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We present an exact solution for a cluster growth model, describing chainlike histories with ordered
bond measure and external constraint connected to maximum bond length. We analyze in detail the

physical applications that are connected to the parameter regions, where the dominant interparticle
interactions are of short-range type.
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The clusterization process is one of the most complex
and fundamental problems of disordered systems, and as
such it continuously attracts interest in a large spectrum
of fields such as statistical physics, nucleus and atoms [1],
molecular physics [2], astrophysics [3], solid state physics
[4] including metallic systems [5], insulators [6], and
amorphous systems [7]. The thermodynamic behavior
of a disordered system is determined by the fact that its
constituent elements are isolated from one another or they
form groups of neighbors, called clusters. Systems where
the clusterization processes are dominant are governed by
the size of the clusters. Much attention has been given
to cases where the cluster size is comparable with the
lattice size, and the formation of an infinite cluster in the
system is imminent, leading to percolation. However, less
attention has been given to understanding the processes
which generate carbon [8], spin [9],or hard dipolar sphere
[10] clusters containing only few components and their
physical properties. This is the focus of our study.

The intensive study of carbon clusters [8] was moti-
vated by its importance in various fields such as fullerenes
aggregation from gas phase [11], astrophysics [3], and
combustion processes [8]. The '2C/'3C isotope scram-
bling measurements [12] show that the carbon cluster
grown in gas phase initiates from an atomic carbon level
from where the fullerene formation begins [2,11]. Un-
der the conditions of temperatures below [13] 4000 K—
0.34 eV, carbon gas density under -10 3 g/cm3 and no
carrier or buffer gas present [14],chainlike structures were
measured [15—18] up to a number of elements, nine, and
an average cluster size [19—22] around three. The chain
formations are also confirmed by molecular dynamics [7],
where the calculated average coordination number is 2 at
low densities. For our purpose, it is important to empha-
size that the interparticle potential is of short-range type
[23], and the equilibrium bond breaking energy [7,15]
is -3 eV && k~T, i.e., the clusters are growing in short-
range conditions [24]. They are chemically stable up to
-9 atoms [8,13] which are mobile within a cluster and
the bonds will attain -1.3 A., the interatomic equilibrium

distance. Similar clusters were also detected in the cir-
cumstellar absorption spectrum of the ICR + 10216 car-
bon star [3] and shown [7] to exist in liquid carbon at low
(1 g/cm3) densities.

Similar clusters also appear in spin systems, e.g., in
insulating (Eu„Sr~ „)S at [9] x && 0.13 (the percolation
threshold). The spins of the Eu ions will form few
component clusters [6]. The spin-spin interaction is of a
superexchange type, vanishing after the sixth neighboring
distance [25]. Therefore, in this disordered spin system,
similar to the previous carbon gas case, the clusterization
process is governed firstly by short-range conditions [24]
and secondly by the thermal excitation acting as an
external bond breaking process. Studies of the liquid-gas
transition [26] in systems of hard dipolar spheres [10],
with application in ferrofluids [27], phase transitions [26]
also show similar clusterization effects at high T and low
density, governed by the same short-range conditions and
an external bond cutting energy [10,28]. It is evident that
the short-range conditions are generic to all disordered
systems, in which few component chainlike clusters are
dominant. That is, the clusterization process must be
governed by a unique statistical process, independent of
the system in which it occurs.

The existence of a generic cluster law, for given
conditions, can also be reflected at a mathematical level.
We define the cluster growth problem in a standard
manner: A history is a sequence h = (s;) of M space
positions of some elements 2 = {E;),i ~ M —1, where
h is a connected set, called cluster of mass M. The
set H(CM) has various possible histories with a property
H that leads to the cluster CM. If q is an external
constraint, connected to the clusterization process, our
task is to find for the well-defined and fixed (H, ri)
conditions the probability p(CM, g) that satisfies 1

g~ p(Cst, g) = Lt gH&p„~ p(h, g), thus explaining the
presence of the CM clusters within the system. The
calculation of p(CM, rl), within the frame of (H, g), is
normally handled by numerical simulations starting from
a relatively low [29] M, and the existence of clusters
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is a priori assumed without an in situ analysis. %e,
however, calculate p(CM, g) analytically and present an
exact solution.

