Journal of Mathematical Sciences, Vol. 99, No. 4, 2000

RELIABILITY ANALYSIS OF COMPLEX COMMUNICATION SYSTEMS*
J. Sztrik (Debrecen, Hungary) UDC 519.2

This paper deals with a first-come, first-served (FCFS) queueing model to analyze the asymptotic behavior of a
heterogeneous finite-source communication system with a single processor. Each source and the processor are assumed
to operute in independent random environments, allowing the arrival and service processes to be Markov-modulated
ones. Each message is characterized by its oun exponentially distributed source and processing time with parameter,
depending on the state of the corresponding environment, that is, the arrival and service rates are subject to random
fluctuations. Assuming that the arrival rates of the messages are many times greater than their service rates ( “fast”
arrival), it is shown that the time to the first system failure converges in distribution, under appropriate norming,
to an exponentially distributed random variable. Some simple examples are considered to illustrate the effectiveness
of the method proposed by comparing the approzimate results to the exact ones.

1. Introduction

Performance evaluation of information-system development becomes more complex as the size and complexity of the
system increases (c.f., [7, 11, 17]). Reliability is certainly one of the most important characteristics for communication
networks. The measure of greatest interest is the distribution of the time to the first system failure. It is well known
that the majority of problems can be treated with the help of semi-Markov processes (SMP). Since the failure-free
operation time of the system corresponds to sojourn time problems, we can use the results obtained for SMP. If the
exit from a given subset of the state space is a “rare” event, that is, it occurs with a small probability, it is natural
to investigate the asymptotic behavior of the sojourn time in that subspace (see [5, G, 8, 10]). Realistic consideration
of certain stochastic systems, however, often requires the introduction of a random environment, sometimes referred
as to Markov-modulation, where system parameters are subjected to randomly occurring fluctuations. This situation
may be attributed to certain changes in the physical environment such as weather, or sudden personal changes and
work load alterations. In [4], Gaver proposeda an efficient computational approach for the analysis of a generalized
structure involving finite-state-space birth-and-death processes in a Markovian environment. Stern and Elwalid in
(12] used Markov-modulated processes for analyzing some infinite-source information systems. This paper deals with
a first-come, first-served (FCFS) queueing model to analyze the asymptotic behavior of a heterogeneous finite-source
communication system with a single processor. The sources and the processor are assumed to operate in independent
random environments. Each message is characterized by its own exponentially distributed source and processing time
with parameter, depending on the state of the corresponding environment. Assuming that the arrival rates of the
messages are many times greater than their service rates (“fast” arrival), it is shown that the time to the first system
failure converges in distribution, under appropriate norming, to an exponentially distributed random variable. Some
simple examples are considered to illustrate the effectiveness of the method proposed by comparing the approximate
characteristics to the exact ones. This paper generalizes the results of Sztrik and Lukashuk [15] and Sztrik and Rigo
{16], where the sources are homogeneous and the whole system is governed by a single random environment and two
random environments, respectively. The technique used here is similar to the one applied in [9] and [13, 14].

2. Preliminary Results

In this section, a brief survey is given of the most related theoretical results, mainly due to Anisimov (see [1-3]), to
be applied later on.
- Let (X,(k), k > 0) be a Markov chain with state space
m+1
U Xy XiNX;=0, 157,

q=0

defined by the transition matrix (p,(i'?, §(*}), satisfying the following conditions:
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1. pe(i9, 5) = po(i®, ) as € ~ 0, i ) ¢ Xo, and matrix Py = (po(i'®, j()) is irreducible;
2. p (i@, jla+))) = ea' D@ a0y 4 o(e), iD € X,, 79V € Xor1;
3. p,(i("),f(")) —20ase—0,i9 @ ¢ X, q21,
4.p. (9, fN =0, e X, fP e X, z-f>2
In the sequel, the set of states X, is called the gth level of the chain, g =1,...,m + 1. Let us distinguish the subset
of states

{am) = U X

q=0

Denote by {r.(i‘0), i) ¢ X.}, g=1,...,m, the stationary distribution of a chain with transition matrix

