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Abstract: Efforts to take advantage of the beneficial activities of thyrotropin-releasing 

hormone (TRH) in the brain are hampered by its poor metabolic stability and lack of 

adequate central nervous system bioavailability. We report here novel and metabolically 

stable analogs that we derived from TRH by replacing its amino-terminal pyroglutamyl 

(pGlu) residue with pyridinium-containing moieties. Exploratory studies have shown that 

the resultant compounds were successfully delivered into the mouse brain after systemic 

administration via their bioprecursor prodrugs, where they manifested neuropharmacological 

responses characteristic of the endogenous parent peptide. On the other hand, the loss of 

potency compared to TRH in a model testing antidepressant-like effect with a simultaneous 

preservation of analeptic activity has been observed, when pGlu was replaced with 

trigonelloyl residue. This finding may indicate an opportunity for designing TRH analogs 

with potential selectivity towards cholinergic effects.  
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1. Introduction  

Our laboratory has been involved in medicinal chemistry-driven research with attention to 

facilitating drug delivery of central nervous system (CNS) agents via prodrug approaches. 

Thyrotropin-releasing hormone (TRH), a small peptide (pGlu-His-Pro-NH2, Figure 1), has been one of 

the main focuses in this regard [1–5]. TRH was the first hypothalamic factor characterized [6] and it 

has also served as a lead structure for CNS drug discovery [7,8], due to its multitude of central  

actions [9–11]. These actions are independent of the hypothalamic-pituitary-thyroid axis; thus, the 

peptide can also function as a neuromodulator through various neurotransmitters, most prominently  

via acetylcholine [10].  

Figure 1. Chemical structure of thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2). 

 

The use of TRH as a neuropharmaceutical agent has been hampered by, e.g., its inadequate 

metabolic stability [12], poor CNS bioavailability [13] and, therefore, profound endocrine activity due 

to high systemic doses needed for establishing therapeutic concentration in the brain. Analogs 

preserving the central benefits of TRH and possessing enhanced in vivo metabolic stability may, 

however, overcome these limitations [3,11,14–16]. Nevertheless, the blood-brain barrier (BBB) has 

been an obstacle to drug delivery, even with metabolically stable analogs of the peptide [17]. As it has 

been well-documented, the BBB prevents the passive transport of the overwhelming majority of 

chemical entities into the brain from circulation [18]. Only a limited number of small molecules with 

suitable physicochemical properties can reach this organ from the blood at adequate concentration in 

the absence of specific transporters. Hence, CNS drug delivery has been a challenging endeavor, 

especially for peptides [19]. 

Various invasive and non-invasive approaches have been conceived to usher drugs into the brain 

from the circulation by essentially tricking the BBB [20–22]. Among the non-invasive methods, the 

prodrug approach offers a viable option for CNS-drug delivery of small- and medium-sized 

neuropeptides [5]. By definition, a prodrug is an inert precursor of the active agent (parent drug) that 

remains inactive until specific enzyme(s) liberates the parent drug in vivo. Prodrugs are synthesized 

from the parent agents by transient chemical modification(s), such as esterification [23]. Because 

lipophilicity is one of the major governing factors for passive transport across the BBB [24], enhancing 

this physicochemical property via prodrug creation has been particularly useful for peptides that are 
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generally highly hydrophilic substances. In most cases, the functional group(s) in a peptide sequence 

(e.g., -NH2, -COOH or -OH) is derivatized not only to enhance lipophilicity, but also to render the 

peptide “neutral” at physiological pH to favor diffusion through the BBB [25]. The chemically 

introduced “promoiety(ies)”, whose presence results in the loss of the innate activity of the parent 

agent, is metabolically and/or chemically labile. Therefore, removal of the promoieties unmasks the 

active agent.  

