
Asymptotic inference for nearly unstable

multidimensional AR processes

by G. Pap∗ and M. van Zuijlen∗∗

Nearly unstable multidimensional AR models are studied where

the coefficient matrices have some special form. Weak convergence

of the sequence of the appropriately normalized LSE of the coeffi-

cient matrices is proved. A natural connection between the discrete

and the corresponding continuous time models is presented.

1. Introduction

Consider the d–dimensional autoregressive model

{
Xk = QXk−1 + εk, k = 1, 2, . . .
X0 = 0,

(1)

where the d–dimensional random column vector εk contains the (unobservable) ran-

dom innovations (disturbances, noises) at time k, and the d × d matrix Q is the

unknown parameter of the model. The least-squares estimator (LSE) of Q based on the

observations X1, . . . , Xn is given by

Q̂n =
(∑n

k=1
XkX

′
k−1

) (∑n

k=1
Xk−1X

′
k−1

)−1
. (2)

Let %(Q) denote the spectral radius of the matrix Q, i. e., the maximum of the absolute

value of the eigenvalues of the matrix Q.

When %(Q) < 1, the model is said to be asymptotically stationary . Under the

assumption that the εk’s are i.i.d. with Eεk = 0, Eεkε′k = Σ, the LSE of Q is

asymptotically normal:

(Q̂n −Q)
(∑n

k=1
Xk−1X

′
k−1

)1/2 D−→ Nd×d(0, I), as n→∞, (3)
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where
D−→ denotes convergence in distribution and I is the unit matrix (see Mann and

Wald [16] and Anderson [1]). By another normalization:

√
n (Q̂n −Q)

D−→ Nd×d(0, F−1 ⊗ Σ), as n→∞,

where F =
∑∞
k=0 Q

kΣ(Q′)k is the covariance matrix of the stationary distribution (being

the unique solution of the equation Σ +QFQ′ = F ).

When %(Q) = 1, the model (1) is said to be unstable. It was shown by White [23]

that in the case of the one-dimensional unstable AR(1) model Xk = βXk−1 + εk, k ≥ 1,

with β = 1, the variables n(β̂n − β) converge in law to a random variable:

n(β̂n − β)
D−→

∫ 1
0 W (t) dW (t)
∫ 1

0 W
2(t) dt

, (4)

where W (t), t ≥ 0 is a standard Wiener process. In case of the one-dimensional

unstable AR(p) model Chan and Wei [6] proved that with suitable normalizing matrices

δn the sequence δ−1
n (β̂n − β) converges in law and gave the representation of the limit

distribution. This representation involves multiple stochastic integrals with respect to

Wiener processes and has a very complicated form.

Fountis and Dickey [8] considered multidimensional unstable models with a matrix Q

having one eigenvalue equal to 1 and the rest less than 1 in magnitude and obtained the

limit distribution of the appropriately normalized LSE of the largest eigenvalue. The gen-

eral multidimensional unstable models are studied in Sims, Stock and Watson [20], and in

Tsay and Tiao [22]. Arató [3] has drawn the attention to the connection between discrete

and continuous time multidimensional unstable models. This relationship was pointed

out by Kormos [10], [11], and by Kormos and Piterbarg [13] in connection with hypothe-

sis testing of nonstationarity for a (real–valued) Gaussian one–dimensional autoregressive

time series.

The result (4) led to the study of the following so-called nearly nonstationary one-

dimensional AR(1) model (better to call it nearly unstable):

{
Xn,k = βnXn,k−1 + εn,k, k = 1, 2, . . . , n
Xn,0 = 0,

(5)

where βn = 1 + h/n. It was shown by Chan and Wei [4], [5] that

(∑n

k=1
X2
n,k−1

)1/2
(β̂n − βn)

D−→
∫ 1

0 Y (t) dW (t)
(∫ 1

0 Y
2(t) dt

)1/2
, (6)

where Y (t), t ∈ [0, 1] is an Ornstein-Uhlenbeck process defined as the solution of the

stochastic differential equation

dY (t) = hY (t) dt+ dW (t), Y (0) = 0.
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By another normalization

n (β̂n − βn)
D−→

∫ 1
0 Y (t) dW (t)
∫ 1

0 Y
2(t) dt

, (7)

see, for example, Phillips [18], Jeganathan [9], Dzhaparidze, Kormos, van der Meer and

van Zuijlen [7]). (The above model is called also near integrated and is applied often in

economic theory; see Phillips [18].)

