

imity index (PROX).167

We  applied 11 metrics as a set and 2 metrics were used in the168

analysis to detect the effects of differing variables.169

2.3. Data analysis170

To reveal the correlation structure we conducted principal com-171

ponent analysis (PCA) with Varimax rotation (in this case with172

principal components, PCs). PCs do not correlate, but within the173

PCs the correlation of variables is maximal. Variables were trans-174

formed with the formula log(k + 1) due to the different dimensions175

of the metrics’ magnitude and in order to improve normality. This176

method has been applied in several previous studies (e.g. Leitao and177

Ahern, 2002; Schindler et al., 2008). Principal components were178

retained when eigenvalues exceeded 1 according to Kaiser’s crite-179

ria. We  carried out the analysis with the PCA in all variations of180

landscape types, resolutions and land cover classes (Fig. 2). Com-181

munalities were controlled (we excluded low values when this was182

needed), Kaiser–Meyer–Olkin values were accepted above 0.6, and183

Bartlett’s tests were significant (p < 0.05).184

Comparison of the structure matrix was carried out with the185

coefficient of congruence (rc). According to MacCallum et al. (1999)186

congruence values were qualified as “excellent” when rc > 0.98,187

“good” between 0.98 and 0.92, “borderline” between 0.92 and 0.82,188

“poor” between 0.82 and 0.62 and “terrible” when values stayed189

below 0.68. Congruence (rc) was found to be better than the Pearson190

correlation when correlating factors, since rc estimated the corre-191

lation between the factors themselves, while Pearson r took into192

account two column vectors of factor loadings (Aluja-Fabregat et al.,193

2000). For the graphical interpretation of the eigenvalues of PCs,194

biplot diagrams were applied. Biplots were calculated from 20% of195

the whole dataset to ensure the visibility of the results. Reducing196

the data did not influence the diagrams, but made it possible to see197

the lines of the variables.198

Statistical analyses were carried out in SPSS17 (SPSS Inc., 2007)199

and PAST (Hammer et al., 2001) software. The coefficient of con-200

gruence was calculated with Invariance (Watkins, 2005).201

2.4. Test for extrapolation202

It is important to judge if the results can be extrapolated, i.e.203

to establish whether our findings of correlation structure can be204

generalized or are only true in this small area. Accordingly, we  pro-205

cessed 3 further areas: a CLC50 map  of a 3470 km2 study area in206

North-eastern Hungary, the CLC2000 map  of Hungary and Portugal.207

Table 2 showed the main characteristics of the digital layers includ-208

ing our primary test area (Tiszazug). We  calculated the same209

landscape metrics for all layers, then produced correlograms of the210

variables with R (corrgram package, Wright, 2012). Correlograms211

indicated the connections with colours (the darker the colour, the 212

greater the correlation), with hashes (right hash: positive, left hash: 213

negative correlation); pie charts showed the magnitude of con- 214

nections (Kabacoff, 2011). In addition, we  extracted the ranges for 215

each variable (landscape metric) pair of the correlation matrices 216

concerning each test area. Ranges were determined and evaluated 217

according to Fig. 3. 218

3. Results 219

Analysis of 11 patch level landscape metrics revealed the cor- 220

relation structure of the dataset. Although correlations of the 221

variables were distinct in varying measures, the structure of the 222

PCs showed similar factor loadings in most cases. Coefficients of 223

Fig. 2. Schematic outline of the procedures applied in the analysis.
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Table  2
Metadata and some selected relevant data of the study areas.

Tiszazug NE Hungary Hungary Portugal

Data type Vectorized ortophotos CLC50 CLC2000 CLC2000
Minimum mapping unit (ha) 0.0025 4 25 25
Cell  size (m) 5  10 100 100
Area  (km2)a 243 3418 93,027 89,405
Number of patches 4273 4595 39,244 31,473

a Calculated from CLC2000.

Fig. 3. Test of generalization of the results.

congruence values were mainly above 0.98, showing excellent sim-224

ilarity between component matrices.225

3.1. Effect of cell size on correlation structure226

Cell size had a lesser effect on the correlation structure than was227

predicted, considering the changes in the values: resolution caused228

20–30% changes in the value of the metrics, as a consequence of229

the fact that above 25 m cells several patches were merged into230

one larger patch due to the coarser resolution. Changes followed231

almost the same trend, especially in the first PCs (Fig. 4).232

Overall, relations among the spatial metrics were in a stable233

structure, moderately altered by the applied cell sizes (Table 3):234

similarities never decreased below the “borderline” level. Between235

the 5–10, the 25–50, and 25–100 m categories similarity was236

“excellent” (rc > 0.98) for each of the three PCs. All the other pairs237

in the comparisons had smaller rc values, indicating differences.238

Based on the rc values we found the solutions of the 5 m and239

100 m cell size which had one of the largest differences (consider-240

ing the three PCs together), and analyzed the component matrix by241

Table 3
Coefficient of congruence in case of various cell sizes (“excellent” similarities are
highlighted in bold).

