
7 March 1996 

EL.‘XVIER Physics Letters B 370 ( 1996) 174- I84 

PHYSICS LETTERS 13 

Search for charged Higgs bosons using the OPAL detector at 
LEP 

OPAL Collaboration 

G. Alexander w, J. Allison P, N. Altekampe, K. Ametewee Y, K.J. Anderson i, S. Anderson ‘, 
S. Arcelli b, S. Asai ‘, D. AxenaC, G. Azuelos’,‘, A.H. Ballq, E. Barberio”, R.J. Barlowp, 

R. Bartoldus ‘, J.R. Batley e, G. Beaudoin r, J. Bechtluft”, G.A. Beck m, C. Beeston P, 
T. Behnke h, A.N. Bell ‘, K.W. Bell t, G. Bella”, S. Bentvelsen h, P. Berlichj, S. Bethke n, 
0. Biebel n, I.J. Bloodwortha, J.E. Bloomer”, P. Bock k, H.M. Bosch k, M. Boutemeur r, 

B.T. Bouwens “, S. Braibant ‘, P Bright-Thomas y, R.M. Brown t, H.J. Burckhart h, 
C. Burgard aa, R. Burgin j, P. Capiluppi b, R.K. Carnegie f, A.A. Carter m, J.R. Cartere, 

C.Y. Changq, C. Charlesworth f, D.G. Charlton a,2, D. Chrisman d, S.L. Chu d, 
P.E.L. Clarke O, S.G. Clowes P, I. Cohen w, J.E. Conboy O, O.C. Cooke P, M. Cuffiani b, 

S. Dado “, C. Dallapiccola q, G.M. Dallavalle b, C. Darling ae, S. De Jong ‘, L.A. de1 Pozo h, 
M.S. Dixitg, E. do Couto e Silva@, E. Duchovni”, G. Duckeck h, I.P. Duerdothr, 
U.C. Dunwoody h, J.E.G. Edwards P, P.G. Estabrooks f, H.G. Evans i, F. Fabbri b, 

B. Fabbro “, P. Fath k, F. Fiedler’, M. Fierrob, M. Fincke-Keelerab, H.M. Fischer ‘, 
R. FolmanZ, D.G. Fong 9, M. Foucher 4, H. Fukui ‘, A. Ftirtjes h, P. Gagnon g, A. Gaidot “, 

J.W. Gary d, J. Gascon’, S.M. Gascon-Shotkin 9, N.I. Geddes I, C. Geich-Gimbel ‘, 
S.W. Gensler’, F.X. Gentit “, T. Geralis t, G. Giacomelli b, P. Giacomellid, R. Giacomelli b, 
V. Gibsone, W.R. Gibson m, D.M. GingrichadT’, J. Goldberg”, M.J. Goodricke, W. Gornd, 

C. Grandi b, E. GrossZ, C. Hajdu , af G.G. Hanson ‘, M. Hansroul h, M. Hapke m, 
C.K. Hargrove s, P.A. Hart i, C. Hartmann ‘, M. Hauschild h, CM. Hawkes h, R. Hawkings h, 

R.J. Hemingway f, G. Hertenj, R.D. Heuer h, M.D. Hildrethh, J.C. HilIe, S.J. Hillierh, 
T. Hilsej, P.R. Hobson y, D. Hochman ‘, R.J. Homer ‘, A.K. Honma ab*l, D. Horvath af*3, 
R. Howard ac, R.E. Hughes-Jones P, D.E. Hutchcrofte, P. Igo-Kemenes k, D.C. Imrie y, 

A. Jawahery q, P.W. Jeffreys t, H. Jeremie r, M. Jimack”, A. Joly r, M. Jones f, 
R.W.L. Jones h, U. Jost k, P. Jovanovic ‘, D. Karlen f, T. Kawamoto ‘, R.K. Keeler ab, 

R.G. Kelloggq, B.W. Kennedy’, B.J. Kingh, J. Kingm, J. KirkaC, S. Kluthe, T. Kobayashi”, 
M. Kobel j, D.S. Koetke f, T.P. Kokott c, S. Komamiya ‘, R. Kowalewski h, T. Kress k, 
P. Krieger f, J. von Krogh k, P. Kyberd m, G.D. Lafferty P, H. Lafoux “, R. Lahmann q, 

W.l? Lai s, D. Lanske n, J. Lauber O, J.G. Layter d, A.M. Lee ae, E. Lefebvre r, D. Lellouch ‘, 

Elsevier Science B.V. 