Based on experimental observations, the disordered
system is composed of elements randomly distributed in a
three-dimensional space, in a low concentration of n, with
an average interelement distance ro. The elements interact
through short-range type interactions W[m(i, j)], with
an effective interaction length i, where m(i, j) denotes
adjoining bond measures. Fixing the interaction to be
of a short range, we have defined the 0 property which
leads to the formation of the clusters. This means that
connections between adjoining elements can occur if and
only if the condition m(i —1,i) ~ m(i, i + 1) is satisfied.
Consequently, the condition constrains the coordination
number to 2, and, accordingly, the formed CM clusters
are of chain type. In order to obtain a cluster growth
model, a constraint governing the bond breaking has to
be considered. This is nothing other than the external
constrain g, mentioned earlier. The way to do this is to
consider a bond cutting energy 21 = E, with the property
to break a bond if [W[m(i, j)]) ~ E, . That is, 21 acts to fix
the maximum m(i,j) as m~ = max[m(i, j)] = f(rj).
As the experimental data suggest, often E, = k13T, thus
a temperature dependent cluster growth process appears.
In this case, usually m~ is a decreasing function of T,
m~ 0 corresponding to T

In this Letter, we will analyze the above mentioned
clusterization process in situ, based on concrete mathe-
matical principles. Accordingly, the idea of a generic
clusterization law connecting together the presented large
spectrum of phenomenon from astrophysics to spin sys-
tems is indeed possible. Our claim is that by fixing
the (H, 21) key parameters as presented above the clus-
ter growth model becomes exactly soluble, being the first
exact solution in this field. This represents a vital source
of information due to the lack of similar (exactly soluble)
theories for other cluster growth models.

In order to obtain p(h, 21) with the property H,
we built up a cluster by adding element after ele-
ment, deducing p(CM, 21) via integration with cutoff

P(h, 21)
Ii=]
X P11[m(M —2, M —1)] .

The ith term in the main product expresses the fact
that E; 1 has no neighbors in a sphere of radius m(i-
l, i) and has a counterpart in a spherical shell [m(i—
1, i), m(i —l, i) + dm(i —1, i)]. The last P0 in Eq. (1)
defines and ends the sequence of the cluster, fixing
the number of components to M. To obtain the final

probability, we integrate Eq. (1) over fixed histories as

in r, as follows. The probability that an element
has no neighbors within a sphere of radius r is
the well known [30] form P0(r) = exp( —n), where
n = (4/3)em, r '-.The probability that an element does
exist in a spherical shell [30] between (r, r + dr) is
dP(r) = n, » = 3udr/r Thus, the probability that a
given element has its nearest neighbor between r and
r + dr is P1(r)dr = P0(r)dP(r) = 3u(dr/r)exp( —u).
This is the history probability for one element,
which integrated (because of g) up to m~ will
give p(CM=1, il) = exp( —a'), a' = a(r = m~). The
probability of having a two component cluster is obtained
as follows: The probability that a given element E0
has its nearest neighbor E~ between r and r + dr is
again P0(r)dP(r). Though E1 has no neighbors at a
distance less then r. Accordingly, the history proba-
bility becomes P2(r)dr = P0(r)(dP)P0(r), obtaining
P2(r)dr = 3u(dr/r) eXp( —2a). Integrating OVer r up
to m~, we find p(CM=2, g) = 1/2 —exp( —2a')/2.
Considering a cluster of three components, the proba-
bility that an element E0 has its nearest neighbor E1
between r] and r] + dr [, E] has its nearest neigh-
bor E2 between r2 and r.. + dr2, r/ —r2 but E2
has no other neighbors at a distance less then r2,
i P3(rl r2)drl dr2 P0(rl)dP(r1)P0(r2)dP(r2)PO(r2).
Integrated over f0 dr1 f0' dr2, it is obtained
p(CM=3, g) = 1/3 —exp( —u')/2 + exp( —3u')/6. The
above procedure can be easily generalized for M & 3.
The history probability for fixed M is given as

M —]

(P0[m(i —1, i)]dP[m(i —1, i)])

~ ~

~~ ~~

~ ~

m~ m(O, ]) m{i -Z, t
—]) m(+-3,M -2)

dm(0, 1) dm(1, 2)... dm(i —1,i).. dm. (M —2, M —1),
H(CM) 0 0 0 0

obtaining

PM p(CM~ ri)
( 1)M+1 M 2

( 1)j
9C + (1 —BM1) g AM 2,3Cj,M ~ 1,

M! .=0 J'

{-]) (-1)"'
wheretheequationA; =

~, 21, + (1 —6;0)g,' . j. X

A;, i «0, 9C =exp( u') and —g,. 0A; = 1. It
can be shown that PM ~ 0 and QM PM = p. 0A' +
(1 —g", A;) g". ,[(—1)'+'/j!]3C' —= 1 automatically
holds. Furthermore, for fixed m~, in M ~ limit, I'~
decreases to zero.