Recently, Jeganathan [9] has considered nearly nonstationary one–dimensional AR(p)

models, i. e., AR(p) models near to an unstable model. He proved that the appropriately

normalized LSE of the coefficients converges in law and gave a very complicated represen-

tation for the limiting distribution in terms of multiple stochastic integrals with respect

to Wiener processes. In the forthcoming paper van der Meer, Pap and van Zuijlen [17] a

simpler form and explanation is given for the asymptotic behaviour of the least-squares

estimators in the nearly nonstationary AR(p) model and the relation between discrete

and continuous time models is clarified.

Nearly unstable multidimensional AR processes are generated according to the scheme
{
Xn,k = QnXn,k−1 + εn,k, k = 1, 2, . . . , n
Xn,0 = 0,

(8)

where {εn,k} is an array of d-dimensional random vectors and Qn, n ≥ 1, is a

sequence of d × d matrices such that Qn → Q, where Q is a matrix with %(Q) = 1.

Phillips [18] treated the case where Qn = eA/n, n ≥ 1, where A is a fixed d × d

matrix. Kormos and Pap [12] investigated the case where Qn = e(γI+A)/n, n ≥ 1, where

γ ∈ R and A is a skew-symmetric matrix and obtained the weak convergence of the log-

likelihood ratio under the assumption that εk’s are i.i.d. normal. The limit distribution

turned out to be the Radon-Nikodym derivative of some continuous time multidimensional

Ornstein-Uhlenbeck process. This indicates a natural connection between discrete and

continuous time models. Stockmarr and Jacobsen [21] studied essentially the case where

Qn = I + n−1A. We remark that these authors considered in fact an additional matrix

in their model. However, this situation will also be covered in our model below, since one

can easily include this extra matrix in the noise process.

The aim of the present paper is to investigate nearly unstable models (8) where the

coefficient matrices have some special form which includes the situations considered by

the authors mentioned above. First we give a necessary and sufficient condition on the

innovations {εn,k} for convergence (in the Skorokhod space D([0, 1] → Rd)) of the

rotated sequence
1√
n
e−[nt]BXn,[nt], t ∈ [0, 1], n = 1, 2, . . .

to a d-dimensional continuous time AR(1) process, where B is a suitable d×d matrix.

Then we shall prove weak convergence of the sequence of appropriately normalized LSE’s
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and finally we give a natural connection between the discrete and the related continuous

time models. It should be remarked that our results essentially include the earlier work

of the above mentioned authors and our method is completely different.

2. Convergence results

For every n = 1, 2, . . . consider the d-dimensional AR(1) model

{
Xn,k = Qne

BXn,k−1 + εn,k, k = 1, 2, . . . , n
Xn,0 = 0,

(9)

where {εn,k}, is an array of d-dimensional random vectors and Qn = eAn/n, n ≥ 1

are d × d matrices such that An → A, B is a known skew-symmetric d × d matrix,

and AnB = BAn, n ≥ 1. (We remark that for each orthogonal matrix C there

exists uniquely a matrix B such that C = eB and B is a skew-symmetric matrix,

i. e. B′ = −B.) The model (9) is nearly unstable, since Qne
B → eB and eB is an

orthogonal matrix.

Since the matrices eAn and eB also commute, the rotated observations

Zn,k = e−kBXn,k, k = 0, 1, . . . , n; n = 1, 2, . . .

form again a nearly unstable d-dimensional model
{
Zn,k = eAn/nZn,k−1 + ζn,k, k = 1, 2, . . . , n
Zn,0 = 0,

(10)

where {ζnk} = {e−kBεn,k} is the rotated array of the random disturbances.

