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Abstract

Endogenous retinoids like all-trans retinoic acid (ATRA) play important roles in skin homeostasis and skin-based immune
responses. Moreover, retinoid signaling was found to be dysregulated in various skin diseases. The present study used
topical application of selective agonists and antagonists for retinoic acid receptors (RARs) a and c and retinoid-X receptors
(RXRs) for two weeks on mouse skin in order to determine the role of retinoid receptor subtypes in the gene regulation in
skin. We observed pronounced epidermal hyperproliferation upon application of ATRA and synthetic agonists for RARc and
RXR. ATRA and the RARc agonist further increased retinoid target gene expression (Rbp1, Crabp2, Krt4, Cyp26a1, Cyp26b1)
and the chemokines Ccl17 and Ccl22. In contrast, a RARa agonist strongly decreased the expression of ATRA-synthesis
enzymes, of retinoid target genes, markers of skin homeostasis, and various cytokines in the skin, thereby markedly
resembling the expression profile induced by RXR and RAR antagonists. Our results indicate that RARa and RARc subtypes
possess different roles in the skin and may be of relevance for the auto-regulation of endogenous retinoid signaling in skin.
We suggest that dysregulated retinoid signaling in the skin mediated by RXR, RARa and/or RARc may promote skin-based
inflammation and dysregulation of skin barrier properties.
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Introduction

The nuclear hormone receptors retinoic acid receptors (RAR)

a, b, and c and retinoid X receptors (RXR) a, b, and c are ligand-

dependent transcription factors that can be activated by retinoids.

RAR-RXR heterodimers regulate the expression of multiple genes

in skin and various other tissues [1], while their transcriptional

activity is dependent on the RAR-activating ligand [2–4]. The

most abundant RAR and RXR subtypes in skin are RXRa and

RARc, followed by lower quantities of RARa [5]. Since retinoid

receptors exhibit tissue and cell type-specific distribution patterns,

functional specificity of each subtype is suggested [6–12].

Moreover, RAR and RXR subtypes differ in ligand specificity

and/or affinity [9,11–14], therefore, it can be assumed that their

contribution to gene expression patterns in skin differs, depending

on quantitative receptor distribution, on the nature and level of co-

regulators, as well as on available retinoid receptor-selective

agonists and antagonists.

RAR-RXR-mediated signaling pathways induced by retinoids

are essentially involved in immune-modulatory events [15–17],

and skin physiology [18] through their role in the regulation of

several aspects of skin cell proliferation, differentiation, apoptosis,

and epidermal barrier function [19,20]. Retinoid metabolism and

concentrations in skin are tightly regulated ensuring sufficient

levels of the endogenous pan-RAR activator all-trans retinoic acid

(ATRA) [2,21,22]. However, alterations in retinoid metabolism,

signaling and concentrations have been observed in various

dermatoses, such as psoriasis [23], ichthyosis [24], and recently in

a study by our group in atopic dermatitis [25]. Altered retinoid-

mediated signaling in skin of these patients may also be a result of

activation or antagonism of specific retinoid receptor subtypes

under disease conditions.

In order to dissect retinoid-mediated signaling in skin, mice

were treated topically for two weeks with selective RAR and RXR

agonists or antagonists. Our aim was to determine the effect of

RAR subtype-selective and RXR activation or antagonism on the

expression of genes involved in retinoid metabolism and signaling,

as well as epidermal barrier homeostasis and skin-based immune

regulation. The outcome of the present study will help to identify

pathways and genes that are selectively regulated by RARa,
RARc, or RXR in the skin of mice. This might allow for

conclusions regarding the involvement of subtype-specific retinoid
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receptor-mediated signaling in various skin diseases and may

suggest alternative therapeutic strategies.

Materials and Methods

Retinoid Receptor-specific Agonists and Antagonists
ATRA was a gift from BASF (Ludwigshafen, D) and the

synthetic RXR activator LG268 was kindly provided by Ligand

Pharmaceuticals (San Diego, CA). Synthetic agonists selective for

RARa (BMS753) and RARc (BMS189961) were prepared in our

laboratories as described in the original patents [26,27] with the

yields indicated as supporting information (Figure S1 and S2). The

RARa-specific antagonist (BMS614) was made following the

patented procedure developed at BMS [28,29] as detailed in the

supporting information section (Figure S3). The RARc-selective
antagonist (UVI2041) was prepared by the condensation of the

ester 15 derived from chalcone 14 [30] with hydroxylamine

[31,32] followed by hydrolysis as described in supplements (Figure

S4). The RAR pan-antagonist/inverse agonist (BMS493) and the

RXR pan-antagonist (UVI3003) were synthesized according to

reported procedures [33,34]. The purity of the synthesized

compounds was determined to be greater than 95% by HPLC

after crystallization. We have confirmed that these retinoids are

stable when stored as solids or in solution at 278uC, and during

the time frame of biological experiments.

Sensitization of Mice
8–12 weeks old female C57BL6 mice were obtained from and

housed within the animal facility of the University of Debrecen,

Hungary. Animals were maintained in single cages on standard

animal chow and water ad libitum. All experimental procedures

were approved by the Committee of Animal Research of the

University of Debrecen, Hungary (Approval number: 25/2006

DEMÁB).

