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R E L I A B I L I T Y  A N A L Y S I S  O F  C O M P L E X  C O M M U N I C A T I O N  SYSTEMS* 

J. Sztr lk (Debrecen, Hungary) UDC 519.2 

This paper deals with a first-come, ]irst-served(FCFS) queueing model to analyze the asymptotic behavior of a 
heterogeneous finite-source communication system with a single processor. Each source and the processor are assumed 
to operate in independent random environments, allowing the arrival and sermce processes to be Markov-modulated 
ones. Each message is characterized by its own exponentially distributed source and processing time with parameter, 
depending on the state of the corresponding environment, that is, the arrival and service rates are subject to random 
fluctuations. Assuming that the arrival rates of the messages are many times greater than their service rates ( "fast" 
arrival), it is shown that the time to the first system failure converges in distribution, under appropriate norming, 
to an exponentially distributed random variable. Some simple examples are considered to illustrate the effectiveness 
of the method proposed by comparing the approximate results to the exact ones. 

1. I n t r o d u c t i o n  

Performance evaluation of information-system development becomes more complex as the size and complexity of the 
system increases (c.f., [7, 11, 17]). Reliability is certainly one of the most important characteristics for communication 
networks. The measure of greatest interest is the distribution of the time to the first system failure. It is well known 
that the majority of problems can be treated with the help of serni-Markov processes (SMP). Since the failure-free 
operation time of the system corresponds to sojourn time problems, we can use the results obtained for SMP. If the 
exit from a given subset of the state space is a "rare" event, that is, it occurs with a small probability, it is natural 
to investigate the asymptotic behavior of the sojourn time in that subspace (see [5, 6, 8, 10]). Realistic consideration 
of certain stochastic systems, however, often requires the introduction of a random environment, sometimes referred 
as to Markov-modulation, where system parameters are subjected to randomly occurring fluctuations. This situation 
may be attributed to certain changes in the physical environment such as weather, or sudden personal changes and 
work load alterations. In [4], Gaver proposee an efficient computational approach for the analysis of a generalized 
structure involving finite-state-space birth-and-death processes in a Markovian environment. Stern and Elwalid in 
[12] used Markov-modulated processes for analyzing some infinite-source information systems. This paper deals with 
a first-come, first-served (FCFS) queueing model to analyze the asymptotic behavior of a heterogeneous finite-source 
communication system with a single processor. The sources and the processor are assumed to operate in independent 
random environments. Each message is characterized by its own exponentially distributed source and processing time 
with parameter, depending on the state of the corresponding environment. Assuming that the arrival rates of the 
messages are many times greater than their service rates ("fast" arrival), it is shown that the time to the first system 
failure converges in distribution, under appropriate norming, to an exponentially distributed random variable. Some 
simple examples are considered to illustrate the effectiveness of the method proposed by comparing the approximate 
characteristics to the exact ones. This paper generalizes the results of Sztrik and Lukashuk [15] and Sztrik and Rigo 
[16], where the sources are homogeneous and the whole system is governed by a single random environment and two 
random environments, respectively. The technique used here is similar to the one applied in [9] and [13, 14]. 

2. P r e l i m i n a r y  Resul t s  

In this section, a brief survey is given of the most related theoretical results, mainly due to Anisimov (see ]1-3]), to 
be applied later on. 

�9 Let (Xc(k), k _> 0) be a Markov chain with state space 
rn+ l  

Uxq, x, nxj=o, i#j,  
q=O 

defined by the transition matrix (pc(i (q), j(':))), satisfying the following conditions: 
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1. pe( i (~  (~ ~ po(i (~176 as ~ -+ O, i (~  (~ E Xo, and matrix Po = (po(i(~176 is irreducible; 
2. pe(i(q),j(q+D) = ea(q)(i(q),j(q+i)) + o(~), i ('l) �9 Xq,  j(q+l) �9 Xq+i; 
3. pe( i (q) , f  (q)) --+ 0 as ~ --.+ O, i(u), f (q) E Xq,  q >_ 1; 
4. pe(i (q),s(z)) =- 0, i (q) E X~, f(z) ~ X , ,  z - j '  > 2. 

In the sequel, the set of states Xq is called the qth level of the chain, q = 1 , . . . ,  m + 1. Let us distinguish the subset 
of states 

vii 

(0~) = U x,,. 
q=O 

Denote by {Tre(i (q)), i (q) E Xq}, q = 1 , . . . ,  m,  the stationary distribution of a cLain with t ransi t ion matr ix  

(p.(i(q>,j(')))/(1- 2 Pe(i(q)'k<"'+l>)) ' i(q>�9 j(~'�9 q,z<_ln. 
kCm+l)~Xm+l 

Furthermore, denote by ge((a.,)) the steady state  probability of exit from (am), that is, 