Cell size (m) PC1 PC2 PC3

5–10 0.998 0.998 0.998
5–25  0.985 0.965 0.971
5–50  0.976 0.929 0.939
5–100 0.98 0.93 0.824

10–25  0.991 0.977 0.978
10–50  0.982 0.946 0.943
10–100 0.983 0.941 0.853
25–50  0.997 0.988 0.988
25–100  0.991 0.98 0.988
50–100  0.982 0.984 0.906

creating ranks. The result (Table 4) differed from the table of con- 242

gruencies as there was  more relevant variation in the rank orders 243

between 5 and 25 m than between 5 and 100 m PCA solutions. 244

Although similarities were almost the same (rc > 0.98) in the case of 245

PC1, the order of the variables differed from the third metric in the 246

rank. Subtracted factor loadings showed small variances, and had 247

increasing tendencies: 0.03-0.09-0.11-0.10 (differences in absolute 248

values between 5-10, 5-25, 5-50 and 5-100 m PC1s, respectively) on 249

average. Both negative and positive differences occurred, and some 250

variables changed their signs (AREA, PROX), showing the effect of 251

cell size on them. 252

However, elements of the PCs never mixed; thus, although the 253

factor loadings acquired some small changes, the factor structure 254

remained permanent. PC1 and PC2 contained mainly shape metrics, 255

with area and perimeter. 256

Furthermore, we analyzed the factor structure graphically, using 257

biplots. In the multidimensional space of PC1 and PC2 we can 258

observe the same tendencies of the variables (Figs. 5 and  6). 259

In case of the biplot of the 5 m PCA solution (Fig. 5) PROX had 260

the largest variance and was  in high negative correlation with ENN. 261

PERIM had the second largest variance, and together with all the 262

other metrics, was in strong negative correlation with PARA; in 263

addition, it had no correlation with PROX and ENN. PERIM, GYRATE, 264

AREA and CORE correlated strongly with each other, while SHAPE, 265

CONTIG and CIRCLE made up another group correlating slightly 266

Fig. 4. Diagram of PC1s of the 10-25-50-100 m cells size PCA solutions against the
PC1 of 5 m cell size.
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Table  4
Rank orders of some selected component matrix of PCA solutions.

PCs 5 m solution 25 m solution 100 m solution

PC1 PARA > AREA > PERIM > GYRATE > CORE > CONTIG PARA > AREA > CORE > CONTIG > PERIM > GYRATE PARA > AREA > CORE > GYRATE > PERIM > CONTIG
PC2 FRAC > CIRCLE > SHAPE CIRCLE > FRAC > SHAPE FRAC > CIRCLE > SHAPE
PC3 ENN  > PROX ENN > PROX PROX > ENN

Fig. 5. Biplot of the landscape metrics in case of the dataset containing data of 5 m cell size.

with the group containing PERIM and PROX. PERIM and GYRATE,267

as well as AREA and CORE, were in strong correlation.268

The biplot of the 100 m PCA solution (Fig. 6) showed similari-269

ties in general, but had some differences as directions were rotated270

(without changing the main relationships). In this solution, ENN271

had the largest variance, while PERIM and CORE together had the272

second largest variance.273

3.2. Effects of different landscapes on correlation structure274

Besides cell size, landscapes can bias the correlation structure275

of spatial metrics with their spatial pattern, land cover variability,276

patch sizes and patch shapes. However, the correlation structure 277

was similar at the “excellent” level; all rc values were above 0.97 278

except for the PC3 of sand dunes − loess terrains (which was 0.93). 279

Rank orders of the variables within the component matrix were 280

identical in each landscape type. Furthermore, ranks were the same 281

as the ranks of the 5 m PCA solution in Table 4. Differences between 282

the PC loading pairs of the landscapes (e.g. PC1floodplain − PC1sand 283

dunes) were 0.008–0.026. 284

Biplot diagrams of landscape types showed similar structure 285

without relevant differences compared to the cell sizes. ENN and 286

PROX were in strong negative correlation in all cases; PROX had the 287

largest variance in these cases, too. These metrics did not correlate 288

Fig. 6. Biplot of the landscape metrics in case of the dataset containing data of 100 m cell size.
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Fig. 7. Biplot of the landscape metrics in case of the dataset containing data of 5 m cell size using different variables (PROX and ENN metrics were changed to CAI and NCORE).