Mice were anesthetized and subsequently shaved on dorsal skin

sites using an electric razor. Retinoid receptor-specific agonists and

antagonists were applied topically each other day in 25 ml acetone
(vehicle/control; Merck, Darmstadt, D) per treatment for two

weeks. According to previous studies by other groups [2,35]

agonists and antagonist were applied in the following concentra-

tions: ATRA, 40 nmol; LG268, 100 nmol; BMS753, 40 nmol;

BMS189961, 40 nmol; BMS614, 100 nmol; UVI2041, 100 nmol;

BMS493, 100 nmol; UVI3003, 100 nmol. On day 14, four hours

after the last treatment, mice were sacrificed, sera and full

thickness skin biopsies were collected, skin specimen were shock

frozen in liquid nitrogen and all samples were kept at 280uC until

analyses. Skin samples were obtained from equal body sites by

means of the same procedure for each mouse in order to control

for variability among specimen. Samples were visibly controlled to

ensure no excessive adipose tissue remained, though some

contamination with remaining adipose tissue cannot be excluded.

RNA Preparation and Reverse Transcription
Total RNA was isolated from frozen full thickness skin biopsies

using TriH reagent (Molecular Research Center Inc., Cincinnati,

Figure 1. Back skin of mice after treatment with retinoid
receptor-specific agonists and antagonists. Representative
photographs of dorsal skin areas from mice topically treated with
vehicle control (acetone), or various retinoid receptor-selective agonists
or antagonists for 14 days. Note the scaly skin of mice treated with the
synthetic RXR agonist or the synthetic RARc agonist, and appearing
most pronounced in the RAR agonist (ATRA) treated group. 1all-trans
retinoic acid/ATRA.
doi:10.1371/journal.pone.0062643.g001
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Figure 2. H+E stained skin sections of mice after treatment with retinoid receptor-specific agonists and antagonists. Representative
photographs of H+E stained skin sections from mice topically treated with vehicle control (acetone), or various retinoid receptor-selective agonists or
antagonists for 14 days. Note the epidermal thickness of mice treated with synthetic agonists for RXR or RARc, and appearing most pronounced in
the RAR agonist (ATRA) treated group. Epidermal thickness seemed comparable to vehicle control in mice treated with RARa agonist, RXR antagonist,
RAR antagonist, and selective antagonists of RARa or RARc. Original magnification (620) was digitally magnified. 1all-trans retinoic acid/ATRA.
doi:10.1371/journal.pone.0062643.g002
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OH) following the manufacturer’s instructions. Concentration and

purity of RNA samples were determined with NanoDrop

spectrophotometer (Thermo Scientific, Budapest, H). 750 ng of

total RNA were reverse transcribed into cDNA in a 30 mL
reaction mix using the High Capacity cDNA Reverse Transcrip-

tion Kit (Life Technologies, Budapest, H) according to the

manufacturer’s protocol.

Analysis of mRNA Expression
mRNA expression in total skin was determined by means of

quantitative real time-PCR (qRT-PCR) on an ABI Prism 7900.

Measurements were performed in triplicate using pre-designed

TaqManH Gene Expression Assays and reagents (Applied

Biosystems Applera Hungary, Budapest, H). Relative quantifica-

tion of mRNA expression was achieved using the comparative CT

method and values were normalized to cyclophilin A mRNA.

Additionally, Gapdh gene expression was determined to confirm

that house keeping gene expression was not affected by the various

treatment regimens (not shown). Gene expression values below

detection limit were assumed to be zero for the purpose of

statistical analysis.

Histological Analysis
Skin biopsies were taken from similar dorsal body sites and kept

at 280uC until analysis. Frozen specimens were sectioned (4 mm)

and stained with hematoxylin and eosin (H&E).

Determination of All-trans retinoic Acid Levels in Skin
Concentrations of ATRA were determined in mouse skin

samples by our high performance liquid chromatography mass

spectrometry - mass spectrometry (HPLC MS-MS) method as

described previously [36]. In summary, 100 mg of skin biopsy (if

samples were under 100 mg, water was added up to the used

standard weight: 100 mg) were diluted with a threefold volume of

isopropanol, tissues were minced by scissors, vortexed for 10

seconds, put in an ultra sonic bath for 5 minutes, shaken for 6

minutes and centrifuged at 13000 rpm in a Heraeus BIOFUGE

Fresco at 4uC. After centrifugation, the supernatants were dried in

an Eppendorf concentrator 5301 (Eppendorf, Germany) at 30uC.
The dried extracts were resuspended with 60 ml of methanol,

vortexed, shaken, diluted with 40 ml of 60 mM aqueous ammo-

nium acetate solution and transferred into the autosampler for

subsequent analysis.

Statistical Analysis
Data are indicated as mean 6 SEM. Statistical analysis of qRT-

PCR data was performed using one-way ANOVA followed by

Dunett’s post-test. Significance of HPLC MS-MS results was

determined using Student’s t-test. Differences were considered

significant at p,0.05.