SSDI 0370-2693(96)00029-9 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/160987792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


OPAL Collaboration/Physics Letters B 370 (19961 174-184 175 

J. Letts b, L. Levinson”, C. Lewis O, S.L. Lloydm, F.K. Loebingerp, G.D. Longq, 
B. Lorazo’, M.J. Losty g, J. Ludwigj, A. Luigj, A. Malik”, M. Mannelli h, S. Marcellinib, 

C. Markus ‘, A.J. Martin m, J.P. Martin r, G. Martinez q, T. Mashimo ‘, W. Matthews Y, 
P. Mattig c, W.J. McDonald ad, J. McKenna ac, E.A. Mckigney O, T.J. McMahon a, 

A.I. McNabm, F. Meijers h, S. Menke ‘, ES. Merritt i, H. Mes s, J. Meyer ;Lil, A. Michelini h, 
G. Mikenberg ‘, D.J. Miller O, R. Mir z, W. Mohrj, A. Montanari b, T. Mori ‘, M. Morii ‘, 

U. Mtiller ‘, B. Nellen’, B. Nijjharp, R. Nisius h, S.W. O’Neale”, F.G. Oakhamg, 
F. Odorici b, H.O. Ogren ‘, N.J. Oldershaw P, T. Omori ‘, C.J. Oram ab*‘, M.J. Oreglia i, 

S. Orito ‘, M. Palazzo b, J. Pahnk6sag, EM. Palmonari b, J.P. Pansart “, G. Pasztor af, 
J.R. Pater P, G.N. Patrick t, M.J. Pearce ‘, P.D. Phillips P, J.E. Pilcher i, J. Pinfold ad, 

D.E. Plane h, P. Poffenbergerab, B. Poli b, A. Posthaus”, T.W. Pritchard”, H. Przysiezniakad, 
D.L. Rees ‘, D. Rigby a, M.G. Rison e, S.A. Robins m, N. Rodning ad, J.M. Roney ab, 

E. Rosh, A.M. Rossi b, M. Rosvickab, P. Routenburg ad, Y. Rozen h, K. Rungej, 
0. Runolfssonh, D.R. Rust”, R. Rylkoy, EKG. SarkisyanW, M. Sasaki”, C. Sbarrab, 
A.D. Schaile h, 0. Schailej, F. Scharfc, P. Scharff-Hansenh, P. Schenk d, B. SchmittC, 

M. Schroderh, H.C. Schultz-Coulonj, M. Schulz h, P SchtitzC, J. Schwieningc, W.G. Scott ‘, 
T.G. Shearsp, B.C. Shend, C.H. Shepherd-Themistocleousm, P. SherwoodO, G.P. Sirolib, 

A. Sittler aa, A. Skillman’, A. Skuja q, A.M. Smith h, T.J. Smithab, G.A. Snow q, R. Sobie ilb, 
S. Soldner-Remboldj, R.W. Springer ad, M. Sproston’, A. Stahlc, M. Starks”, 

C. Stegmannj, K. Stephensp, J. Steuererab, B. Stockhausenc, D. Strom”, F. Strumiah, 
P. Szymanski t, R. Tafirout’, H. Takeda”, P. Tar-as r, S. Tarem”, M. Tecchio h, N. Tesch ‘, 
M.A. Thomson h, E. von Tome c, S. Towers f, M. Tscheulinj, T. Tsukamoto ‘, E. Tsur w, 
A.S. Turcot i, M.F. Turner-Watson h, P. Utzat k, R. Van Kooten ‘, G. Vasseur “, P. Vikas r, 

M. Vincter ab, E.H. Vokurkap, F. Wackerlej, A. Wagner”“, D.L. Wagner i, C.P. Ward”, 
D.R. Ward e, J.J. Ward O, PM. Watkins a, A.T. Watson ;I, N.K. Watson g, P Weber f, 
P.S. Wells h, N. Wermes’, B. Wilkensj, G.W. Wilson”, J.A. Wilson”, T. Wlodek”, 

G. Wolfz, S. Wottonk, T.R. Wyatt P, S. Xellab, S. Yamashita ‘, G. Yekutieli ‘, V. Zacek r 
’ School of Physics and Space Research, University of Birmingham, Birmingham El5 ZTT, UK 

h Dipartimento di Fisica dell’ Universitd di Bologna and INFN, I-40126 Bologna, Italy 
’ Physikalisches Institut. Universitiit Bonn, D-531 15 Bonn, Germany 

* Department of Physics. University of California. Riverside, CA 92521. USA 
’ Cavendish Laboratory, Cambridge CB3 OHE, UK 

’ Ottawa-Carleton Institute for Physics, Department of Physics. Carleton University, Ottawa, Ont. KIS 586, Canada 
$ Centre for Research in Particle Physics, Carleton University, Ottawa, Ont. KIS 586, Canadu 

h CERN. European Organisation for Particle Physics, CH-1211 Geneva 23. Switzerland 
’ Enrico Fermi Institute and Department of Physics, University of Chicago, Chicago, IL 60637. USA 

j Fakultilt fur Physik, Albert Ludwigs Universitiit, D-79104 Freiburg, Germany 
k Physikalisches btstitut. Universitiit Heidelberg, D-69120 Heidelberg, Germany 

’ Indianu University, Department of Physics, Swain Hall West I1 7, Blooming/on, IN 47405, USA 
m Queen Mary and Westfield College, University of London, London El 4NS, UK 

” Technische Hochschule Aachen, 111 Physikalisches Institut, Sommerfeldstrasse 26-28. D-52056 Aachen. German) 
’ University College London, London WCIE 687: UK 

P Department of Physics, Schuster Laboratory, The Universiry, Manchester Ml3 9PL, UK 
9 Department of Physics, University of Maryland, College Park, MD 20742, USA 

’ Laboratoire de Physique Nucleaire, Universite’ de Montreal. Montreal, Que. H3C 3J7, Canada 