( ,(i@),j(‘)))/(l— S pe(i("’,k‘"‘*”)), @ eX, jPeX, gqz<m

KM+ € X

Furthermore, denote by g.({em)) the steady state probability of exit from {am), that is,

ge((am)) = Z 7, (:™) Z Pe (6™, j(m+D)y,

i e X m D EX s
Denote by {m(i(?), i® € Xy} the stationary distribution corresponding to Py, and let
To = {mo(i'®), i € Xo}, Y = {7 (i9), i e X}
be row vectors. Finally, let the matrix
Al@ = (d(v)(,-(q),j(qﬂ)))’ i@ ¢ X,, et ¢ Xo+1, g=0,...,m,

be defined by Condition 2.
Conditions 1-4 allow us to compute the main terms of the asymptotic expression for #? and 9e({am)). Namely,
we obtain
70 = I AD AN A6 4 o(e9), g=1,...,m,
ge({am)) = e™ 17 AD AD | AT 4 o(e™HY),

where 1 = (1,...,1)" is a column vector. Let (7.(t), ¢ > 0) be an SMP given by the embedded Markov chain
(X (k), k > 0), satisfying Conditions 1-4. Let the times 7.(j'*, k{*}} — transition times from state 7'*) to state k(=
— satisfy the condition

(1)

2

Eexp{i68. 7. (3, k®)} = 1 + a;i(s,2,8)e™*! +o(e™*), i = -1,

where /3, is some normalizing factor. Denote by §2.(m) the instant at which the SMP reaches the (m + 1)th level for
the first time, the exit time from (o), provided that 7.(0) € {a.,.). Then we have:

THEOREM 1 (cf. Anisimov [2]). If the above conditions are satisfied, then
lin(x)Eexp{i&ﬂ;Qs(m)} =(1- AN,
£~

where

A(6)=( > wo(j@))po(jf‘”,k<°>)ajk(o,o,e)) / (FoAD AWM 40,

7o) ke X,

CoRroLLARY 1. In particular, if aji(s,2,8) = i@m;i(s, z), then the limit is an exponentially distributed random

variable with mean
( 3 ﬂo(j(o))po(]‘(o)'k(“))mjk(0,0)>/(foA(o)A(l)..<A(m)l)4

#9 KOYEXy
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3. The Queueing Model

Consider a finite-source communication system with /N heterogeneous sources and a single processor. The sources
and the receiver operate in independent random environments. The environmental changes are reflected in the values
of the access and service rates that prevail at any point of time. The main objective is to adapt these parameters to
respond to random changes effectively and thus maintain the derived level of system performance.

The source p is assumed to operate in a random environment governed by an ergodic Markov chain (£,(t), t > 0)
with state space (1,...,7,) and with transition density matrix

[3) I, ) _ (p)
(aiﬁ-p, iy Jp=1,...,7Tp, a i, = Z a.‘,k)-
k#ip

Whenever the environmental process £,(t) is in state i, the probability that the source generates a request in the
time interval (¢,t + h) is A;(ip,€) + o(h), p = 1,...,N. Each message is transmitted to a receiver, where the service
immediately starts if the processor is idle; otherwise, a queueing line is formed. The service discipline is first-come,
first-served (FCFS). The receiver is also assumed to operate in a random environment governed by an ergodic Markov
chain (£(t), t > 0) with state space (1,...,ry4+1) and with transition density matrix

(N+1) . . _ (N+1) _ Z {(N+1)
<aiN+1jN+1’ IN+1,IN+1 = 1""’TN+X’ afN+1l'N+l - ai,-v.Hk .

ktivg,

Whenever the environmental process x4 () is in state i, the probability that the service of message p is completed
in the time interval (¢,t + h) is pp(in+1)h + o(h). If a given source has sent a message, it stays idle and it cannot
generate another one. After being serviced each message immediately returns to its source, which hence becomes active.
All random variables involved here and the random environments are assumed to be independent of each other.

In practical applications, it is very important to know the distribution of time until the receiver becomes empty,
which is actually the busy period of the processor, for example, if it is a satellite, an aircraft, or any flying object that
needs orientation. .