With the knowledge of PM, different configurational av-

erages can be calculated exactly. For example, the average
elements in the cluster M = gM, MPM = eexp( —3C)
equals e = 2.718 for m~ ~ and 1 for m~ ~ 0. In
many experiments the g —= k&T condition holds, in which
case at T -. 0, PM = AM 2, and PM=0 = 0 [31]. The
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susceptibility g of a random spin system can also be deter-
mined exactly using g = (n, /3T)g~, P&S~(S& + 1),
where S~ is the average number of spins within a clus-
ter. In the case of spin systems [6), J(r) is a strongly
decreasing function [25,32]. By direct calculation,
considering Ising spins, we obtain SM = S f„, drill +
g„,[[]';:",sgn J(r;)]i x Q,':,[f„",' ' dr; Pl(r;)], where

rp = a/v 2 is the lowest possible distance between
the Eu ions, sgn J(r) is given in Ref. [25], and
9C is deduced using the experimental data [25]
9C = exp[ —0.00275 ln3(6.93/T)] [32]. From the suscep-
tibility we can calculate the Curie constant, C = 3Ty/n„
to be C/C = g~, BMP~. The T dependence of
the Curie constant C, normed to its high temperature
value (C ), is compared to the experimental data [6] of
(Eu„Sr| „)S at concentration x = 0.025 in Fig. 1. For
any given concentration, the calculated expression of the
Curie constant is exact. In Fig. 1 we have x = 0.025,
this determines the BM coefficients exactly (e.g., B& = 1,
B2 = 0.2768, and B3 = 0.1366). Accordingly, the theo-
retical curve from Fig. 1 contains no fitting parameters.
The clear match between the measured C/C and our
theory is proof that our model explains accurately the
behavior of the (Eu, Sr& „)S system in the mentioned x
range.

Similarly, the same can be stated for other calculated
quantities given that experimental data are available. In
Fig. 2 we present our theoretical [33] normed abundances
PM/P„, as a function of the cluster size M together with
different measurements of small carbon clusters, obtained

under various circumstances: CM, CM measurements ob-
tained via sublimation [19], sputtering [20] with Ar+ or
Cs+, and laser evaporation [21,22]. The differences in
electron affinities [8,16] account for the odd-even abun-
dances alternations seen in the experimental data. The
theoretical results are based only on short-range condi-
tions and statistics, and do not contain concrete informa-
tion on the carbon chemistry or interaction potential. The
differences, relative to measurements, increase around
M = 9, exactly in the region where experiments have in-
dicated nonlinear cluster emergence [15,17]. Our model
in the low T limit gives [31] P3/P5 = A&/A3 = 10.0,
which is remarkably close to the measured 11 carbon star
[3] value. The calculated M is -2.7 at low T, and, slowly
decreasing with increasing T, can be compared to both
experimental and Monte Carlo (MC) data. The exper-
imental data [3,19,20], where M —2 —3 was measured,
confirm the calculated value. In the case of the hard dipo-
lar spheres, the comparison between the calculated M with
the MC data [10] is presented in Fig. 3, as a function of
the concentration p. The MC data fitted in Fig. 3 are
specific for chainlike clusters, deduced in the short-range
regime [34], at fixed high temperature.

In conclusion, we have presented the first exact solution
for a cluster growth model, describing chainlike histories,
demonstrating the feasibility of a generic cluster law on a
large spectrum of physical systems.
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FIG. 1. The temperature dependence of the normalized Curie
constant (solid line) is compared with measured data (stars)
from Ref. 6 for (Eu, Sr|,)S, x = 0.025.

FIG. 2. Normalized carbon cluster abundances as a function
of the cluster size M (stars, the long dashed curve is guide
for the eye). The experimental data were taken from Ref. 19
(circles); Ref. 20 with Ar (squares) and with Cs (diamonds)
sputtering; Ref. 21 (uiangles up); and Ref. 22 (triangles down).
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