176 OPAL Collaboration/ Physics Letters B 370 11996) 174-184 

’ University of Oregon. Department of Physics, Eugene. OR 97403, USA 

’ Rutheflord Appleton Laboratory, Chilton. Didcot, Oxfordshire OX11 OQX, UK 

’ CEA, DAPNIMSPF CE-Saclay, F-91191 Gtf-sur-Yvette, France 

’ Department of Physics, Technion-Israel Institute of Technology, Haifa 32000. Israel 

w Department of Physics and Astronomy, Tel Aviv Univer.Gry Tel Aviv 69978. Israel 

* International Centre for Elementary Particle Physics and Department of Physics, University of Tokyo. Tokyo 113. Japan 

and Kobe University, Kobe 657, Japan 

Y Brunel University. Uxbridge, Middlesex LIB8 3PH. UK 

’ Particle Physics Department, Weizmann Institute of Science, Rehovot 76100. Israel 

‘lil Universitiir Humburg/DESr II In.s!itur ,jtir Experimental Physik, Notkestrasse 85. D-22607 Hamburg. Germany 

ah Univetxity of Victoria, Department of Physics, P 0. Box 3055, Victoria. RC V8W 3P6. Canada 

” University of British Columbia, Department of Physics, Vtmcouvet: BC V6T IZI, Canadu 

ad Universitv of Alberta, Department of Physics. Edmonton, AB T6G ZJI, Canada 

ae Duke Universio: Department of Physics, Durham, NC 27708-0305. USA 

” Research Institute for Particle and Nuclear Physics, PO. Box 49. H-1525 Budapest, Hungary 

ag Institute of Nuclear Research, PO. Box 51. H-4001 Debrecen. Hungnry 

Received 15 December 199.5 

Editor: K. Winter 

Abstract 

A search is described to detect charged Higgs bosons via the process Z” + H+H-, using data collected by the OPAL 
detector at LEP which correspond to an integrated luminosity of approximately I 10 pb-‘. It is assumed that the Hi boson 
decays only to T+Z+ and CS final states. From the negative outcome of this search a lower bound of 44.1 GeV (95% CL) 
is derived for the mass of the charged Higgs boson. 

1. Introduction 

The interactions between elementary particles are 

well described by the Standard Model (SM) [ I]. 
However, basic questions such as the mechanism of 

spontaneous symmetry breaking and the origin of mass 

are still awaiting a satisfactory explanation. The Higgs 

mechanism [ 21 proposes possible answers but, lack- 
ing the material proof that would be provided by the 
discovery of a Higgs boson, the proposed mechanism 

remains an attractive working hypothesis only. 
In the minimal SM, which uses one scalar field dou- 

blet, a single neutral Higgs boson is predicted. Ex- 
tensions of the model predict a larger Higgs sector 
[3]. The minimal extension of the SM, which uses 
two scalar field doublets, predicts five Higgs bosons 
of which three are neutral (ho, Ho and A’) and two 
are charged (H+ and H- 1. The discovery of a charged 

’ Also at TRIUME Vancouver, Canada V6T 2A3. 

? Royal Society University Research Fellow. 

’ Institute of Nuclear Research, Debrecen. Hungary 

Higgs boson would point without ambiguity towards a 

non-minimal Higgs sector. Beyond the SM, supersym- 

metric (SUSY) extensions are today regarded as the 
most promising models since they propose “natural” 
answers to the question of energy scales (the problem 
of hierarchy) and, at the same time, share the success 

of the SM in describing the observed particfe physics 

phenomena. At the tree level, the Minimal Supersym- 
metric Extension of the Standard Model (MSSM), 
a SUSY model with two scalar field doublets, pre- 

dicts for the mass, mHi, of the charged Higgs bosons 
mH& > Mw+. This relation is modified only slightly 
when radiative loop corrections are considered. Con- 

sequently, the detection of the process Z” --+ H+H-, 
which would imply mH* < MZ0/2, would invalidate 
the MSSM. 

Higgs boson searches at the e’e- collider LEP have 
placed lower bounds on the mass of the SM Higgs bo- 
son (z 60 GeV [4] ) and, within the MSSM, on those 

of the scalar ho (= 44 GeV) and the pseudoscalar 
A0 (M 24 GeV) [ 51. Searches for the process Z” --f 
H+H- have also been carried out [6-81. The best 
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limit so far is mu+ > 43.5 GeV (95% CL) [ 71. In 
a previous search based on about 30,000 Za decays, 
OPAL obtained n$+ > 35 GeV (95% CL) [ 61. The 

present work describes a new analysis based on more 
than 4 million Z” decays. 

The decay width of the process e+e- -+ Z” --+ 
H+H- is given by [9] 

I(Z” + H+H-) 

=~(t-sinzcw~2(l-~)3’2 (1) 

IT 

where GF is the weak coupling constant and 0~ the 
electroweak mixing angle. At a centre of mass energy 
& = Mzo and for mui = 40 GeV this yields a cross 

section of 46 pb. For M, < Ittt+ < ( Mt + Mb) the 
charged Higgs boson decays preferentially into r+vr 

and cS. The H+ -+ c6 decay is suppressed by the small 

clement, I$/,, of the CKM matrix. The decay of the 
charged Higgs boson is model dependent; although in 
models with two field doublets one can assume that 
the two main channels, r+v, and cS, saturate the decay 

131. 
The present search is carried out separately for 

three possible final states: leptonic, H+H- -+ 
( T+v,) (T-F+) ; semi-leptonic, HfH- + ( Q-+zJ,) (es) 
-t(r-I/,)(cS); hadronic, HfH- -+ (cS)(Es). In a 
sample of Nzo( ,/X) Z” decays taken at fixed fi, the 
expected number of HtH- events with the Higgs 

hosons decaying into final states i and j is given by 

N;j(& = Nzo(& 
I’(Z” --+ H+H-) 

r70 
Bri Brj Eij 

(2) 

where I~o is the width of the Z” boson, Bri,,i are the 
Hi branching ratios and eij is the detection efficiency 

for the final state H+H- -+ ij. 