Let us consider the system under the assumption of “fast™ arrivals, i.e., A,(ip,€) — 00 as € — 0. For simplicity, let
Ap(tp,€) = Aplip)/e, p=1,1,...,N.

Denote by Y,(t) the number of active sources at time t, and let

Q.(m) =inf{t: t>0,Y(t) =m+1/Y.(0) <m},

that is, the instant at which the number of active sources reaches the (mm + 1)th level for the first time, provided that
at the beginning their number is no greater than m, m = 0,..., N — 1. In the following, Q.(m) is referred to as the
time to the first system failure. In particular, for m = IV — 1 we get the case where the processor becomes idle, i.e.,
Qc(N — 1) is the busy period length of the receiver, or processor.

Denote by mo(iy,12,.-.,in,in41: O;ky,...,kn) the steady-state probability that random environment &,(t) is in
state i, p = 1,..., N +1, there is no active source, and the order of arrival of messages to the processor is (k1,...,kn).
Similarly, denote by 7o(7;,%2,...,in,in41: 1;k2,..., kn) the steady-state probability that the pth random environment
is in state i,, p=1,..., N + 1, source k, is active, and the other sources sent their messages in the order (ka....,kn).
Clearly, (ks, ..., ky) € V™"t s = 1,2, where Vi ~**! denotes the set of all variations of order N — s +1 of elements
1,...,N. Now we have:

THEOREM 2. For the system in question, under the above assumptions, independently of the initial state, the

distribution of the normalized random variable e™{.(m) converges weakly to an exponentially distributed random
variable with parameter

i TN+1
A=Z Z Z Wo(i],...,i{v+1: l;kg,...,kN)
3= ing1=1 (kl,...,k;v)evﬁ'
o (N +1) By (iv41) iy (IN+1) 1

x - - X oo X - - -,
Akl (ikl) ’\kl (zkl) + ’\kz (1’\'2) ’\kl (1kl) et '\km (1'km) D

where
o

N+1 7p Tp N+1 2
LED DI ofinsviwen: Ok k), /(3 alf + ey (i)
g=1

p=1 jp=1 ip=_1 (k,,...,k,,)EVlc'
ip#jp
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Proof. Let us introduce the following stochastic process:
Zc(t) = ({l (t): ey §N+1 (t) : },E(t))ﬁl (t)a LR yﬂY,(l))v

where f3i(t), ...,y () denote the indices of the messages in order of their arrival at the processor. It is easy to see
that (Z,(t), t > 0) is a multi-dimensional Markov chain with rather complex state space

E=((i1,-- ine1: sik1yo.kny), dp=1,..0,m, p=1,...,N+1, (ky,...,kn_) e Vi, s=0,...,N),
where ko = {0} by definition. Furthermore, let
(am) = ((i1,-- - iNg1: Siki, oo kvey), tp=1,...,1p, P=1,...,N+1, (k1,...,kn_,) €V, 5=0,...,m)
be a subset of the states. Hence, our aim is to determine the distribution of the first exit time of Z.(t) from (o),

provided that Z.(0) < (am). It can easily be verified that the transition probabilities in any time interval (¢,t + h) are
the following:

(i17"-1jp7'--7iN+l: S;kl,...,kN_,) ag:;p,-‘i:()’---vN, jp#ipv
) p=1,....N+1;
(i1, iNt1: Si R kn )—h> (s ivers s+ Lkg, oo k) Ha (in+1)h + o),
’ B : s=0,...,N-1;
(il, v, iIN1 S — 1; k4,.. .,kN_,+1) /\kN_,(ikN_,)/E + O(h),
s=1,...,N.

In addition, the sojourn time 7,(i1,...,in41: S;k1,....kn—s) Of Zc(t) in state (i1,...,in41: Sik1,..., kn_,) is
exponentially distributed with parameter

(N+1)
INeLIN$L

n

a;;, +--+a + Ur, (EN+1), s=0;

al) -+l 4+ T N) e fprline), s=1,...,N-1;

INFLIN$L

Yeliry - ovingr: sikiy.. . kyog)={ i i e
N
(1) (N+1) - —
alld 4+ ali ) Y NG/, s=N.
\ Jj=1