Results

ATRA and a Synthetic RARc agonist Induce Epidermal
Hyperproliferation
After two weeks topical treatment of mice with various retinoid

receptor-specific agonists or antagonists, obvious signs of dryness

(scales) could be observed in some groups compared to control

mice. Representative images of the treated skin area at day 14 (end

of treatment) are shown in Figure 1. Control animals were treated

with acetone (vehicle) and their skin appeared normal without

scales at the end of two weeks. Similar observations were made in

the group treated with the RARa agonist showing only a very few

scattered white scales on the back skin. In contrast, application of

synthetic agonists for RXR or RARc and the natural RAR ligand

ATRA resulted in visibly dry and scaly skin. Compared to rather

mild effects induced by the RXR agonist we could detect small

scales already after the third treatment with the synthetic RARc
agonist. During the following days, number and size of scales

increased and the skin appeared red and slightly shiny compared

to control mice (Figure 1). Application of ATRA (same concen-

Figure 3. Altered gene expression after treatment with retinoid
receptor-specific agonists and antagonists. Heat map displaying
fold change of gene expression in mouse skin (n$5/group) after
treatment with retinoid receptor-specific agonists and antagonists
compared to control mice (acetone). Genes are differentiated according
to roles in retinoid metabolism or epidermal homeostasis. Retinoid
target genes are further distinguished by specific function, i.e. retinoic
acid synthesis (blue), retinoid transport (green), and genes unrelated to
retinoid signaling (red). Color codes: dark red – significantly up-
regulated; light red – non-significantly up-regulated; black – not
regulated (620%); light blue – non-significantly down-regulated; dark
blue – significantly down-regulated. Statistical significance (p) is based
on one-way ANOVA followed by Dunnett’s post test. A p-value ,0.05
was considered significant. 1all-trans retinoic acid; 2also relevant as
retinoid target gene.
doi:10.1371/journal.pone.0062643.g003
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tration as the synthetic RARc agonist) showed the strongest effects

resulting in apparently very dry skin with big white scales already

shortly after initiating the treatment (not shown). Skin of these

mice also seemed shiny compared to controls. Skin regions treated

with receptor antagonists appeared mostly normal at day 14. A

few small scales could be observed only after application of the

RARa and RXR antagonists. In order to verify these visual

impressions we also performed histological analysis (Figure 2). In

accordance, epidermal thickness seemed comparable to control

mice in all treatment groups except for mice treated with the

synthetic RARc agonist, RXR agonist or ATRA. Epidermal

thickness was markedly increased in all three groups but appeared

stronger in mice treated with the RARc agonist and was most

pronounced in ATRA-treated mice. Additionally, the epidermal

surface seemed notably scaly after application of the synthetic

RARc agonist and ATRA (Figure 2).

RAR-RXR Signaling Pathways Modify Epidermal Barrier
Homeostasis
We next investigated the expression of various genes with

significant functions in epidermal barrier homeostasis upon

treatment with receptor-specific agonists and antagonists. As

shown in Table 1 and Figure 3, application of the synthetic

RARc agonist and ATRA both induced genes involved in barrier

function (Abca12, Flg, Lor, Spink5, Krt16, Hbegf). On the other

hand, mRNA levels of genes implicated in ceramide metabolism

(Acer1, Gba, Ugcg) or cholesterol synthesis (Hmgcs2) were mainly

decreased or unaffected by the treatment. Compared to RARc
ligand application, expression of these genes was markedly down-

regulated (several times below detection limit) when mice were

treated with the synthetic RARa agonist (Table 1, Figure 3).

Noticeably, the same expression profile was observed after

application of RAR or RXR antagonists. Treatment with the

RXR agonist and RARa- and RARc-specific antagonists resulted
in inconsistent gene expressions with an increase of some genes

(Spink5, Flg, Klk7) and decrease of other genes (Abca12, Krt16,

Ugcg) involved in epidermal function (Table 1, Figure 3). Krt6b

expression was below the limit of detection in all groups (not

shown).

Table 1. Fold change of mRNA expression of genes involved in epidermal barrier homeostasis and chemotaxis in murine skin after
two weeks of topical treatment with retinoid receptor-specific agonists or antagonists.

Agonists (Fold change) Antagonists (Fold change)

Gene name Symbol RARa1 RARc2 ATRA3 RXR4 RARa5 RARc6 RAR7 RXR8

Epidermal barrier homeostasis

ATP-binding cassette A12 Abca12 160.1 1.660.21 1.560.11 160.1 0.660.1* 0.560.1** 0.00160.00031 0.0460.021

Filaggrin Flg 0.260.1 11.461.3# 3264.41 4.160.1 1.460.1 2.260.8 0.000360.0003 0.00460.003

Involucrin Ivl 0.960.1 1.660.11 1.360.1 0.960.1 160.1 1.260.1 1.360.1 0.860.2

Loricrin Lor 0.0460.003 1.860.3 7.360.81 0.660.1 0.760.2 1.360.3 0.00260.0005 0.00860.004

Transglutaminase 1 Tgm1 UDL1 0.760.2 2.560.21 0.160.021 0.460.1# UDL1 UDL1 UDL1

Serine peptidase inhibitor,
Kazal-type 5

Spink5 0.0160.01 5.1611 2.860.4* 2.860.3* 5.160.61 2.360.3 0.00360.001 0.0360.01

Kallikrein-related peptidase 5 Klk5 UDL 4.961.51 2.860.4 160.1 2.460.5 3.460.7* UDL UDL

Kallikrein-related peptidase 7 Klk7 0.000860.0005 5.661.81 2.760.3 3.260.6 2.160.3 1.260.1 0.00560.001 0.0260.008