In another prodrug approach that leads to the so-called bioprecursor prodrugs [26], no auxiliary 

“promoiety” is attached to the parent drug, because a bioreversible chemical manipulation (e.g., 

reduction or oxidation) is carried out within the drug molecule itself [2,3]. We have applied this 

particular prodrug methodology with encouraging results to generate centrally active and non-endocrine 

TRH analogs upon replacement of the central basic histidyl residue (His) in the TRH sequence with 

amino acids having a pyridinium-containing side chain [2,3]. These agents are metabolically stable, as 

replacement of His eliminates the TRH-degrading ectoenzyme-sensitive pGlu-His bond mostly 

responsible for the very short biological half-life of TRH in the blood [8,12,27]. An additional 

rationale for replacing the central residue has been to abolish (or at least diminish) the endocrine 

effects seen with TRH [15,27]. Concurrently, the pyridinium moiety of the new central residue can 

easily be converted via chemical reduction to a dihydropyridine [2–4,28], and the resultant neutral 

peptides can serve as bioprecursor prodrugs of these TRH analogs [2,3]. The preferential activation of 

the prodrug to the permanently charged parent agent in the brain occurs via oxidation, analogously to 

that of the endogenous NADH → NAD
+
 reaction [28]. At the same time, the “oxidized prodrugs” (i.e., 

the actual pyridinium-type TRH analogs) should quickly be eliminated from the periphery, due to their 

ionic nature [28], while oxidation of the prodrug in the brain actually prevents efflux from the BBB. 

Therefore, this particular prodrug approach is expected to result in brain-enhanced drug delivery. 

In vivo validation of this design was done by utilizing typical and convenient TRH-associated 

central activities; specifically, the analeptic [29,30] and antidepressant-like effects [31,32]. The latter is 

monitored by a swim test introduced by Porsolt et al. [33]. The antagonism of barbiturate-induced 

anesthesia (i.e., an analeptic response) has been the most frequently used paradigm to indicate the 

extent of the activation of cholinergic neurons [34] and, thus, a successful central delivery of TRH and 

related agents. One of the analogs we created by His replacement with a pyridinium-containing residue 

produced TRH-equivalent analeptic and antidepressant-like responses upon intravenous (i.v.) 

administration of its brain-targeting dihydropyridine-type of bioprecursor prodrug [2,3], thereby 

indicating not only a successful brain delivery of the target TRH analog, but also its ability to retain the 

neuropharmacological responses typical of TRH.  

Next, we probed whether [Glu
2
]TRH, pGlu-Glu-Pro-NH2, a non-endocrine and metabolically stable 

TRH-related peptide that possesses numerous central TRH actions [30,34–36], could also be utilized 

for the same design concept to obtain its pyridinium-containing analogs suitable for convenient 

bioprecursor prodrug preparation. In [Glu
2
]TRH, we replaced the N-terminal pGlu with trigonelloyl 

residue [37] based on findings that the therapeutically most successful TRH analogs have been derived 

by pGlu-replacement [38]. Indeed, when the dihydropyridine-based bioprecursor of this agent that was 

also “lipidized” as hexyl ester on the central Glu to supply adequate lipophilicity and neutral  

character to the prodrug [36], administered via i.v. to mice, we recorded a statistically significant 

antidepressant-like response; yet, this peptide significantly underperformed both TRH and [Glu
2
]TRH 
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in the analeptic test. We then reasoned that replacement of pGlu with a pyridinium moiety in TRH may 

also allow for improving selectivity towards the antidepressant-like property and, thus, potentially 

leading to templates useful for designing a novel class of antidepressants.  

Altogether, based on our previous findings [2–5,37], in the present study, we explored whether 

replacement of pGlu with pyridinium-based residues in the TRH sequence itself (Figure 2) would also 

lead to analogs with improved selectivity towards the antidepressant-like effect over the analeptic 

response. In exploratory proof-of-concept studies, we monitored these neuropharmacological measures 

upon systemic administration of the bioprecursor prodrugs of the novel TRH analogs having a 

permanently charged N-terminus.  

Figure 2. Chemical structures of novel TRH analogs (2 and 3) and their brain-targeting 

bioprecursor prodrugs (4 and 5, respectively), as well as schematic illustration of prodrug 

synthesis from and their bioactivation to the respective TRH analogs.  

 

2. Experimental Section 

2.1. Materials 

Reagents and solvents used in the study were purchased from Sigma-Aldrich (St. Louis, MO, USA) 

and were of reagent grades. Pre-loaded (0.48 mmol/g) Fmoc-Pro-Rink Amide-MBHA resin was from 

Anaspec Inc. (Fremont, CA, USA).  