Thus, the transition probabilities for the embedded Markov chain are
ps[(ih“ - viN+1: S',kl,.. . 7kN—-s)7(i17'“,jp7' '-aiN+1: s;kh'- -1kN—s)]

(»)
%iin

= - - , §=0,...,N, p=1,...,N+1;
’75(111"-71N+1: s;kl'l"'ka—s)

pE[(ilv'-'yiN+l: S;k‘_),...,kN_s),(il,...,iN+1: s+ 1;k11-~~1kN—s+1)]

- i -I‘I'kx(zN+1) , S=O,...,N—1;
75(117'-'72N+l: s;klv-'-ykN—s)

pE[(ilv---viN+l: s;kly---7kN—s)1(i11"'7iN+1: s — l;klv"'ka—s—l)]

o e () , s=1,...,N.
Yelis, - -riNe1: Sik1, - kN—s)

Thus, £ — 0 implies
Pel(in, - yiners Oikiy. oo KN (irveeerdpreoovingts Oskp,. .. ky)]

(p)
= aipj" p = 1 N + 1
1 N+1 R i) - LA ) 1
Al + et 0 T+ i (i)

1479



p;[(’l.l,...,‘l:N.,.I: S;kly---,kN—;),(il,---,jp-,---,'iN+l: S;kl,...,kN_,)]=O(1), S=1,...,N, p=1,...,

. . . . e, (2
pE[(zly"'71N+1: O;klv---1kN)1(111"'71'N+1: 11k277kN)]— (1) :‘;v(_*?;-*-l) )

nn +oe a1~+11N+1 + Kk (1N+1)

pE[(ilv"')iN-f-l: S;kl,---,kN—,),(il,--.,iN+1: s+1;k2,...,kN_3)]

i, (iv41)E
= 1 —(1+0(1)), s=1,...,N—-1.
Zp#kl ----- kn-—s /\P(zp)

This agrees with Conditions 1-4, but here the zero level is the set
((ily"-yiN‘i-l: s;kla"':kN—s)v ip = 1,...,7',,, p= 1)5N+ 1: (klv"'ka-s) € VIIVV_!y s = 0$1),

and the gth level is the set

((i],...,iN+1Z q+1;k1,...,kN_q_1), ip=1,...,7'p, p=1,,N+1, (kl,...,kN_q_l)EV:—q—l).

Since the level 0 in the limit forms an essential class, the probabilities
molir, .., ine1: Oskr, ... kn), To(t1,.- - ine1: Liky, ... kvor),

ip=1,...,7p p=1,...,N+1, (ki kn—s) € VY, 5=0,1,
satisfy the system of equations
mo(J1:J2s -« s In+1s O5ka,. .. kN)
. . 1 1 2 N+l . -
= Z 7"0(111]‘27-_--1.7N+1: 0; k... k~)af.31(af,3. ;nz'z +--- ‘*'a;NHJ)NH + s, (G +1)) !
L#n
. . 2 1 2 N+1 . -
+ Z mo(J1,J2, - > In+1: Ok, - kN)“LL(“i,L 5432 +-t aﬁN:j)NH + ok, (Gne1)) T+
iz#jz

. , N+1 (1 2) N+1 . -
+ Z mwo(J1, 2y - »iner: Oik, ... ICN)‘IE,\,H,),\,M(,ul 5,,—,+"'+a(-. ) o (i)

INFIIN 41
iNpIEIN+L

+m(J1, s dners Lk, ko)

Tro(jlv--'vjN-{-l: l;klv"'ka—l) =7r0(jlv"'7jN+l: o;kNykh'-'ka—l)

1 N+1 . -
Xty (Gn+1) (@S +o 4 alN ) by ()

To apply (1) we need the solution of (2) and (3) with normalizing condition

N+1 7

ZZ Z {7"0 i1, inp1s Oiky, e k) +mo(ih, .- viver: Lk, ko)) =1

p=lip=1(ky,...,

Suppose that we have this solution. Then, by substituting it into (1), we get

Ty TN+1

9((am))=€mZ"' Z Z o(it,---»ing1: Lika, ..., kN)

i1=1 iNg1=1 (K., kN)GVN

Hs (in 1) Bas(iner) B (IN41)
Ay (iky) Ak (k) + Ay (Bkg) ey () + 00+ A (i)