Matrix metalloproteinase 9 Mmp9 0.460 2.760.5 261.1 0.860.1 4.760.81 UDL 0.360.1 0.960.3

S100 calcium binding protein A7A S100a7a 0.260.1 1.460.1 3.460.61 0.860.1 0.0260.002* UDL# UDL* 0.00260.001*

Keratin 16 Krt16 0.0260.004 3.860.41 2.860.9* 0.660.1 0.560.1 UDL 0.0360.006 0.0360.01

Heparin-binding EGF-like growth
factor9

Hbegf 0.0360.01* 2.760.61 260.2* 0.360.2 0.860.1 0.860.1 UDL* UDL*

3-Hydroxy-3-methylglutaryl-CoA
synthase 2

Hmgcs2 0.0160.0041 0.560.1* 0.160.021 1.360.3 0.660.1 UDL1 0.000660.00061 0.160.021

UDP-glucose ceramide
glucosyltransferase

Ugcg 0.160.021 0.460.11 0.160.031 0.260.021 0.960.1 UDL1 0.00260.0021 0.00160.0011

Glucocerebrosidase Gba 0.460.2 1.460.3 0.960.2 0.960.1 0.560.2 UDL1 UDL1 0.00360.0031

Alkaline ceramidase 1 Acer1 UDL* 1.260.1 0.0260.0071 1.560.2* 0.760.1 0.160.021 UDL1 0.260.031

Immune response

Chemokine ligand 11/eotaxin-1 Ccl11 UDL1 0.660.1* 0.660.1* 0.560.1* 260.21 UDL1 UDL1 UDL1

Chemokine ligand 24/eotaxin-2 Ccl24 UDL1 0.160.11 0.00960.0091 0.560.1* 1.960.21 UDL1 UDL1 UDL1

Chemokine ligand 17/Tarc Ccl17 260.6 2.760.4 9.661.51 0.660.1 0.260.1 13.962.81 UDL 0.160.1

Chemokine ligand 22/Mdc Ccl22 UDL 4.3611 1.960.3 0.860.1 0.560.2 UDL UDL UDL

Keratin 17 Krt17 0.0360.0061 1.560.11 0.260.021 160.1 1.360.1* 0.0360.011 0.0460.0041 0.0360.011

1BMS753; 2BMS961; 3all-trans retinoic acid; 4LG268; 5BMS614; 6UVI2041; 7BMS493; 8UVI3003; 9gene also relevant as retinoid target gene; UDL, under detection limit.
Fold change data are expressed as mean 6 SEM (n$5) and were determined in skin specimens of topically treated mice by qRT-PCR. Statistical significance (p) was
tested using one-way ANOVA followed by Dunnett’s post test. *p,0.05, #p,0.01, 1p,0.001, versus control (acetone).
doi:10.1371/journal.pone.0062643.t001
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RAR-RXR Signaling Pathways Modify Skin-based Immune
Responses
Retinoid-mediated signaling is known to play an important role

in the immune system and a dysregulated retinoid metabolism was

found in skin of atopic dermatitis patients (Mihály et al. 2011).

Therefore, we investigated whether topical application of receptor-

specific retinoids is sufficient to alter the expression of genes

implicated in the immune response in skin, such as the chemokines

Ccl11 (eotaxin-1), Ccl17 (Tarc), Ccl22 (Mdc), Ccl24 (eotaxin-2),

Ccr3 and the inflammatory marker Krt17 (Table 1). The synthetic

RXR activator exerted only a slight effect on gene expression in

skin, while levels of chemokines and Krt17 were markedly

decreased in response to the RARa agonist (except for Ccl17).

Again, this result strongly resembled to those found after

application of RAR or RXR antagonists. Topical treatment with

the synthetic RARc agonist and ATRA, as well as the RARc
antagonist decreased mRNA levels of Ccl11 and Ccl24 but

induced Ccl17 and partly Ccl22, while it was the opposite in

mouse skin treated with the RARa antagonist. Moreover, the

chemokine receptor Ccr3 was below detection level regardless of

which agonist or antagonist was applied (not shown). Expression of

Krt17 was increased only in response to the RARc agonist or

RARa antagonist while it was decreased or unaltered in all other

groups (Table 1).

Table 2. Fold change of retinoid metabolism-related gene expression in skin of mice after two weeks topical treatment with
retinoid receptor-specific agonists.

Agonists (Fold change)