The searches for the semi-leptonic and hadronic 
final states use selection criteria which do not depend 

explicitly on the assumed quark flavour but rather on 
kinematic distributions of the reconstructed hadron 
jets. Due to their harder fragmentation, b-jets are 
reconstructed more efficiently than those of light- 
havoured quarks. For this reason, the results which 
are obtained for the CS final state can be assumed to 
be valid even in the case of sizeable contributions 
from H+ + c6. By combining the searches in the 
leptonic, semi-leptonic and hadronic channels, mass 

limits are obtained for any value of the branching 
ratio Br( H+ -+ ~+v,). 

2. Experimental data 

The present search is based on data collected by 
the OPAL experiment up to the end of 1994. it corre- 

sponds to an integrated luminosity of approximately 

110 pb- ’ , where 80% were collected at fi = Mza, 

10% at fi x Mzo - 2 GeV and 10% at fi = 

Mzo + 2 GeV. 
The OPAL detector [ IO], with its acceptance of 

nearly 47r steradians, and with its good tracking, 

calorimetry and particle identification capabilities, is 
well suited to this analysis which searches for widely 
different event topologies. The apparatus consists of 
a central tracking detector inside a 0.435 Tesla mag- 

netic field surrounded by a lead-glass electromagnetic 
calorimeter together with presamplers and time-of- 
flight scintillators which are located outside the mag- 

net coil. The magnet return yoke is instrumented for 
hadron calorimetry and is covered by external muon 

chambers. Calorimeters close to the beam axis form 

the forward detector which measures the luminosity 
and completes the geometrical acceptance. The for- 
ward detector contains lead-scintillator calorimeters 

which were later complemented by silicon-tungsten 
calorimeters. 

The event analysis uses charged particle tracks and 

electromagnetic energy clusters selected according 
to standard quality requirements [ 1 1 ,I 21. Accepted 
tracks have more than 20 measured space points, 
originate from the vicinity of the e’e- interaction 
point, and have a transverse momentum in excess of 

50 MeV. Accepted electromagnetic clusters in the 
barrel region (with polar angle 0 satisfying j cos B / < 
0.82) have energies of greater than 100 MeV. Those 
in the endcap region (0.81 <I COSB I< 0.984) have 
more than 200 MeV energy and consist of at least 

two adjacent lead glass blocks. Energy clusters in the 
hadron calorimeter are only used in the semi-leptonic 
channel to improve the hadronic mass resolution. In 
the hadronic final state the best mass resolution is 
obtained by kinematic fitting. 

The search for the leptonic final state is based on 
those Z” boson decays with low multiplicity where the 
number of tracks and clusters is limited to less than 19 
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in total. The sample contains mainly leptonic Z” boson 
decays, two-photon events, low-multiplicity hadronic 

Z” boson decays and cosmic ray muons, Cosmic ray 

muons are eliminated using the timing information 
from the time-of-flight counters and by checking the 

matching of the tracks to the e+e- interaction point. 
For the semi-leptonic and the hadronic final states the 

standard selection of hadronic Z” decays [ 111 is used. 

This requires events to have at least 5 tracks and 7 

clusters and a minimum energy in the electromagnetic 
calorimeter, E/G > 0.1. In all three search channels, 
two-photon events are reduced by requiring less than 
2 GeV energy in the forward detector. 

The signal detection efficiencies and background 
suppression factors are obtained from extensive Monte 

Carlo simulations. For the Z” + H+H- process the 
event generator embedded in the PYTHIA program 
package [ 131 is used. The process Zc + hadrons is 

generated using the JETSET 7.3 parton-shower Monte 
Carlo [ 141 with parameters tuned to OPAL data [ 151 

which is also used to model the hadronization process 

in H* decays. For Z” ---) ,u+/_- and r+r-, KORALZ 
[ 161 isusedandforz’ -+ e+e-,BABAMC[ 17].The 
generated events are processed by the OPAL detector 

simulation [ 181 and event reconstruction programs. 
In general, the full simulation of the OPAL detector is 

used. In some cases a less detailed but faster version 

of the simulation is used to obtain higher statistics. 