The random step functions

Yn(t) =
1√
n
e−[nt]BXn,[nt], t ∈ [0, 1]

Mn(t) =
1√
n

∑[nt]

k=1
e−kBεn,k, t ∈ [0, 1]

can be considered as random elements in the Skorokhod space D([0, 1] → Rd). We

denote by C([0, 1]→ Rd) the space of Rd-valued continuous functions endowed with the

supremum norm. The supremum norm and the Skorokhod metric on the space D([0, 1]→
Rd) will be denoted by ‖ · ‖∞ and ρ, respectively. We shall need the following

simple lemma, which is based on the continuous mapping theorem and the Skorokhod-

construction.

Lemma 1. Let Φ,Φn : D([0, 1] → Rk) → D([0, 1] → R`), n = 1, 2, . . . be measurable

mappings such that ‖Φn(xn) − Φ(x)‖∞ → 0 for all x, xn ∈ D([0, 1] → Rk) with
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‖xn − x‖∞ → 0. Let Z,Zn, n = 1, 2, . . . be stochastic processes with values in

D([0, 1] → Rk) such that Zn
D−→ Z in D([0, 1] → Rk) and almost all trajectories of

Z are continuous. Then Φn(Zn)
D−→ Φ(Z) in D([0, 1]→ R`).

Proof. Due to the Skorokhod-construction we can find processes Z̃n and a process Z̃,

such that Z̃n
D
= Zn, Z̃

D
= Z and

ρ(Z̃n, Z̃)→ 0 a.s.

Using the fact that Z̃ has continuous trajectories a. s., we conclude that

‖Z̃n − Z̃‖∞ → 0 a.s.

Thus we have

‖Φn(Z̃n)− Φ(Z̃)‖∞ → 0 a.s.

and hence

Φn(Z̃n)
D−→ Φ(Z̃) in D([0, 1]→ R`).

The last relation implies the desired result. 2

Let M(t), t ∈ [0, 1], be a continuous semimartingale with values in Rd. Consider

the continuous time autoregeressive process Y (t), t ∈ [0, 1], defined as the solution of

the stochastic differential equation

dY (t) = AY (t) dt+ dM(t), Y (0) = 0. (11)

Our first theorem gives a necessary and sufficient condition for the weak convergence

Yn
D−→ Y in D([0, 1]→ Rd).

Theorem 1. The following statements are equivalent:

(i) Mn
D−→M in D([0, 1]→ Rd)

(ii) Yn
D−→ Y in D([0, 1]→ Rd)

(iii) (Mn, Yn)
D−→ (M,Y ) in D([0, 1]→ R2d).

Remark. The statement (i) is in other words: the functional central limit theorem holds

for the rotated triangular array {e−kBεn,k}k=1,...,n;n≥1.

Proof. (i)=⇒(iii). Using Itô’s formula we obtain

Y (t) = M(t) + A
∫ t

0
e(t−s)AM(s) ds, t ∈ [0, 1].

A similar formula holds for the random step functions Yn(t), t ∈ [0, 1]:

Yn(t) = Mn(t) + An

∫ [nt]/n

0
eγn([nt]/n−s)Mn(s) ds, (12)
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since (10) implies

Yn(t) =
1√
n

∑[nt]

k=1
e([nt]−k)An/nζn,k,

and

An

∫ [nt]/n

0
e−sAnMn(s)ds = An

∑[nt]

j=1

∫ j/n

(j−1)/n
e−sAndsMn((j − 1)/n)

=
∑[nt]

j=1

(
e−(j−1)An/n − e−jAn/n

)
Mn((j − 1)/n)

=
1√
n

∑[nt]

j=1

∑j−1

k=1

(
e−(j−1)An/n − e−jAn/n

)
ζn,k

=
1√
n

∑[nt]−1

k=1

∑[nt]

j=k+1

(
e−(j−1)An/n − e−jAn/n

)
ζn,k

=
1√
n

∑[nt]−1

k=1

(
e−kAn/n − e−[nt]An/n

)
ζn,k

=
1√
n

∑[nt]

k=1

(
e−kAn/n − e−[nt]An/n

)
ζn,k

= e−[nt]An/n(Yn(t)−Mn(t)).

Hence the processes (M,Y ) and (Mn, Yn) can be expressed as

(M,Y ) = Φ(M), (Mn, Yn) = Φn(Mn), n = 1, 2, . . . ,

where the measurable mappings Φ,Φn : D([0, 1]→ Rd)→ D([0, 1]→ R2d), n = 1, 2, . . .

are defined as

Φ(x)(t) =
(
x(t), x(t) + A

∫ t

0
e(t−s)Ax(s)ds

)
,

Φn(x)(t) =

(
x(t), x(t) + An

∫ [nt]/n

0
e([nt]/n−s)Anx(s)ds

)
.