with the others. PARA was  in strong negative correlation with the289

rest of the variables. The directions of the vectors were more or less290

the same but the variances differed.291

We  examined the similarities of component matrices inside the292

landscape types (i.e. subregions, Table 5). The results reflected the293

importance of the details: the correlation structure of subregions294

differed more intensively than between the landscape types. Sand295

dunes, especially, had dissimilar correlation structure. Sand dunes296

#1 had a larger area and fewer habitat patches, and consequently297

patch sizes were larger. These characteristics caused the changes in298

the correlation structure. However, the loess terrain #1 did not dif-299

fer as much from the others as rc values indicate in the component300

matrices.301

3.3. Effects of land cover units on the correlation structure302

When we applied different sets of LULC classes, there was a303

relevant decrease in similarities (Table 6). Apart from some “excel-304

lently” rated pairs there were only “good” or worse parities. The305

same landscape types with a different number of classes (e.g.306

sand dunes14class − sand dunes7class) had greater differences than307

those cases when pairs consisted of different landscape types (e.g.308

sand dunes14class − loess-based terrain7class). Congruence (rc) val-309

ues were mainly rated only as “good” or worse than “good”, and310

PC1s were somewhat smaller than PC2s, but PC3 similarities were311

remarkably smaller.312

Rank orders were the same as in the case of the 5 m PCA solution313

(see Table 4).314

Table 5
Coefficient of congruence between PCs inside landscape type groups (“excellent”
similarities are highlighted in bold).

Subregions PC1 PC2 PC3

Floodplain #1–floodplain #2 0.991 0.99 0.982
Floodplain #1–floodplain #3 0.989 0.984 0.986
Floodplain #2–floodplain #3 0.989 0.999 0.992
Sand dunes #1–sand dunes #2 0.986 0.351 0.339
Sand dunes #1–sand dunes #3 0.991 0.383 0.367
Sand dunes #2–sand dunes #3 0.996 0.998 0.995
Loess based terrain #1–loess based terrain #2 0.808 0.976 0.66
Loess based terrain #1–loess based terrain #3 0.794 0.976 0.706
Loess based terrain #2–loess based terrain #3 0.987 0.994 0.989

The biplot diagram of 7 LULC classes showed a similar structure 315

for the variables as in previous PCA solutions (e.g. Fig. 5). 316

3.4. The effect of different sets of variables 317

We  tested what would happen when the applied spatial met- 318

rics differed slightly: we omitted PROX and ENN (in previous PCA 319

solutions PC3) and used NCORE and CAI. This option was run on 320

landscape types. We  found the largest effect on component matri- 321

ces, taking into consideration all the previous tests. There was a 322

relevant difference in the correlation structure of floodplains com- 323

pared to sand dunes and loess terrain areas. Congruence (rc) values 324

were only “good” at PC1s, while in case of PC2s rc they were “poor”, 325

and “terrible” at PC3s. PCA solutions of sand dunes and loess terrain 326

areas were similar at the “excellent” level. 327

Congruence values indicated differences, but only the ranks 328

revealed the structural changes. PCs contained distinct metrics con- 329

trary to what was  experienced in previous investigations. For each 330

landscape type factor loadings had different values and ranks had 331

different orders (Table 7). Biplots also showed a new structure 332

(Fig. 7). 333

3.5. Possibilities of extrapolation 334

In order to obtain information about the universality of our 335

results we  conducted correlation analyses in the test areas (NE- 336

Hungary, Hungary, Portugal). Cross-correlations showed a varied 337

picture of the connections among the variables (Figs. 8 and 9):  some 338

metrics correlated strongly with some others in each case: pairs 339

of AREA–CORE and PARA–CONTIG were completely redundant, 340

while AREA and PERIM, SHAPE and FRAC, and, SHAPE and GYRATE 341

had strong correlations with small changes. The magnitudes of 342

the relationships differed in the case of core area metrics (CORE, 343

NCORE, CAI); differences varied on a wide scale (changes ranged 344

from 0 to 0.5 in the Pearson r value). Furthermore, only in the 345

case of CAI and SHAPE did we  identify the turn of the direction 346

in the connection, i.e. we  may  be able to observe negative and 347

positive correlation between these metrics, while on the contrary, 348

correlations of other metrics never changed their signs. PROX 349

and ENN did not correlate with the other metrics; consequently, 350

they can be regarded as the ones providing unique information. 351

Exploring the differences, we  identified that the largest ones 352

belonged to those variable pairs whose range was close to zero 353
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Table  6
Coefficient of congruence between PCs inside different land cover classes (“excellent” similarities are highlighted in bold).