2.1. The leptonicfinal state 

The signature for the leptonic channel, H+H- -+ 

(5-+v,) (~-3~), is a pair of low-multiplicity, acopla- 
nar jets. Since the r * decay products are strongly col- 
limated, a cone algorithm is used to recognize possi- 
ble signal events. The cone algorithm starts with the 
particle (track or cluster) having the highest energy 
and searches within a cone of 20” half-angle for the 
particle with the next-highest energy. If such a par- 
ticle is found, the two momentum vectors are added 
to define the axis of a new cone and the procedure is 
repeated until no more particles can be added to that 
cone. Of the remaining particles, the particle with the 
highest energy is taken as the starting point to build a 
new cone, and the above procedure is repeated until 
all particles are assigned to a cone. The energy inside 
a cone is then calculated by adding up the energy of 
the particles. Special care is taken to avoid double- 

counting of energy in the case of charged particles for 
which the energy is measured both in the tracking de- 
tector and in the electromagnetic calorimeters. If one 
or several tracks are pointing towards a given cluster, 

the momentum-sum of the tracks is subtracted from 

the cluster energy, unless the momentum-sum is larger 
than the cluster energy in which case the cluster en- 

ergy is disregarded. The same procedure is also used 

to calculate the visible energy, Evis, of the entire event. 
An event is retained if it contains exactly two cones 

with at least one charged particle per cone. The energy 

of each cone has to be larger than 2 GeV and the polar 
angle of the two cone axes has to satisfy 1 cos 81 < 
0.7. The energy not included in the two cones has 
to be less than 1% of the beam energy. In addition, 

no charged track is allowed to occur outside the two 
cones and no cluster is allowed to occur close to the 
inner edge of the endcap electromagnetic calorimeter 

(0.97 < / cos 01 < 0.984). 
The background from Z” ---) C+!?- is eliminated by 

requiring the acoplanarity angle 4 , defined by the two 
cone axes, to be larger than 20”. To this end it is es- 
sential to measure the acoplanarity angle with good 

precision. When a charged particle with high trans- 
verse momentum, p,, traverses the tracking detector 
close to a cathode wire plane, the track reconstruc- 

tion algorithm occasionally fails to resolve the left- 

right ambiguity. This creates a spurious mirror track 
which biases the measurement of the acoplanarity an- 

gle. Therefore, events are eliminated if they contain a 

track with pr > 5 GeV, with azimuthal angle within 

1” of that of a cathode plane and no associated elec- 
tromagnetic cluster. This cut affects less than 0.1% 01 
the events. 

The scatter plot of the normalized visible energy vs. 

the acoplanarity angle of the two cone axes is shown 
in Fig. 1 for the data and for simulated H+H- events 
with mnf = 44 GeV. Events with small visible energy 
from two-photon processes are removed by the cut 

Evis/fi > 0.15 indicated in the figure. The acopla- 
narity angle distribution for the data, after the cut, is 
shown in the insert. The tail towards large acoplanarity 
angles comes from r+r- events where one or both 

4 The acollinearity angle is defined as the complement to 180’ of 

the 3-dimensional angle between two vectors and the acq~kun~if.~ 

angle as the projection of the acollinearity angle onto a plane 

perpendicular to the beam direction. 
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Fig. I. Scatter plot of the visible energy vs. the acoplanarity angle, 

defined by the two cone axes, (a) for the data and (b) for a 

simulated H+H- sample with mH* = 44 GeV. The cuts on the 

visible energy and the acoplanarity angle are indicated. Tbe 3 data 

rvents that survived these cuts are circled. The insert shows the 

acoplanarity angle distribution of the data (points with error bars) 

compared to that of a sample of simulated Z” -+ V+B- events 

I histogram), after the cut on the visible energy. 

F* leptons decay into a high-momentum neutrino and 
;I low-momentum charged particle. This tail is ade- 
quately described by the 2’ + r+r- Monte Carlo. 
Only 3 events survive after the acoplanarity angle cut 

indicated in the figure. 
One of the surviving events has a cone containing 

an electron pair from a photon conversion while the 
other cone is consistent with a 3-prong r- decay. Upon 
inspection, the event reveals the hits of a further low- 

momentum track of positive charge which is not re- 
constructed. This track is likely to be a positron from 
the decay of a r+. The event is consistent with the 
<+e- + r+r-y hypothesis and is removed by an al- 
gorithm, applied to all events, which identifies gamma 
conversions. The two remaining events are also con- 
<istent with the efe- -+ 7+7-y hypothesis with the 
radiative photon included in one of the cones, rais- 
ing the cone energy above the required threshold and 
giving rise to a large acoplanarity angle by modifying 
the cone axis. The expectation from the Zc 3 !!+C- 
Monte Carlo, after all cuts, of 1 .Of0.5 events (the er- 
ror is statistical) is in agreement with the two observed 

events. Nevertheless, these two events are considered 
as HfH- candidates when deriving mass limits. 

The detection efficiency for the process HfH- + 
(r+v,) (r-c’,) is z30% for mui > 35 GeV. Sys- 
tematic errors on the detection efficiency, mainly from 

neglecting the r*-polarization in the simulation, are 
small compared to the errors from Monte Carlo statis- 
tics (6%). The inclusion of r*-polarization would 

tend to increase the detection efficiency. Assuming 

Br(H+ + 7+v,) = 1, a lower bound of 45.5 GeV 
(95% CL) is obtained from this channel for the mass 

of the charged Higgs boson. The limit is calculated 
by comparing the expected number of signal events 

(Eq. (2) ), as a function of m,+, to the 95% CL upper 

limit of 6.3 events (2 candidates) [ 191 for a possi- 
ble signal. The expected number of signal events is, 
conservatively, decreased by 6% to take into account 

systematic errors. 