Applying Lemma 1 we obtain (Mn, Yn)
D−→ (M,Y ) in D([0, 1]→ R2d).

(iii)=⇒(i) and (iii)=⇒(ii) are trivial.

(ii)=⇒(iii). Since the process Y (t), t ∈ [0, 1], is a solution of the stochastic

differential equation (11) we have

Y (t) = A
∫ t

0
Y (s) ds+M(t),

thus

M(t) = Y (t)− A
∫ t

0
Y (s) ds.

A similar formula holds for the partial sum process Mn(t), t ∈ [0, 1]:

Mn(t) =
1√
n

∑[nt]

k=1
(Zn,k − eAn/nZn,k−1)

=
1√
n
Zn,[nt] −

1√
n

(eAn/n − I)
∑[nt]−1

k=1
Zn,k

= Yn(t)− n(eAn/n − I)
∫ [nt]/n

0
Yn(s) ds.
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Hence the processes (M,Y ) and (Mn, Yn) can be expresses as

(M,Y ) = Ψ(Y ), (Mn, Yn) = Ψn(Yn), n = 1, 2, . . . ,

where the measurable mappings Ψ,Ψn : D([0, 1]→ Rd)→ D([0, 1]→ R2d), n = 1, 2, . . .

are defined as follows

Ψ(x)(t) =
(
x(t)− A

∫ t

0
x(s)ds, x(t)

)
,

Ψn(x)(t) =

(
x(t)− n(eAn/n − I)

∫ [nt]

0
x(s) ds, x(t)

)
.

Applying Lemma 1 we obtain (Mn, Yn)
D−→ (M,Y ) in D([0, 1]→ R2d). 2

3. Least-squares estimators

The least-squares estimator of the matrix Qn in the model (9) can be obtained minimizing

the sum of squares
n∑

k=1

‖Xn,k −Qne
BXn,k−1‖2.

The orthogonality of eB implies that the above sum is equal to

n∑

k=1

‖Zn,k −QnZn,k−1‖2,

consequently the LSE is

Q̂n =
(∑n

k=1
Zn,kZ

′
n,k−1

) (∑n

k=1
Zn,k−1Z

′
n,k−1

)−1
. (13)

From now on we shall put the following condition on the random disturbances {εn,k}.

(C) εn,k, k = 1, . . . , n, n ≥ 1 is a triangular array of d-dimensional square integrable

martingale differences with respect to the filtrations (Fnk)k=0,1,...,n;n≥1 such that

for all t ∈ [0, 1]

1

n

[nt]∑

k=1

E(εn,kε
′
n,k|Fn,k−1)

P−→ I, as n→∞

and

∀α > 0
1

n

[nt]∑

k=1

E(‖εn,k‖2χ{‖εn,k‖>α
√
n}|Fn,k−1)

P−→ 0, as n→∞.
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Theorem 2. Suppose that the array εn,k, k = 1, . . . , n, n ≥ 1, satisfies the condition

(C). Then

n(Q̂n −Qn)
D−→

∫ 1

0
(dW (t))Y ′(t)

(∫ 1

0
Y (t)Y ′(t) dt

)−1

,

where the process Y (t), t ∈ [0, 1], is given by

dY (t) = AY (t)dt+ dW (t), Y (0) = 0,

and W (t), t ∈ [0, 1], is a standard d-dimensional Wiener process.

By another normalization

(Q̂n −Qn)
(∑n

k=1
Xk−1X

′
k−1

)1/2 D−→
∫ 1

0
(dW (t))Y ′(t)

(∫ 1

0
Y (t)Y ′(t) dt

)−1/2

.