Taking into account the exponentiality of T.(¢1,...,in+1: S;K1,...,kn—,) for fixed ©, we have

@+ o(1)).

i9
Eexp{ie™O7.(i1,...,in+1: O;k1,...,kn_s)}=1+€™ o wEn) - (1 + o(1)).
Ciiy T T 8y ing + bk, (N 41)
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Observe that 3. = €™ and, therefore, recalling Corollary 1 we immediately conclude that e™(,(m) converges weakly
to an exponentially distributed random variable with parameter

) TN+1
A=Z--- Z Z To(b1s---ving1: Likay... kn)
ip=1 iNp1=1 (k. kn)eVY
Hiy (iN+1) x #kg(iN-f-l) X - X ukm+l(iN+l) l (5)
’\kl (ikx) Akl(ikl) + ’\kz (ikz) ’\kl(ikl) +oet Akvn(ikyn) D’

which completes the proof.

It should be noted that this asymptotic approach considerably reduces the calculations, since solving the system (2)
and (3) is much easier than getting the stationary distribution of (Z.(t), £ > 0) and the system of stochastic relations
concerning its scjourn time in (a,,). Note that if u,(in41) = p(ins1), p = 1,..., N, a closed-form solution can be
obtained. Namely, by substituting (3) into (2), we get

RO(jlyj2y"'7jN+l: kahykN)

. . 1 1 2 N+1 . -

= Z mo(d1, J2, - -5 Jn+1: Ok, .. kN)afu),(afn)l + ;,;2 "'+a;,.,+1j)~+l + u(in+1)) !

i1 #5
.. . 2 1 2 N+1 . -
+ Z 7r0(.71y129'-'1.]N+l: kah kN)afzzz(a_gl;l E»|)z+“'+a;~+1j)~+l +#(JN+I)) 1+
2#j2

.. .- N+1 1 (2 N+1 . -
+ Z To(J1,J2s -, iN41: Ok, ... kN)GENHJ)NH(a;,}, +aj-_,3'2 + +GEN:,-)N“ + plinge) ™!

iINp1#EIN 1
. . . 1 N . -
+70(J1s- - IN+1: Okn, ki, ... ykN—l)l‘(]N+l)(a§‘,3'l +-+ a;-N:lj)NH +pu(in+)) "t (6)
Denote by (= (f’), i, = 1,...,7p) the steady-state distribution of the governing Markov chains (£,(t), t > 0), p =
N +1, respectively. Clearly

(P) (P) (») (p) _
mPal) = 3" xPall, p=1,.. ,N+1 (7
ip#ip
It can be verified that the solution of (G) with (7) is
. . . 1 N+1 1 N+1 .
oty J2r- -2 N1t Oiknye. k) = B al @+ a0 4 uGine), (8)
. . 1 N+l
mo(s o dnart Likyyooos ko) = Bl o wl ¥ H ) (i), (9)
where B is the normalizing constant, i.e.,
B M N0y, (N+1)
1 + + .
7 =M Z Z ( : xN+x )( tnu +ai~+1i1v+1 +2#(1N+1))'
i=1 iNg1=1

Thus from (5) it follows that e™Q(m) converges weakly to an exponentially distributed random variable with parameter

TN+l
(1) p(N41)
N' Z Z Z ( ix)' lN+| )#(ZN 1)
=l N =l kn)EV
pin41) p(ine1) pliner) .

- X X - - .
’\kl (ikl) Akx(ikx) + ’\kz (1k2) Akl (1'kl) +-oo 4+ /\km (zkvn)

Consequently. the distribution of the time while the number of active sources reaches the (m + 1)th level for the first

time is approximated by
P(Q:(m) > t) = P(e™Q(m) > €™t) = exp(—e™At).
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In particular, when m = N —~ 1 we get that the busy-period length of the receiver is asymptotically an exponentially
distributed random variable with parameter

TN+1

- I 1 N4l ,
A= S 3 X e uline)

ig=1 ivg1=1(ky,..., kN)EVNN :

#(iN-H) o _#(iNH) : o x . #(in 1) : ) 11)