2.2. The semi-leptonicjnal state 

In the search for the semi-leptonic channel, 
HfH- -+ (r+v,)(Es) + (cS)(r-&), only the r* 

decays with one charged track are admitted since 
decays of higher multiplicity are subject to a high 
background from Z” -+ hadrons. The final state is 

thus characterized by two hadronic jets, an isolated 

high-momentum charged track and missing energy. 

The analysis uses the sample of hadronic Z” decays 
[ 1 I] which is then further reduced by requiring at 

least 7 tracks and 7 clusters. Remaining two-photon 
events and Z” + qqr events with an energetic photon 

from initial state radiation are rejected by requiring 
that the forward energy Jlow 5 , measured in the for- 
ward calorimeters and in the endcap electromagnetic 

calorimeters, be less than 10. 
The feature of missing energy in the case of the 

Higgs boson signal is exploited by requiring that the 
scalar sum of all charged track momenta be less than 
50 GeV and that the energy in the electromagnetic and 
hadron calorimeters be less than 50 GeV and 25 GeV, 

SThis quantity has been used in OPAL searches for the SM 

Higgs boson in the e+e- -+ ~BH” channel ( 121. It is defined as 

(Ei + Ei)/E$, where EW is the total energy of the event and 

Ef and Es are weighted energies observed in the forward and 

backward cones defined by ( cos0 I> 0.8. The energies of tracks 

and clusters with polar angle 19 are multiplied by I /sin’ 8, which 

gives more weight to tracks and clusters near the beam-pipe. 
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respectively. The total energy is then obtained by com- 
bining the energy deposited in the tracking chamber 

and in the electromagnetic and hadron calorimeters us- 

ing an algorithm to globally correct the energy [ 201. 

The algorithm gives an optimal weight to the energies 

measured in the tracking detector and in the calorime- 
ters and, in the case of charged particles, reduces the 

effect from double-counting of energy. The corrected 
energy is required to be between 30 and 75 GeV. The 

cuts described so far reduce the data sample to ~5% 

of its original size. 
The events are divided into two hemispheres by a 

plane perpendicular to the thrust axis. For each hemi- 
sphere the globally corrected momentum vector is ob- 

tained and the acollinearity and acoplanarity angles 

defined by the two hemisphere momentum vectors 

are calculated. To further reduce the background from 
hadronic Z” decays, events are accepted if cos &,t < 

0.95 and cos Bacop < 0.99. For the remaining events 

the polar angle of the missing momentum vector is re- 

quired to satisfy 1 cos Amiss I< 0.94 to further reduce 
two-photon and qqy backgrounds. This selection pro- 
vides an additional data suppression factor of ~0.04. 

This selection is followed by a search for an iso- 

lated, energetic, charged track from a one-prong de- 
cay of the r* lepton. The charged track is required 

to have momentum between 3 and 15 GeV and more 
than 7.5 GeV energy (track and cluster energies to- 
gether) is required to be in a nut-row cone of 13” half- 

angle around it. Isolation is imposed by allowing no 
other charged track in a wide cone of 30” half-angle 
around the track and no more than 0.4 GeV of calori- 

metric energy in the annulus between the wide and 
narrow cones. The isolation requirements yield a data 

suppression factor of zO.05. 
All tracks and clusters outside the wide isolation 

cone are assigned to the Hf -+ CS decay. The invari- 
ant mass, rnCS, of this system is calculated. Since this 
search only addresses Higgs bosons with masses less 
than M~u / 2, mcs < 55 GeV is required. Heavy Higgs 
bosons are produced with low kinetic energy, hence, 
the two hadron jets are typically in separate hemi- 
spheres and have an energy close to mui,/2. The cs 
system is therefore divided in two jets using the plane 
perpendicular to its thrust axis. The globally corrected 
energies of the two jets are both required to be be- 
tween 10 and 30 GeV. 

A final selection cut is applied in the scatter plot 
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Fig. 2. Scatter plot of the invariant mass, ,nCs. vs. the acollinearity 

angle of the two hemisphere momentum vectors, for three simu- 

lated H+H- samples with mH+ = 36, 40 and 45 GeV. The large 

dots indicate the 5 data events which remain before the selection 

indicated by the parallel lines. 

of mcs VS. cosecs, shown in Fig. 2, where 8,, is the 

acollinearity angle of the two jet momenta. The fig- 
ure shows the distribution for three simulated H+H- 

event samples with mHk=36,40 and 45 GeV. The cor- 
relation expected from the decay kinematics is clearly 
visible. Events with mass close to the kinematic limit 
(mHf = 45 GeV) cluster at cos B,, M 1 while those 

with muf = 36 GeV cluster at cos 8,, < 0.4. The final 
selection is indicated by the two parallel lines. Before 
this cut there remain 5 events in the data sample (= 
1.5 x 10e6 of the original number of events) which 
are indicated by the large dots. Only one event, with 

mcS x 34 GeV and cos 8,, = 0.2, satisfies the selec- 

tion. This event is taken as a Higgs boson candidate 
when deriving mass limits. The same analysis, applied 
to a sample of 3.5 million simulated hadronic Z” de- 
cays leaves 4 events before the final cut and also one 
single event after. 