2.2. Animals  

Male Swiss-Webster mice (30 ± 2 g body weight) used for monitoring the typical TRH-related 

analeptic and antidepressant-like effects were obtained from Charles River Laboratories (Wilmington, 

MA, USA). All procedures were reviewed and approved by the institutional animal care and use 

committee before initiation of the studies. Animals were housed four per cage with ad libitum access to 

water and food in a room where temperature is kept between 21 and 23 °C with a normal day/night 

cycle. Each animal was tested only once.  
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2.3. Synthesis of Test Compounds 

Solid-phase peptide synthesis (SPPS) utilizing standard 9-fluorenylmethyloxycarbonyl (Fmoc)-based 

chemistry was employed to assemble TRH analogs 2 and 3 (Figure 2), as reported before [2–5,16,37]. 

Briefly, we used a preloaded Fmoc-Pro-Rink Amide-MBHA resin, 20% (v/v) piperidine in  

N,N-dimethylformamide (DMF) for deprotection and DMF and methanol for washing. Coupling was 

enforced with (benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP)  

in the presence of a N,N-diisopropylethylamine (DIPEA) and hydroxybenzotriazole (HOBt) using  

amino acid:PyBOP:DIPEA:HOBt, 1:1:2:1 molar ratio. The peptide chain was terminated with 

trigonellic acid (1-methylpyridinium-3-carboxylate hydrochloride) for analog 2 or was further 

extended with Fmoc-Gly. In the latter case, a solid phase Zincke reaction [37] was done to obtain 3. 

The novel chemical entities (2 and 3) were cleaved from the resin with trifluoroacetic acid/water 98:2 

(v/v) and purified by semi-preparative reversed-phase high-performance liquid chromatography  

(RP-HPLC). For the preparation of the bioprecursor prodrugs 4 and 5 (Figure 2), the TRH analogs (2 

and 3) were reduced to the corresponding neutral dihydropyridines (4 and 5) with a well-established 

and straightforward method using sodium dithionite [2,3,28,37,39]. The identity and purity of the test 

agents were confirmed by liquid chromatography-mass spectrometry (LC-MS) and analytical  

RP-HPLC. Detailed analytical characterizations, including NMR spectral assignments, will be 

included in a subsequent publication. 

2.4. In Vitro Metabolic Stability 

Freshly made mouse brain homogenate and plasma were used for these studies, as reported  

before [3–5,16]. Briefly, immediately following removal, the brain was weighed and transferred to a 

Potter-Elvehjem tissue grinder (Wheaton, Millville, NJ, USA) on ice bath. Twenty-percent (w/v) 

homogenates were prepared in ice-cold, pH 7.4 phosphate-buffered saline. Plasma was prepared by 

centrifugation at 1500 rpm for 10 min using a Sorwal (Newtown, CT, USA) GLC-1 general laboratory 

centrifuge. The brain homogenate and plasma was used immediately for stability studies. Approximately 

100 nmol of test compound was used in 1 mL plasma or brain homogenate, the mixture was incubated 

at 37 °C in a temperature-controlled, shaking water bath. Aliquots (100 μL) were removed after 2, 5, 

15, 30, 60, 120 and 180 min of incubation and transferred into a 1.5 mL Eppendorf tube containing 200 μL 

of ice-cold solution of 5% (v/v) acetic acid in acetonitrile. The samples were centrifuged, and the 

supernatant was removed and analyzed by HPLC to monitor the decline in the concentration of the 

analyte added. HPLC analyses were performed on an Agilent 1100 HPLC system (Agilent Technologies, 

Santa Clara, CA, USA) equipped with a UV-Vis detector and operated at 254 nm. Separation was 

carried out on a Phenomenex (Torrance, CA, USA) Aeris PEPTIDE XB-C18 column (150 × 2.10 mm 

i.d., 3.6 µm particle size) at ambient temperature with a 0.4 mL/min flow rate. The eluent consisted of 

(A) 0.5% trifluoroacetic acid in water (v/v) and (B) 0.05% trifluoroacetic acid in acetonitrile (v/v).  

2.5. Analeptic Effect  

These studies were conducted according to our established procedure [1–5,16,37]. Briefly, mice 

were divided into groups of n = 10. Test compounds were dissolved in saline. The vehicle alone  
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(30 µL; control group) or equimolar doses of test compounds, including TRH (10 μmol/kg body 

weight), were injected through the tail vein of mice. After 10 min, each animal received an 

intraperitoneal (i.p.) injection of sodium pentobarbital solution at a dose of 60 mg/kg body weight. The 

sleeping time was recorded from the onset of loss of the righting reflex until the reflex was regained. 

The two trained observers recorded the sleeping times independently from each other and were 

unaware of the treatment regimen. 