Proof. Orthogonality of the matrix eB implies that the rotated array ζn,k, k = 1, . . . , n,

n ≥ 1, also satisfies the condition (C), so using a version of the functional central limit

theorem on the space D([0, 1] → Rd) (Theorem 7.11 in Liptser and Shiryayev [15])

we obtain Mn
D−→ W in D([0, 1] → Rd). Applying Theorem 1 we can conclude

(Mn, Yn)
D−→ (W,Y ) in D([0, 1]→ R2d). This implies weak convergence of the stochastic

integrals

(∫ 1

0
Yn(t)Y ′n(t) dt,

∫ 1

0
(dMn(t))Y ′n(t)

)
D−→

(∫ 1

0
Y (t)Y ′(t) dt,

∫ 1

0
(dW (t))Y ′(t)

)

(see, for example, Proposition 6 in Jeganathan [9]). Moreover,

Q̂n =

(
n∑

k=1

(QnZn,k−1 + ζn,k)Z
′
n,k−1

)(
n∑

k=1

Zn,k−1Z
′
n,k−1

)−1

= Qn +
1

n

(∫ 1

0
(dMn(t))Y ′n(t)

)(∫ 1

0
Yn(t)Y ′n(t) dt

)−1

.

Since the matrix
∫ 1

0 Y (t)Y ′(t) dt is invertible with probability 1 we can apply the con-

tinuous mapping theorem. 2

4. Connection with continuous time AR processes

Let W (t), t ∈ [0, 1], be a standard d-dimensional Wiener process. Consider the

continuous time autoregressive process given by

dY (t) = AY (t)dt+ dW (t), Y (0) = 0. (14)
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Consider the measures PW and PY on C([0, 1]→ Rd) generated by the processes W

and Y , respectively. It is known that PY is absolutely continuous with respect to the

measure PW and the Radon-Nikodym derivative has the form

dPY
dPW

(Y ) = exp
{
−1

2

∫ 1

0
‖AY (t)‖2dt+

∫ 1

0
〈AY (t), dY (t)〉

}
. (15)

Consequently the maximum likelihood estimator (MLE) of the matrix A based on the

observations Y (t), t ∈ [0, 1], in the model (14) is given by

Â =
∫ 1

0
(dY (t))Y ′(t)

(∫ 1

0
Y (t)Y ′(t) dt

)−1

.

(See, for example, Le Breton [14], Arató [2]).

Corollary 1. Suppose that the array εn,k, k = 1, . . . , n, n ≥ 1, satisfies the condition

(C). Then

n(Q̂n − I)
D−→ Â,

where Â is the maximum likelihood estimator of the matrix A based on the observations

Y (t), t ∈ [0, 1], in the model (14).

Proof. Using Itô’s formula we obtain

Â = A+
∫ 1

0
(dW (t))Y ′(t)

(∫ 1

0
Y (t)Y ′(t) dt

)−1

.

Theorem 2 implies

n(Q̂n − I) = n(Q̂n −Qn) + n(eAn/n − I)
D−→ Â. 2

Consider now the quadratic form

Ln(Xn,1, . . . , Xn,n) = −1

2

(
n∑

k=1

‖Xn,k −Qne
BXn,k−1‖2 −

n∑

k=1

‖Xn,k − eBXn,k−1‖2

)
,

connected with the LSE Q̂n. We remark that if the innovations {εn,n} are normal then

Ln(Xn,1, . . . , Xn,n) is just the log-likelihood ratio. Denote the log-likelihood ratio of the

process Y (t), t ∈ [0, 1] by

L(Y ) = log
dPY
dPW

(Y ).

Corollary 2. Suppose that the array εn,k, k = 1, . . . , n, n ≥ 1, satisfies the condition

(C). Then

Ln(Xn,1, . . . , Xn,n)
D−→ L(Y )

in R.
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Proof. Using the same arguments as in the proof of Theorem 1 we obtain

−2Ln(Xn,1, . . . , Xn,n) =

=
n∑

k=1

‖(Qn − I)Zn,k−1‖2 − 2
n∑

k=1

〈Zn,k − Zn,k−1, (Qn − I)Zn,k−1〉

=
∫ 1

0
‖n(Qn − I)Yn(t)‖2 dt− 2

∫ 1

0
〈dYn(t), n(Qn − I)Yn(t)〉

D−→
∫ 1

0
‖AY (t)‖2 dt− 2

∫ 1

0
〈dY (t), AY (t)〉.

The assertion is proved. 2
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