The detection efficiencies for the H+H- signal in 
the semi-leptonic final state vary between 6% and 10% 
in the mass range 35 GeV< mn& < 46 GeV. The 
statistical error of these values is less than 10%. The 
systematic error on the detection efficiencies, mainly 
from modelling fragmentation, is estimated to be 5% 
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from comparing simulated event samples with various 
sets of fragmentation parameters. As in the leptonic 
channel, the inclusion of T* polarization in the simu- 
lation would tend to increase the signal detection ef- 
ficiency. Assuming Br(H+ + ~+z+) = 0.5, a lower 
bound of 45.0 GeV (95% CL) is obtained from this 
channel for the mass of the charged Higgs boson. The 
limit is calculated by comparing the expected number 
of signal events (Eq. (2) ), a a function of mHi , to 
the 95% CL upper limit of 4.74 events ( 1 candidate) 
[ 191 for a possible signal. The expected number of 
signal events is decreased by 11% to take into account 
systematic errors. 

2.3. The hadronicjinal state 

The hadronic channel, H+H- -+ (cS) (Es), is 
characterized by an event topology with four hadron 
jets. The predominant background is from higher 
order QCD processes, p + qqgg and qqqq. Candi- 
date events are selected by requiring visible energy, 
EvisI larger than 40 GeV. This cut, together with 
the requirement that the distribution of the electro- 
magnetic cluster energy be longitudinally balanced, 
IX (Ei cos 0i) I/SEi < 0.65 (the sum runs over all 
clusters, Ei and 8i are the energy and polar angle of 
cluster i), eliminates two-photon events and p --) 
qqr events. 

Jets are defined by the Durham scheme [ 211 of 
the YCLUS jet finder [22] using the visible energy 
as the scale parameter and fixing the jet resolution 
parameter, ycut, to 0.01. The jet finder is applied to the 
charged tracks and to those electromagnetic clusters 
which have no track pointing to them. Events with at 
least 4 jets are selected. If more than 4 jets are found 
in an event, the jet finder is reapplied with the value 
of ycut increased until the number of reconstructed jets 
is exactly 4. The sphericity of the event is required 
to be larger than 0.3. Fig. 3 shows the distribution of 
the number of jets (a) and the sphericity distribution 
(b) for the data, for a sample of 3.5 million simulated 
Z* hadronic decays and for a simulated H+H- signal 
sample with mHi = 42 GeV. After these cuts the 
data sample is reduced to 2.5% of its original size. 
The selection efficiency of the ( cS) (es) final state 
varies between 55% and 61% for mHf between 36 and 
45 GeV. 
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Fig. 3. (a) Distribution of the number of jets, (b) sphericity 
distribution after the 4-jet requirement and (c) invariant mass 
distribution obtained by the constrained kinematical fit after all 
cuts, for the data (points with error bars), for a sample of sim- 
ulated hadmnic Z” decays (dashed histogram) and for a simu- 
lated HfH- sample with rn+ = 42 GeV (full-line histogram). 
The distributions are normalized to the data before the selection 
and the signal distribution is scaled up by the factors indicated, 
assuming Br(H+ + ~+y,) = 0. 

A kinematic fit [23] is applied to the remaining 
events assuming the HCH- ---) (~6) (Es) decay hy- 
pothesis. The four jets are associated in pairs to the H+ 
and H- bosons. The inputs to the fit are the jet four- 
momenta together with their estimated measurement 
errors. The total energy and momentum of the events 
are constrained to those of the colliding e+e- beams 
(the effect of initial state radiation is neglected) and 
the invariant mass of the two jet pairs is required to 
be equal (mHC = mH- ) . The kinematic fit is applied 
to the 3 possible associations and the one yielding the 
smallest x2 is retained. The smallest x2 is required to 
be less than 45 for 5 degrees of freedom. The invari- 
ant mass distribution of the jet pairs obtained in this 
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manner is shown in Fig. 3 (c). The observed small 
difference in shape between the data and the sample 
of simulated hadronic Ze decays can be explained by 
known inaccuracies in modelling the phase space dis- 
tributions of events with more than three partons [ 241. 
In addition, uncertainties in describing fragmentation 
also contribute. The possible effect of an overall cali- 
bration error of the mass scale is estimated by shifting 
the mass of the Monte Carlo events and evaluating the 
overlap with the data. The best overlap is obtained for 
a shift of - 100 MeV. The invariant mass distribution 
for a simulated H+H- signal, also shown in Fig. 3 
(c) , has a narrow peak close to the nominal Higgs bo- 
son mass and a broad component due to incorrect jet 
associations and measurement errors. 

In order to identify a possible Higgs boson signal, 
the mass distribution of the data is searched for a sta- 
tistically significant local excess in the form of a nar- 
row peak. Both the data and the signal distributions 
for different mu* are parametrized. The distribution 
of the data between 30 and 45 GeV is well described 
by a third order polynomial. The signal distribution is 
described by the superposition of a third order poly- 
nomial and a Gaussian of width cr centred at Ma. The 
fractional area of the signal contained in the Gaussian 
part is denoted by f. The shape of the non-Gaussian 
part is fairly independent of the Higgs boson mass. 
Values of these parameters are obtained from fitting 
simultaneously the invariant mass spectra of six sig- 
nal samples with masses between 36 and 45 GeV. In 
the fit the third order polynomial is constrained to be 
the same for all masses. 