Landscape types by number of LULC classes PC1 PC2 PC3

floodplain14class − floodplain7class 0.899 0.82 0.366
sand  dunes14class − sand dunes7class 0.834 0.993 −0.045
loess  based terrain 14class − loess based terrain7class 0.896 0.988 −0.207
floodplain14class − sand dunes7class 0.889 0.812 0.201
floodplain14class − loess based terrain7class 0.915 0.777 0.415
sand  dunes14class − loess based terrain7class 0.869 0.988 −0.15

Table 7
Rank orders of some selected component matrix of PCA solutions (landscape metrics are highlighted in italics where factor loadings had similar values in the component
matrix).

PCs Floodplain Sand dunes Loess area

PC1 CORE > AREA > CAI > GYRATE > PERIM > NCORE CORE > AREA CAI > NCORE CORE > AREA > CAI > PARA > GYRATE > PERIM > NCORE
PC2 FRAC > CIRCLE > SHAPE FRAC > CIRCLE > SHAPE FRAC > SHAPE > CIRCLE
PC3  CONTIG > PARA CONTIG > PARA > GYRATE > PERIM CONTIG

Fig. 8. Correlogram of the landscape metrics of the Tiszazug study area (14 cate-
gories, 5 m resolution).

in the case of the test group; consequently, here, correlations354

were almost the same (Table 8). These structures were similar to355

those we calculated in the analysis of the Tiszazug test area, and356

provided further information about the variability of the metrics.357

Fig. 9. Correlogram of the landscape metrics of Portugal (14 categories, 100 m res-
olution).

The Wilcoxon paired test (between test area and study area 358

group, see Fig. 3) revealed that there was  no significant differ- 359

ence between the ranges of the correlations (W = 1785, z = 1.665, 360

p = 0.096); therefore, our calculations in that small study area can 361

be regarded as general outcomes. 362

Table 8
Ranges of Pearson correlation coefficients extracted from 4 correlation matrices (calculated from control dataset).

AREA PERIM GYR PARA SHAPE FRAC CIRCLE CONT CORE NC CAI PROX

PERIM 0.35
GYR 0.02 0.08
PARA 0.07 0.09 0.11
SHAPE 0.12 0.19 0.05 0.05
FRAC 0.03 0.07 0.03 0.02 0.07
CIRCLE 0.00 0.08 0.03 0.02 0.01 0.03
CONT 0.08 0.09 0.12 0.00 0.06 0.03 0.02
CORE 0.00 0.41 0.02 0.06 0.16 0.05 0.00 0.07
NC 0.46 0.04 0.01 0.10 0.09 0.02 0.01 0.10 0.51
CAI  0.21 0.20 0.27 0.02 0.24 0.28 0.34 0.03 0.20 0.18
PROX 0.27 0.15 0.28 0.08 0.05 0.01 0.04 0.09 0.27 0.03 0.25
ENN  0.00 0.02 0.08 0.03 0.08 0.07 0.06 0.03 0.00 0.04 0.07 0.00
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4. Discussion363