Gene name Symbol RARa1 RARc2 ATRA3 RXR4

Retinal synthesis

Beta-carotene oxygenase Bco2 UDL UDL UDL 330561921

Short chain dehydrogenase/reductase 16C5 Sdr16c5 UDL 0.660.1 9.461.31 0.960.1

Retinol dehydrogenase 10 Rdh10 0.0160.0031 1.560.11 0.760.1* 0.660.1#

Retinol dehydrogenase 16 Rdh16 49361281 1.360.3 2.560.3 0.560.1

Alcohol dehydrogenase 7 Adh7 0.260.1 1.860.3 2.860.51 260.1*

Retinoic acid synthesis

Aldehyde dehydrogenase 1A1 Aldh1a1 UDL# 0.760.1 0.660.1 0.360.1

Aldehyde dehydrogenase 1A2 Aldh1a2 0.0460.009* 0.760.2 3.460.51 2.460.3#

Aldehyde dehydrogenase 1A35 Aldh1a3 UDL1 160.04 0.0260.0081 0.960.2

Retinoid receptor

Retinoic acid receptor a Rara UDL* 0.360.1 5.860.41 0.760.1

Retinoic acid receptor b5 Rarb UDL1 1.160.2 1.460.1* 0.660.1*

Retinoic acid receptor c Rarg UDL1 1.160.1 0.960.3 0.960.1

Retinoid X receptor a Rxra 0.00260.00061 0.960.1 1.460.11 160.1

Retinoid target genes

Retinoic acid degradation

Cytochrome P450 26A1 Cyp26a1 UDL 1965.4 141061611 1.560.3

Cytochrome P450 26B1 Cyp26b1 0.00360.003 1360.5 2996541 1.660.2

Cytochrome P450 2S1 Cyp2s1 UDL# 0.960.1 0.660.1 0.960.1

Retinoid transport proteins

Retinol binding protein 4 Rbp4 UDL UDL UDL 281662441

Cellular retinol binding protein 1 Rbp1 0.0260.0041 1.460.2 2.860.21 0.760.1

Cellular retinoic acid binding protein 1 Crabp1 0.0260.01# 160.2 1.760.3 1.860.2*

Cellular retinoic acid binding protein 2 Crabp2 0.000760.00031 1.560.2* 260.21 0.860.04

Fatty acid binding protein 5 Fabp5 1060.81 1.960.4 2.260.1 1.260.1

Retinol esterification

Lecithin-retinol acyltransferase Lrat 0.0260.0071 2.360.21 260.11 160.1

Diacylglycerol O-acyltransferase Dgat UDL1 1.560.21 0.460.11 0.260.031

Further retinoid target genes6

Keratin 4 Krt4 UDL 647066461 316766791 7.763

Retinoic acid receptor responder 2 Rarres2 UDL 1.860.2 1.360.3 1.660.2

Heparin-binding EGF-like growth factor7 Hbegf 0.0360.01* 2.760.61 260.2* 0.360.2

1BMS753; 2BMS961; 3all-trans retinoic acid; 4LG268; 5retinoid target genes; 6target genes not involved in retinoid signaling; 7gene also relevant in epidermal
homeostasis; UDL, under detection limit. Fold change data are expressed as mean 6 SEM (n$5) and were determined in skin specimens of topically treated mice by
qRT-PCR. Statistical significance (p) was tested using one-way ANOVA followed by Dunnett’s post-test. *p,0.05, #p,0.01, 1p,0.001, versus control (acetone).
doi:10.1371/journal.pone.0062643.t002
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RARa and RARc Differentially Regulate Retinoid-
mediated Signaling
Moreover, we were interested in the effect of RAR subtype-

selective agonists on retinoid metabolism. Interestingly, we found

that treatment with the synthetic RARa agonist down-regulated

the expression of all investigated genes with a role in retinoid

metabolism that is RA synthesis, retinoid receptors and target

genes (Table 2, Figure 3). Only mRNA levels of the lipid

transporter Fabp5 and an enzyme involved in retinal synthesis

(Rdh16) were significantly increased by the agonist. In contrast,

the synthetic agonist for RARc and ATRA, which is a natural

RAR agonist, induced the expression of nearly all retinoid target

genes in the skin of mice, e.g. Cyp26a1, Cyp26b1, Rbp1, Crabp1,

Hbegf and Krt4 as a marker for retinoid activity (Table 2,

Figure 3). Similarly, topical application of the RXR-selective

agonist induced the expression of some retinoid target genes

(Cyp26a1, Cyp26b1, Rbp4, Crabp1, Krt4), but the treatment did

not affect or slightly decrease the expression of other targets

(Crabp2, Fabp5, Rbp1, Hbegf). Repetitive treatment with the

RARc-selective agonist showed no significant effect on retinal and

RA-synthesis enzymes, and retinoid receptor gene expression in

skin. However, the endogenous RAR ligand ATRA and the RXR

agonist markedly increased mRNA levels of Aldh1a2 and ATRA

Table 3. Fold change of retinoid metabolism-related gene expression in skin of mice after two weeks topical treatment with
retinoid receptor-specific antagonists.

Antagonists (Fold change)