2.6. Porsolt’s Swim Test (PST) to Assess Antidepressant-Like Activity  

Behavioral studies for antidepressant-like activity were conducted with a validated model, as 

reported before [16,37,39,40]. Test compounds were administered i.v. (30 µL volume) through the tail 

vein at the dose of 3 µmol/kg body weight. The control group received the saline vehicle (30 µL) only. 

Briefly, for 6 min, the immobility time (s), the duration of motionless floating after the cessation of 

struggling and making only movements necessary to keep the head above the water was recorded 

simultaneously by two trained observers that were blinded to the treatment protocol. Immobility is 

considered to be “depressed”; therefore, test compounds are deemed to elicit antidepressant-like 

activity upon producing significantly shorter immobility time than the vehicle control.  

2.7. Data Analysis 

Data are expressed as the mean ± SEM, and statistical evaluations were done by one-way ANOVA. 

Two-group comparisons employed Dunnett’s or Fisher’s PLSD post hoc tests when a significant 

omnibus ANOVA was found (α = 0.05 two-tailed), noting that type-I error correction is not necessary 

with orthogonal planned comparisons [41]. 

3. Results and Discussion 

The synthesis of target compounds with pyridinium-based N-termini (2 and 3, as shown in  

Figure 2) via SPPS proceeded smoothly, as our laboratory has been routinely doing such types of 

preparative works [1–5,16,25,36,37]. In vitro stability studies in freshly made mouse brain homogenate 

and plasma [3–5,16], respectively, showed that 2 and 3 were metabolically stable (data not shown); no 

significant degradations of the compounds were detected within 2 h by RP-HPLC. This finding was 

expected [27], since the hydrolysis-sensitive pGlu-His bond [12] was eliminated when we replaced 

pGlu with pyridinium-containing (and also unnatural) residues. Previously, we have also confirmed 

that when the central His is replaced in the TRH sequence with pyridinium-based amino acids, the 

resultant TRH analogs were metabolically stable [2,3]. In comparison, TRH’s half-life is around  

10 min in mouse plasma and 15 min in mouse brain homogenate [3]. Additionally, we did not find 

significant differences in the in vitro metabolic oxidation, i.e., bioactivation of the bioprecursor 

prodrugs 4 and 5, to the corresponding TRH analogs (2 and 3, respectively, Figure 2) in the selected 

biological media. These findings are comparable to those we have reported before for the 

dihydropyridine type of prodrugs [2,3,28,37]. Accordingly, the dihydropyridine→pyridine oxidation 

(i.e., prodrug to TRH analog conversion) occurred with t½ of about 5 min in mouse brain homogenate, 

and around 22 min t½ values were determined in mouse plasma (data not shown). The increased 
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resilience of 4 and 5 against oxidation in the plasma versus brain should be beneficial for BBB 

transport upon their systemic administrations. We also did not find significant differences in these 

measures between 4 and 5. It should be noted that the in vitro oxidation of this type of unsubstituted 

dihydropyridines in the selected biological matrices apparently does not significantly depend on the 

rest of the chemical structure of the prodrugs [28].  

In vivo validation of brain-targeting of 2 and 3 via their bioprecursor prodrugs, 4 and 5, respectively 

(Figure 2), was done by utilizing two well-established neuropharmacological paradigms based on 

typical TRH-related central actions. Specifically, the analeptic model [29,30] and PST [31,32] were 

used for these studies. The analeptic effect is surveyed in a simple paradigm by measuring the reversal 

of barbiturate-induced sleeping time in mice [5,7,30]. In PST, after mice give up swimming in a 

controlled environment consisting of a water tank, the floating time is recorded within a fixed time 

period, as floating is believed to correspond to a “depressive mood” [33]. We used TRH as a positive 

control at equimolar concentration (10 μmol/kg body weight) in these studies. The negative control 

group received the vehicle only. With exploratory proof-of-concept experiments summarized in  

Figure 3, we have shown so far that, for example, analog 2 per se did not elicit an analeptic response, 

due to its ionic nature (i.e., having a pyridinium moiety) that prevented its passive transport across the 

BBB from the blood after i.v. injection.  