4.1. Issues of geometric resolution364

Pixel size relevantly influences pattern metrics (Saura and365

Martinez-Millán, 2001; Szabó et al., 2012; Wickham and Riitters,366

1995). However, resolution did not have as great an effect on the367

structure as might be expected (see Wu  et al., 2002). We  found368

that the Tiszazug study site, for example (with a 243 km2 area and369

a 5 m cell size) had a very similar correlation structure to the site370

in Portugal (with an area of almost 90,000 km2 and a 100 m cell371

size, see Figs. 8 and 9).  A 5 m cell size was ideal for analysing all372

the examined landscape metrics; however, 50 and 100 m cell sizes373

were only the “skeletonised” variants of the original ones. Small374

patches were eliminated or merged into larger ones and the whole375

pattern changed (Saura, 2004); nevertheless, the correlation struc-376

ture showed only small alterations. Besides, we have to consider the377

computational limits deriving from the scale and cell size. Analysis378

of large areas can be carried out only with small scale, i.e. coarse379

pixels size and, conversely, small areas (large scale) can be inves-380

tigated with high resolution (O’Neill et al., 1996; Wu  et al., 2000).381

However, we experienced that our upper limit of computation was382

in high accordance with the number of patches (it was about 40,000383

patches).384

4.2. Issues of thematic resolution385

There were several previous studies on the thematic resolution386

(Baldwin et al., 2004; Buyantuyev and Wu,  2007; Szabó et al., 2012;387

Turner et al., 1989b)  and it was found that many indices were influ-388

enced by the number of land cover types. These studies dealt with389

class and landscape level metrics; however, we explored significant390

effect on patch level, too. Different land cover classes caused rele-391

vant differences in the factor structure. Application of fewer classes392

involves the merging of given patches, but it is not identical to the393

changes caused by increasing cell sizes. Due to the merging classes394

it is not only small parts that are incorporated into larger ones; even395

large patches can be plotted as one. Landscape patterns can form396

in completely different ways with a different number of land cover397

classes, or it may  be the case that the changes are not relevant,398

depending on the composition. In our study, changes were signif-399

icant, as was reflected in low rc values (varying according to PCs).400

When one works with a certain type of data, its thematic resolution401

is given and possibly all LULC classes are preserved. Consequently,402

all investigations use a different number of classes, thus according403

to our results, findings cannot be compared.404

4.3. Map  extent: influence of area on the cross-correlations405

Map  extent also can bias the results. This means that both the406

area and the borders of the examined units are influencing factors.407

On the one hand, area determines the possible number of patches408

(but this also depends on scale, cell size and minimum mapping409

unit), edge length, and core area, it is thus probable that their value410

will increase in the case of larger areas (Baldwin et al., 2004). How-411

ever, it was proved that their standardized formulae were sensitive,412

too (Baldwin et al., 2004; Saura and Martinez-Millán, 2001). We413

were dealing with patch level metrics so the extent only biased the414

number of observed patches and their characteristics, the above415

mentioned effects are true when we summarize them (e.g. count,416

calculate simple or area weighted average) on class or landscape417

level. On the other hand, borders can relevantly skew the calcu-418

lation of shape metrics by cutting away the outer parts. Turner419

et al. (1989a) remarked that if the system borders are correct, the420

experimental model can predict dynamic processes. In our case the421

question is whether we can be sure that this line runs on the right422

place. It calls into question the problem of multiscale input data (i.e. 423

we have a large scale land cover map  and the coverage of official 424

borders is only small scaled). 425

Our study areas covered different landscapes from 22 km2 to 426

100,000 km2. Between landscape types there were smaller differ- 427

ences; component structure, however, was more distinct among 428

the subregions. This result indicates that the common origin of 429

subregions was  not an overriding factor in determining their cor- 430

relation structure. Regarding landscape types, subregions of sand 431

dunes differed from each other more than they did from a flood- 432

plain or loess terrain area. Changes in correlation structure were 433

reflected in a multivariate way. Remarkably, that we  did not find 434

relevant differences among the correlation structure even in the 435

case of countrywide investigations (Hungary, Portugal). 436

4.4. Correlation structure and the problems of comparisons 437

We  saw that PCA was  able to reveal similarities in the correla- 438

tion structure; however, these were only occasional. All outcomes 439

depend on the specific characteristics of the variables. Identical 440

variables can facilitate the sphericity of the n dimension space or in 441

other cases, cause its deformation and lower the KMO values. The 442

component matrix consists of the factors (principal components) 443

and the variables. If one changes the variables, results in a new 444

solution, causing changes in the component matrix. The final ranks 445

of factor loadings depend on the number of factors, the number 446

of variables, the communality of the variables and their correla- 447