Gene name Symbol RARa1 RARc2 RAR3 RXR4

Retinal synthesis

Beta-carotene oxygenase Bco2 4436841 124678 90641 117614

Short chain dehydrogenase/reductase 16C5 Sdr16c5 0.760.04 0.360.04 UDL UDL

Retinol dehydrogenase 10 Rdh10 0.860.1 0.160.031 0.00360.0031 0.160.041

Retinol dehydrogenase 16 Rdh16 0.0260.01 3.560.7 6.561.2 1.360.5

Alcohol dehydrogenase 7 Adh7 0.0160.001* 160.1 0.00260.0004# 0.00660.002*

Retinoic acid synthesis

Aldehyde dehydrogenase 1A1 Aldh1a1 1.360.3 1.560.3 UDL# UDL#

Aldehyde dehydrogenase 1A2 Aldh1a2 0.560.1 0.260.03 0.160.1* 0.0360.02*

Aldehyde dehydrogenase 1A35 Aldh1a3 1.360.2 160.2 0.00360.0011 0.00460.0031

Retinoid receptor

Retinoic acid receptor a Rara 1.560.3 1.360.1 UDL* UDL*

Retinoic acid receptor b5 Rarb 0.660.03 0.760.1 UDL1 UDL1

Retinoic acid receptor c Rarg 0.860.1 1.760.2# UDL1 UDL1

Retinoid X receptor a Rxra 0.960.1 0.860.1* 0.000460.00021 0.0160.0051

Retinoid target genes

Retinoic acid degradation

Cytochrome P450 26A1 Cyp26a1 1.660.6 0.960.3 UDL UDL

Cytochrome P450 26B1 Cyp26b1 1.360.2 1.160.2 0.00160.001 0.0260.009

Cytochrome P450 2S1 Cyp2s1 0.960.1 1.660.1* UDL1 0.00660.004#

Retinoid transport proteins

Retinol binding protein 4 Rbp4 4486181 171065051 12612 30630

Cellular retinol binding protein 1 Rbp1 0.660.1 0.760.04 0.00360.0021 0.0260.0031

Cellular retinoic acid binding protein 1 Crabp1 1.160.3 UDL1 0.0260.01# 0.160.03#

Cellular retinoic acid binding protein 2 Crabp2 0.760.1 0.560.04# UDL1 0.0460.011

Fatty acid binding protein 5 Fabp5 0.960.1 0.260.02 1360.61 8611

Retinol esterification

Lecithin-retinol acyltransferase Lrat 1.260.1 0.660.1 0.00360.0021 0.0160.0071

Diacylglycerol O-acyltransferase Dgat 0.260.021 0.160.0081 UDL1 0.00360.0031

Further retinoid target genes6

Keratin 4 Krt4 154637 UDL UDL UDL

Retinoic acid receptor responder 2 Rarres2 3.460.61 160.3 UDL 0.00560.005

Heparin-binding EGF-like growth factor7 Hbegf 0.860.1 0.860.1 UDL UDL*

1BMS614; 2UVI2041; 3BMS493; 4UVI3003; 5retinoid target genes; 6target genes not involved in retinoid signaling; 7gene also relevant in epidermal homeostasis; UDL,
under detection limit. Fold change data are expressed as mean 6 SEM (n$5) and were determined in skin specimens of topically treated mice by qRT-PCR. Statistical
significance (p) was tested using one-way ANOVA followed by Dunnett’s post-test. *p,0.05, #p,0.01, 1p,0.001, versus control (acetone).
doi:10.1371/journal.pone.0062643.t003
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further induced Rara and Rxra gene expression, while it decreased

Aldh1a3 expression in skin (Table 2, Figure 3).

RAR and RXR Antagonists Decrease the Expression of
Genes Involved in Retinoid Signaling in Skin
Topical application of antagonists for RARa and RARc

resulted in non-significantly reduced or unaltered expression of

several genes involved in retinoid signaling in skin. However, some

genes seemed to be slightly induced by both antagonists, such as

Bco2, Rbp4, Aldh1a1 which is responsible for RA synthesis, Rara,

Rarg and some target genes like Cyp26a1, Cyp26b1 and Krt4

(Figure 3, Table 3). In contrast, antagonists for RAR and RXR

decreased the expression of nearly all of these genes below

detection limit. Only mRNA levels of Bco2, Rdh16, Rbp4 and

Fabp5 were found to be elevated by the antagonists. Surprisingly,

this expression pattern strongly resembled to that which we

observed in skin of mice treated with the synthetic RARa agonist

(Figure 3, Table 3).

RXR Agonist and RARa Antagonist Increase ATRA Levels
in Skin via Induced Synthesis
ATRA levels in skin were found to be differentially affected

depending on the applied receptor-selective agonist or antagonist

(Figure 3, Table S1). Concentrations of ATRA were significantly

decreased in the skin of mice treated with the synthetic RARa
agonist and non-significantly by the RARc agonist. Furthermore,

treatments with antagonists for RARc, RARs, or RXRs resulted in

elevated ATRA concentrations, while only RARa antagonist

treatment induced a significant increase. As expected, we found

ATRA levels markedly elevated upon treatment with this RAR

agonist itself (highest level among all groups). Noticeably, however,

was the pronounced elevation of ATRA in mouse skin after

application of the synthetic RXR agonist (Figure 3, Table S1).

Discussion

In the present study we repetitively treated mice topically with

various retinoid receptor-specific agonists or antagonists in order

to determine the effect of selective retinoid-mediated signaling in

skin on epidermal barrier homeostasis, immune regulation and

retinoid metabolism. The main finding of this study was the strong

difference between the positive retinoid-mediated signaling via

RARc pathways in contrast to the negative retinoid-mediated

signaling via RARa in the skin.