Figure 3. Reversal of pentobarbital-induced sleeping times (i.e., analeptic effect) in mice 

after administration of TRH, TRH analogue 2 and bioprecursor prodrugs 4 and 5. Sleeping 

time is expressed as the mean ± SEM (n = 10 per group). Ten min after i.v. injection of the 

test compound at a dose of 10 μmol/kg body weight, pentobarbital (60 mg/kg, i.p.) was 

injected. Sleeping time was recorded from the onset of the loss of the righting reflex until 

the reflex was regained. * Statistical significance determined using analysis of variance 

(ANOVA) followed by post hoc Fisher’s PLSD test for multiple comparisons: p < 0.05 

versus vehicle control.  

 

On the other hand, administration of the corresponding bioprecursor prodrug (4) produced a 

statistically significant reversal of pentobarbital-induced sleeping time; moreover, this analeptic 

response was statistically not different from that of TRH under the experimental conditions applied. 

These data imply that (i) the prodrug (4) successfully passed the BBB from the circulation and,  

(ii) once in the brain it converted to 2 via oxidation (Figure 2) that, (iii) in turn, elicited the desired 

TRH-characteristic neuropharmacological response.  
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A slightly longer sleeping time was detected upon administration of 5, which is the bioprecursor 

prodrug of 3. In the latter, the pyridinium moiety is attached via a -CH2- linker that may result in more 

flexibility compared to 2. Overall, the structural differences between 2 and 3 may indicate that 

replacement of pGlu with pyridinium-type moieties could be quite permissive in structural features to 

maintain analeptic response.  

Similarly to the analeptic studies, analog 2 carrying a permanent positive charge failed to elicit an 

antidepressant-like effect in the exploratory PST studies upon systemic administration (Table 1). 

However, when it was injected to mice in its bioprecursor prodrug form (4, Figure 2), a statistically 

significant decrease in the immobility time (approximately 19%) was recorded compared to the  

saline-treated control group (arbitrarily taken as 100%). Nevertheless, analog 2 did still significantly 

underperform TRH (approximately a 36% decrease in the immobility time compared to control) in this 

paradigm, even though it produced a practically TRH-equivalent analeptic response upon brain-delivery 

via its prodrug (Figure 3, Table 1).  

Table 1. Porsolt’s swim test (PST) immobility times reflecting the antidepressant-like 

effect of the TRH analog 2 with or without utilizing its bioprecursor prodrug 4. TRH was 

used as a positive control. Test compounds were administered i.v. at the dose of 3 µmol/kg 

body weight. * p < 0.05 versus saline vehicle control (ANOVA followed by Dunnett’s test). 

Test agent 
Immobility time (s) 

mean ± SEM 

% Change in immobility 

time compared to control 
a
 

% Change in sleeping time 

compared to control 
a,b

 

Saline 288 ± 6 0 0 

TRH 184 ± 5 * −36 −51 * 

Analog 2 279 ± 8 ~0 ~0 

Prodrug of 2 (4) 231 ± 6 * −19 −46 * 
a Control arbitrarily taken as 100%; percent decrease is calculated as [1 − (Xtest agent/Xcontrol)] × 100, where X 

denotes the given neuropharmacological response; b based on analeptic data shown in Figure 2. 

These preliminary findings are in sharp contrast with our original expectation; i.e., we anticipated 

that replacement of pGlu with trigonelloyl residue in TRH would also result in enhanced 

antidepressant-like activity over analeptic response, as seen with the corresponding [Glu
2
]TRH  

analog [37]. The latter peptide elicited a significantly improved selectivity towards the  

antidepressant-like effect, compared to that of TRH and [Glu
2
]TRH. Apparently, our data presented 

here indicate for the first time that the TRH-characteristic analeptic and antidepressant-like activities 

may be dissociated upon designing appropriate TRH analogs. This type of agent may also overcome 

drug delivery issues in preclinical studies by using the corresponding dihydropyridines, as  

brain-targeting bioprecursor prodrugs. 

4. Conclusions 

Our exploratory study has shown for the first time that replacement of the N-terminal pGlu of TRH 

with pyridinium-type moieties maintains the pharmacological activities of the resultant peptide analogs 

in mice. However, the loss of potency in the model testing antidepressant-like effects with a 

simultaneous preservation of analeptic potency has been apparent, which may indicate an opportunity 
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for the discovery of TRH analogs with potential selectivity towards cholinergic effects. In addition, we 

have demonstrated, again, the value of a bioprecursor prodrug approach to facilitate brain delivery of 

molecules containing pyridinium-type moieties. Collectively, these encouraging data warrant further 

investigations, including addressing potential endocrine responses elicited by the TRH analogs 

reported in this communication. 
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