To search for a Higgs boson signal, the invariant 
mass distribution of the data is scanned in steps of 
0.25 GeV in the mass range from 35 to 44.5 GeV. At 
each point of the scan: 
- the parameters Ma, u and f are determined by lin- 

ear interpolation between the set of discrete values 
obtained for the six fixed Higgs boson masses; 

- a third order polynomial is fitted to the data in the 
range 30 to 45 GeV excluding the mass window 
given by Ma f 1.64~; 

- the fitted function is subtracted from the data dis- 
tribution and a Gaussian with parameters MO and 
u is fitted to the distribution of the difference. It is 
assumed that the broad component of the signal is 
absorbed in the polynomial describing the data. The 
area of the Gaussian, LY, is determined; 

- the 95% CL upper limit for a possible Higgs boson 
signal is determined from 

N max = ;+ 1.64crt-$, 

where l is the detection efficiency for the H+H- 
signal and a( 5) is the error on 5. The latter is 
obtained by propagating the errors of the detection 
efficiency and those of (Y and f given by the fit. 

The systematic error on the detection efficiency arises 
mainly from modelling the hadronization and frag- 
mentation processes. It is estimated to be less than 5% 
from the deviation in normalization of the data and 
the sample of simulated hadronic Za decays after se- 
lection. The error from Monte Carlo statistics is 3%. 
Thus, an overall error of 6% is assigned to the detec- 
tion efficiency. The systematic error from the determi- 
nation of (Y is found to be small in comparison. 

Assuming a branching fraction Br(H+ + r+z+) = 
0, a lower bound of 44.2 GeV (95% CL) is obtained 
from this channel for the mass of the charged Higgs 
boson. The limit is calculated by comparing the ex- 
pected number of signal events (Eq. (2)), as a func- 
tion of r&r&, to the 95% CL upper limit using l$ (3). 

If the scale of the invariant mass of the Higgs boson 
signal were shifted by -100 MeV, as suggested by 
the small discrepancy between the distributions for 
the data and for the sample of simulated hadronic Ze 
decays, this limit would change to 44.3 GeV. Tbe 
stability of the result is further checked by varying 
the cut in ,y* which is used to select the correct jet 
association. The corresponding variations of the mass 
bounds are smaller than flO0 MeV. 

3. Results 

The lower bounds for the mass of the charged Higgs 
boson, at the 95% CL, obtained from the searches in 
the leptonic, semi-leptonic and hadronic channels, are 
presented in Fig. 4 as a function of the branching ratio 
Br( H+ --t r+v,) . The limits are obtained using the 
tree level expression given by Eq. ( 1) for the process 
p + H+H-. They take into account the integrated 
luminosities of the data distributed over fi and the 
selection efficiencies as a function of muf with their 
statistical and systematic errors. The effect of initial- 
state radiation on the Za line shape is taken into ac- 



OPAL Collaboration/Physics Letters B 370 11996) 174-184 183 

0.9 

0.8 

ep O.’ 
+:, 0.6 

,T 0.5 

36 38 40 42 44 46 48 50 

rnHk (GeV) 

Fig. 4. Regions in the Br(H+ + &,) vs. mHf plane which are 
excluded at the 95% CL by the searches in the leptonic channel 
(dotted line), in the semi-leptonic channel (dash-dotted line) and 
in the hadronic channel (dashed line). The combined exclusion 
limit is indicated by the full line. 

count by using Eq. (2) to calculate the number of ex- 

pected H+H- events. The shift of the mass limits, less 
than 100 MeV, from the reduction of the effective cen- 
tre of mass energy due to initial-state radiation is also 
included. The two events remaining in the leptonic fi- 
nal state and the single event remaining in the semi- 
leptonic final state are considered as possible Higgs 
boson candidates. The global exclusion, shown in the 
figure by the full line, is the envelope of the three in- 
dividual limits. A more sophisticated and less conser- 
vative statistical method to combine the results from 
the three channels would lead to a marginal improve- 
ment only. Close to the kinematical limit the cross 
section falls rapidly with increasing mass (Eq. ( 1) ) , 
and therefore the limit is weakly affected by changes 
of the detection efficiency (e.g. by combining chan- 
nels). The precise mass values of the limit are listed 
in Table 1 for selected values of the branching ratio 
Br( H+ -+ ~+y,). The highest value of mHf which is 
excluded at the 95% CL independent of the branching 
ratios is 44.1 GeV. This bound is obtained assuming 
that the channels H+ + r+v, and H+ -+ CS saturate 
the decay of the charged Higgs boson but is also valid 
in the case of sizeable contributions from Hf -+ c6. 

Table 1 
Lower limits for m+, valid at the 95% CL, as a function of the 
branching ratio Br(H+ -+ r+v,). 

Br(H+ -* r+u,) tnHf [@VI 

0.0 44.2 
0.05 44.1 
0.2 44.1 
0.4 45.0 
0.6 45.2 
0.8 45.4 
1.0 45.5 

The quoted results improve the mass bounds obtained 
previously by OPAL 
[7,81. 

[6] and by other experiments 
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