tions (Jolliffe, 2002). According to the outcomes, factor loadings 448

had minor differences within the given PCs among the different PCA 449

solutions, while there were large differences between the PCs. Thus, 450

patch level metrics showed stable membership in the PCs. PC1 and 451

PC2 were comprised of area-edge and shape metrics; furthermore, 452

PC3 consisted of aggregation metrics. Perimeter is an element of 453

the formula of PARA, FRAC and SHAPE since it is an input parame- 454

ter in their formulae. Area is an input parameter of PARA, CORE and 455

CIRCLE. Consequently, their common appearance in the first two 456

PCs was not surprising. 457

If we use the factor scores as artificial variables (e.g. Schindler 458

et al., 2008; Tinker et al., 1998), we  can use rc values to estimate 459

similarities. However, if we  use the component matrix to choose 460

the most relevant variables from a set of metrics, considering that 461

PCs provide uncorrelated groups of variables and the ranking of the 462

variables is based on the factor loadings, selected variables can be 463

misleading. If a given rank of metrics was  derived from the factor 464

(component) loadings, and differences are small, we  can easily find 465

that a metric is not the most relevant one. Therefore, it is advisable 466

to choose the metrics which can be justified in the given analysis. 467

This is in accordance with the findings of Uueemaa et al. (2011) and 468

Leitao and Ahern (2002). 469

Regarding the comparisons, in spite of the fact that statistical 470

tests provide differing results with different input data, our find- 471

ings show that the structures, at least at the level of PCs (i.e. groups) 472

were identical in every combination. Different cell size, landscape 473

and LULC numbers did not bias the outputs more than the differ- 474

ence in variables. Factor structure was  significantly transformed 475

when we  changed 2 spatial metrics in the set. The coefficient of 476

congruency was sensitive to the changes in factor loadings, while 477

biplots and correlograms were able to show the variables in the 478

multivariate space and were not biased by the applied parameters. 479

All diagrams showed a similar picture; groups of metrics were in 480

high accordance with the factor loadings when we  used the same 481

variables. However, one has to keep in mind that the similarity of 482

correlation structure does not mean the similarity of the compared 483

landscapes (see the example of the Tiszazug and Portugal). This 484

only means that the investigated variables are not influenced by 485

the input parameters. 486

dx.doi.org/10.1016/j.ecolind.2013.06.030
Original text:
Inserted Text
Riiters

Original text:
Inserted Text
example, (

Original text:
Inserted Text
5 meter 

Original text:
Inserted Text
8–9). 

Original text:
Inserted Text
Influence

Original text:
Inserted Text
2008, 



Please cite this article in press as: Szabó, S., et al., Factors biasing the correlation structure of patch level landscape metrics. Ecol. Indicat.
(2013), http://dx.doi.org/10.1016/j.ecolind.2013.06.030

ARTICLE IN PRESSG Model
ECOIND 1606 1–10

S. Szabó et al. / Ecological Indicators xxx (2013) xxx–xxx 9

Our experience in the testing phase of the generalization possi-487

bilities showed the efficiency of correlation matrices. Correlations488

are calculated pairwise and are not influenced by the number of489

variables, i.e. correlation between two variables does not change490

when we investigate more or fewer pairs at the same time. There-491

fore, we can apply different sets of landscape metrics. Both biplots492

and correlograms visualize the structures, and the coefficients can493

be evaluated statistically. Ranges, i.e. the difference between the494

maximum and minimum correlations coefficients of the variable495

pairs, showed clearly those pairs where the influencing factors were496

ineffective. Table 8 reflected that it was metrics with absolute val-497

ues which experienced especially larger changes (AREA, PERIM,498

NP), although some standardized ones also had high variance in499

accordance with Baldwin et al. (2004).500

5. Conclusions501

Multivariate techniques are useful tools in environmental sci-502

ences; they can make it easier to interpret large datasets with many503

variables. The application of PCA as a popular multivariate method504

is not new, but this study attempted to reveal the biasing factors505

of the correlation structure of landscape metrics. It is important to506

ask what the limits of the researchers’ findings are: are they limited507

to the given investigation or can they be extrapolated? Our results508

showed that some factors (cell size, landscape type,) do not influ-509

ence the correlation structure on a significant scale (according to510

the rc values), but if we use different number of LULC classes or sets511

of metrics, the outcomes show large differences.512

As a part of data mining and interpretation, comparisons can513

be carried out with the evaluation of rc (coefficient of congruence),514

using the ranks of the component matrix, or graphically with biplots515

or correlograms. Generally, rc can hide the real differences, and it516

may  mislead us in our judgement of the distinction between PCA517

solutions. Factor loadings provide ranks which can be compared518

with other ranks. Biplots show the variables with their directions519

and variance and are insensitive to the factors biasing the variables’520

relationships. Besides this, our suggestion is to apply the evaluation521

of the correlation matrices by extracting the ranges of correlation522

coefficients by variable pairs (see Fig. 3).523
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