Epidermal hyperproliferation is a well established effect of

RAR-activation in skin [2,37,38] and was induced in this study by

ATRA and the synthetic RARc agonist (Figure 1 and 2), which

was further supported by an induced expression of regulators of

desquamation such as Spink5, Klk5 and Klk7 [39–41]. Moreover,

elevated mRNA levels of Hbegf and Krt16, which were already

related previously with induced keratinocyte proliferation [2,42–

44], also contributed to the result (Table 1, Figure 3). Somewhat

surprising, however, was the mild induction of epidermal pro-

liferation by the synthetic RXR agonist since no such observation

was reported in a previous study using another synthetic RXR

agonist [2]. Retinoid effects in skin are most likely mediated by

RARc-RXR heterodimers while their transcriptional activity is

dependent on the RAR-activating ligand [2,3]. Upon treatment

with the RXR agonist we observed increased Aldh1a2 gene

expression and elevated ATRA levels in skin (Table 2 and S1),

indicating induced ATRA synthesis which might account for the

mild epidermal hyperproliferation, most probably mediated by the

RAR partner. However, another RXR heterodimer partner,

PPARd, was previously found to be implicated in the regulation of

keratinocyte hyperproliferation [45–47]. Compared to RAR-

RXR, this heterodimer is permissive which means an RXR

ligand is sufficient to activate transcription of respective target

genes [48]. This might suggest alternative pathways to be involved

in RXR agonist-induced hyperproliferation.

Moreover, retinoid application affected various other processes

in skin, as indicated by altered expression levels of genes involved

in epidermal barrier homeostasis such as Abca12, Flg, and Lor

[49,50] and of genes with roles in lipid barrier formation and

ceramide metabolism, e.g. Hmgcs2, Ugcg, Gba, Acer1 [51–54].

Consistently, such retinoid-mediated effects have already been

reported by Lee at al. (2009) in epidermal keratinocytes [42].

These results strongly suggest that retinoid-mediated signaling is

required for normal barrier homeostasis and that retinoid-induced

dysregulation may be a predisposing factor for dermatological

diseases. Thereby both, antagonism and induction of RAR- and/

or RXR-mediated signaling in skin appear to be able to disturb

Figure 4. Retinoid receptor-selective gene regulation. (a) Retinoid receptor-selective induction of genes with specific roles in retinoid
signaling or epidermal barrier homeostasis in skin of mice treated topically with selective agonists for RARa, RARc or RXR for 14 days. (b) Proposed
outcome of selective signaling via RARa-RXR or RARc-RXR in skin of mice induced by endogenous retinoids, such as all-trans retinoic acid.
doi:10.1371/journal.pone.0062643.g004
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barrier homeostasis as shown in our study and previous works [55–

59]. However, no further functional analysis, such as determina-

tion of trans-epidermal water loss, was performed in order to prove

barrier disturbance.

It is well established that retinoids play important roles in the

immune system [16,60], especially in Th2-type cell differentiation

[61–63]. Interestingly, the expression of various chemokines which

are preferentially attracting Th2-type lymphocytes during in-

flammatory processes [64–66] was differently altered by the

retinoids applied in the present study (Table 1). However,

undetectable mRNA levels of the corresponding chemokine

receptor (CCR3) which is expressed by infiltrating immune

competent cells such as eosinophils [67–69] might suggest the

absence of inflammatory cells in the skin upon retinoid treatments.

These results indicate that topical retinoids can modify potential

immune responses by altering chemokine expression of resident

skin cells and that the outcome of immune alterations seems to

differ depending on the RAR subtype activated.

Retinoid receptor agonist treatment affected the expression of

all genes investigated in the skin and involved in retinoid-mediated

signaling (retinoid metabolism, transport, target genes) in general

oppositely to antagonists. Likewise, target genes were mainly

induced after treatment with ATRA or the RARc agonist (Figure 3
and Table 2), as previously reported [38,42,70,71]. Moreover,

both agonists induced very similar gene expression patterns and

given the fact that RARc is the predominant RAR subtype in skin

[5] it is indicated that ATRA mediates its activity in skin through

RARc rather than RARa [2,5,72]. Most interesting, however, was

a consequent down-regulation of gene expression by the synthetic

RARa agonist which is in line with reduced ATRA levels in mouse

skin, possibly due to decreased ATRA synthesis via Aldh enzymes

(Table 2). Only Fabp5 and Rdh16 expressions were increased in

response to the agonist. This expression pattern strongly resembled

to that in response to RAR or RXR antagonists while both

antagonists further seemed to induce Bco2 and Rbp4 expression

(Figure 3, Tables 2 and 3). The proteins encoded by those genes

are implicated in retinoid metabolism and transport [73–76].

Thus, it seems plausible that ATRA or retinoid derivatives

different from ATRA, like oxo-retinoids or still unknown

endogenous RAR ligands could be generated upon retinoid

receptor antagonism and shuttled to nuclear receptors different

from RARs, as it was already proposed for Fabp5-mediated

ATRA-induced PPARd activation [73,77,78]. Additionally, also

NR4A1/NUR77 and RXR were shown to form heterodimers

which respond to RXR activators in vivo and in vitro [79] and

might thereby participate in retinoid-mediated signaling when

RARs are antagonized. Moreover, Volakakis et al. [80] demon-

strated that NR4A1/NUR77 can induce the expression of Fabp5

in HEK293 cells which potentially enhances RA-mediated PPARd
signaling. Interestingly, we found Nr4a1/Nur77 and Ppard

expression in skin significantly decreased or below detection limit

in response to those ligands which markedly induced Fabp5

expression, namely the RARa agonist, RAR and RXR antagonists

(Tables 2 and 3, Table S2). This may be indicative of (late)

negative feedback regulations on the gene expression level in

response to induced Fabp5 expression. Whether FABP5-mediated

PPARd signaling and/or a novel, as yet undetermined retinoid(s)

might mediate such an alternative retinoid pathway in skin is

currently under investigation in our laboratory. Moreover, since

mRNA levels of ATRA-synthesizing enzymes (Aldhs) following

RAR and RXR antagonist application were not in accord with

elevated ATRA levels in the skin of those mice, we suggest that

ATRA synthesis upon antagonist treatment may be mediated by

Bco2, Rdh16, RBP4 and/or other pathways, from precursors

present in the skin and/or via transporter-mediated pathways

delivering retinoids to the skin [74].