’\kx (Zkl) ’\kx (2’\‘1) + ’\kz (zkz) ’\kx (7'kl) +---+ ’\k,v-x (1kN—1)
In the case where there are no random environments, that is, p(in+1) = g, Ap(ip) = Ap, tp=1,...,75, p=1,..., N,

from (11) we get
- a1 I @ @
N-1 N-1

e TA=1— —— X X ——— 12
N! Z #Ah ’\k1+’\k2 ’\k1+'”+’\kN—1 ( )

(Kroee kn)EVEY

Finally, for the totally homogeneous case, from (12) we obtain

eN-1p o 1 i (13)
(N -1 (A/e)N -1
The utilization U, of the receiver, which is the long-run fraction of time during which it is busy, can be given by
-1
1 1
Ur=EN_1A(‘ENTA+I) s (14)

where I denotes its idle-period length.

4. Numerical Results

This section presents a number of validation experiments (cf. Tables 1-8) examining the credibility of the proposed
approximation against exact results for the utilization at equilibrium. Note that, to the best of our knowledge, an
exact formula for it is known only for homogeneous systems that are not affected by random environments, and it is

given (via the Palm formula) by
N N
N N
r=> Kok [ S 1p*
vr=2 (k) g /H (k)" i

where p = (A/e)/p. This is the reason why there are validation experiments for this case only. Instead of the overall
utilization Uy, U, let us consider the utilization of the receiver with respect to the pth source, denoted by U, U3,
respectively. Clearly U, = U,./N and v, =U; /N, that is, they are so-called normalized utilizations. In this case,
relations (13) and {14) reduce to the following approximation:

U= L N!
PT NN+ (u/(Me)N

The numerical results can be seen in Tables 1-8. It can be observed that the approximate values for {U,} are-
very much comparable in accuracy to those provided by the exact results for {U;}. However, the computational
complexity, due to the proposed approximation, has been considerably reduced. As A/e becomes greater than u, the
{U,} approximations, as expected, approach the exact values of {U,}. Clearly, the greater the number of sources the
less the number of steps needed to reach the exact resuits.

TABLE 1. N =3.

p U; U,

1 0.3125 0.285714286
2 0.329113924 0.326530612
22 0.332657201 0.332467532
2% 0.333237575 0.333224862
o 0.333320592 0.333319771
25 0.333333169 0.333331638
28 0.333333125 0.333333121
7 0.333333307 0.333333307
28 0.333333333 0.333333333
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TABLE 2. N =4.

p Uz Up
1 0.246153846 0.24
2 0.249605055 0.249350649
22 0.249968310 0.249959317
23 0.249997756 0.249997457
2° 0.249999999 0.249999999
25 0.25 0.25
TABLE 3. N =5.
p M U,
1 0.159386503 0.198347107
2 0.199968409 0.199947930
22 0.199998732 0.199998372
2% 0.199999955 0.199999949
21 0.199999998 0.199999998
25 0.2 0.2

TABLE 4. N = 6.

p u; Uy

1 0.166581502 0.166435506
2 0.166664473 0.166666305
22 ¢ 0.166666623 0.166666661
23 0.166666666 0.16666G6G666

TABLE 5. N =T7.
U: T,

P
1 0.142826715 0.142828804
2 0.142857009 0.142856921
22 0.142857142 0.142857141
23 0.142857143 0.142857143

TABLE 6. N =8.
U; U

p 2 P

1 0.124998860 0.1249969

2 0.124999993 0.124999988

22 0.125 0.125
TABLE 7. N =09.

p U; U,

1 0.111110998 0.111110805
2 0.111111111 0.111111111
TABLE 8. N = 10.

p u; U,
1 0.099999999 0.099999999
2 0.1 0.1

5. Concluding Remarks

In this paper, we presented a queueing model to analyze the behavior of an FCFS heterogeneous finite-source
communication system with a single processor. The system operates in Markovian environments and the messages
arrive fast compared to their service. An asymptotic approach was provided to obtain the distribution of the time
to the first system failure. The credibility of the method is illustrated with some simple validation experiments, and
favorable comparisons against exact results are made.
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