Altogether, our observations indicate different roles of RXR-,

RARa- and RARc-mediated signaling pathways in skin (Figure 4a)

and suggest that induction of RARa signaling might result in the

suppression of RARc-mediated pathways in the skin of mice.

Considering the induced RARa gene expression after topical

ATRA treatment, this appears to be an efficient physiological

switch to different retinoid-mediated signaling pathways. Howev-

er, it is unknow how RARa mediates its suppressive action on

RARc signaling. High RARa expression was found in inflamma-

tory cells infiltrating the skin in several dermatoses [81], however,

in normal skin its expression level is fairly low compared to RARc
molecules [5]. Thus it seems unlikely that a competition between

both receptors for RXRa as heterodimer partner could be the

explanation. Instead, RARa apparently regulates the expression of

different sets of genes, possibly also in different skin cell types, than

does RARc and might also induce the transcription of co-

repressor molecules upon activation.

In summary, this study lets us emphasize that there must be yet

unidentified alternative retinoid signaling pathways or a broader

range of endogenous retinoids present in skin for selective RARa,
RARc, or RXR activation as outlined in Figure 4b. Moreover, our

data indicate that unbalanced retinoid signaling in the skin

mediated by RARa, RARc and/or RXR signaling pathways as

well as potential unidentified pathways, affects epidermal barrier

homeostasis and skin-based immune responses in mice. This

retinoid dysregulation may play a central role in various skin

diseases and the obtained data from this study might help to

identify appropriate treatment strategies for diseased skin with

dysregulated retinoid signaling using selective RAR and RXR

agonists or antagonists, alone or in combination.

Supporting Information

Figure S1 Synthesis of BMS753. Reagents and conditions: a.

AlCl3, C6H6, 100uC, 4 h (65%). b. KMnO4, H2O, NaOH, 100uC,
3 h (78%). c. CrO3, AcOH, 25uC, 4 h (93%). d. AlCl3,

ClCOCO2Et, CH2Cl2, 25uC, 2 h (43%). e. NaOH (1 N, aq),

MeOH, 25uC, 1 h (99%). f. NaOH, MeOH, H2O2, 25uC, 16 h

(96%). g. i) Oxalyl chloride, CH2Cl2, DMF, 5 min. ii) Methyl 4-

aminobenzoate, pyridine, 25uC, 16 h (45%). h. NaOH (1 N, aq),

MeOH, 70uC, 4 h (89%).

(TIF)

Figure S2 Synthesis of BMS189961. Reagents and condi-

tions: a. i) t-Butyllithium, THF, 278uC, 30 min. ii) (COCO2Me)2,

THF, 25uC, 16 h (88%) b. LiOH?H2O, 4 h, 25uC (76%) c. i)

Oxalyl chloride, DMF. ii) Ethyl 4-amino-3-fluorobenzoate, Et3N,

EtOAc, 16 h, 25uC (65%). d. NaBH4, MeOH, 5 min, (79%) e.

LiOH?H2O, 25uC, 4 h (64%).

(TIF)

Figure S3 Synthesis of BMS614. Reagents and conditions: a)

HBF4, NaNO2, H2O, 10uC, 89%. b) H2SO4, H2O, reflux, 1 h,

88%. c) Tf2O, Py, 25uC, 16 h, 100%. d) Pd(OAc)2, dppp, CO,

Et3N, MeOH, DMSO, 70uC, 3 h, 93%. e) i. 3-bromoquinoline, n-

BuLi, THF, 278uC. ii. THF, 25uC, 2 h, 32%. f) p-TsOH, toluene,

90uC, 2.5 h, 83%. g) NaOH (10 M), EtOH/H2O (1:1), 25uC,
24 h, 88%. h) i. (ClCO)2, CH2Cl2, DMF, 25uC, 2 h; ii. methyl 4-

aminobenzoate, Py, 25uC, 2 h, 26%. i) NaOH (10 M), EtOH/

H2O (1:1), 25uC, 24 h, 28%.

(TIF)

Figure S4 Synthesis of UVI2041. Reagents and conditions: a)

EDC (1.1 equiv), DMAP (0.01 equiv), Trimethylsilylethanol (1.1
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equiv), CH2Cl2, 18 h, 23uC, 65%. b) NH2OH (2 equiv), pyridine

(2.2 equiv), EtOH, 70uC, 20 h, 66% (E/Z isomer mixture at the

oxime). c) TBAF (2 equiv), DMSO, 30 min, 63%.

(TIF)

Table S1 ATRA concentrations (ng/g) in murine skin after two

weeks topical treatment with retinoid receptor-selective agonists or

antagonists.

(DOCX)

Table S2 Fold change of mRNA expression of Nr4a1 and Ppard

in skin of mice after two weeks of topical treatment with retinoid

receptor-specific agonists or antagonists.

(DOCX)
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