9e({-~))-- ~ .e(i(~)) ~ p.(m),y(--+,)}. 
i ( ~ ) ~ X m  j(m+l) EX~+I  

Denote by {~ro(i(~ i (~ E Xo} the s tat ionary distr ibution corresponding to Po, and let 

eo = (-0(i(~ r �9 x0}, e~.) = {~:(i(.)), ic~) �9 x . )  

be row vectors. Finally, let the matrix 

A (q) = (a('D(i(q),j(q+l))),  i (q) E Xq, j(q+l) E Xq+l,  q = O , . . . , m ,  

be defined by Condi t ion 2. 
Conditions 1-4 allow us to compute the main  terms of the asymptotic expression for ~(q) and ge((a,~)). Namely, 

we obtain 
~(~q) = Eq~0A(~ A (q-l) + o(eq), q = 1 , . . .  ,m, 

ge((o~m)) = ~'~+l~oA(~ Atm)l + o(e"~+l), (1) 

where 1 = ( 1 , . . . , 1 )  ~ is a column vector. Let (TI,(t), t > O) be an SMP given by the embedded Markov chain 
(X~(k) ,  k ~ 0), satisfying Conditions 1-4. Let the times r~( j ( ' } , k  (~)) - -  transit ion times from state j ( ' )  to state kt:) 

- -  satisfy the condi t ion 

Eexp{iOfl.~re(jO),k(=))) = 1 + a jk (s , z ,O)e  m+' + o(em+l),  i 2 -~ - 1 ,  

where fie is some normalizing factor. Denote by f~r the instant at which the SNIP reaches the (m + 1)th level for 
the first time, the exit time from {(~,~), provided that  ~ (0 )  E ~a,~). Then  we have: 

THEOREM 1 (cf. Anisimov [2 D. H the  above  condit ions are satisfied, then 

lira E exp{iOfl,~e(m)} = (1 - A(0)) -1,  
e-~0 

where 

3 (~ " , "  k l ~  ,,~o 

C O R O L L A R Y  I .  

variable with mean  
In  particular, i f  ajk(8,  z,  O) = iOrnjk(s, z), then the l imit  is an exponent ial ly  dis tr ibuted random 

jto} ,ktu~EX o 
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3. T h e  Q u e u e i n g  M o d e l  

Consider  a finite-source communication system with N heterogeneous sources and a single processor. The sources 
and the  receiver operate in independent random environments.  The  environmental changes are  reflected in the values 
of the access and service rates that  prevail at any point of  t ime. The main objective is to adap t  these parameters to 
respond to random changes effectively and thus maintain the  derived level of system performance.  

The  source p is assumed to operate in a random envi ronment  governed by an ergodic Markov  chain (~p(t), t > 0) 
with s ta te  space (1 , . . . ,  rp) and with transition density m a t r i x  

a(p) la(p) �9 _(p) = 
\ ipj,,, ip,3p = 1 , . . .  ,rp,  tLipj~ _ _  

Whenever  the environmental process ~p(t) is in state ip t he  probability that the source genera tes  a request in the 
t ime interval  ( t , t  + h) is Ap(ip,e) + o(h), p = 1 , . . .  , N .  Each  message is transmitted to a receiver,  where the service 
immedia te ly  starts if the processor is idle; otherwise, a queueing  line is formed. The service discipline is first-come, 
first-served (FCFS). The receiver is also assumed to opera te  in a random environment governed by an ergodic Markov 
chain (~(t), t > 0) with state space (1 . . . .  , rg+ l) and with  t ransi t ion density matrix 

a(N+l.) a !N+l )  a ( N + l ) ~  
i~r247247 iN+I,jN+X = 1 . . . .  , r g + l ,  'N§247 = Z i,~+Xk//" 

k#iN+l 

Whenever  the environmental process ~N+X (t) is in s ta te  ip the  probability that  the service of  message p is completed 
in the t ime interval (t , t  + h) is #p(iN+a)h + o(h). If a g iven source has sent a message, it s tays  idle and it cannot  
generate  another  one. After being serviced each message immedia te ly  returns to its source, which hence becomes active. 
All r andom variables involved here and the random environments  are assumed to be independent  of each other. 

In practical  applications, it is very important to know the  distribution of time until the  receiver becomes empty, 
which is actually the busy period of the processor, for example,  if it is a satellite, an aircraft,  or  any flying object tha t  
needs orientation. 

Let  us consider the system under the assumption of "fast" arrivals, i.e., Ap(ip,E) --+ e~ as e --+ 0. For simplicity, let 
;~p(ip, e )  = % ( i ~ ) / E ,  p = 1, 1 . . . . .  N .  

Denote  by Yc(t) the number of active sources at t ime t, and let 

f l , (m) = ix,f{t: t > O, Ye(t) = m + 1/Y.,(0) < m}, 

that  is, the instant at which the number of active sources reaches the (m + 1)th level for the  first time, provided that  
at the beginning their number is no greater than m, m = 0 , . . .  , N -  1. In the following, f2~(m) is referred to as the 
t ime to the first system failure. In particular, for m = N - 1 we get the case where the processor  becomes idle, i.e., 
f~r - 1) is the busy period length of the receiver, or processor.  

Denote  by r0(i l ,  i 2 , . . . ,  iN, iN+, : 0; k l , . . . ,  kN) the s teady-s ta te  probability that r andom environment (p(t) is in 
s tate ip, p = 1 , . . . ,  N + 1, there is no active source, and the  order  of arrival of messages to the processor is ( k l , . . . ,  kN). 
Similarly, denote by 7to(ix, i2,. �9 iN, iN+l : 1; k,, . . . .  , kN) the  steady-state probability ~hat the  p t h  random environment 
is in s ta te  ip, p = 1 , . . . ,  N + 1, source kl is active, and the o ther  sources sent their messages in the  order (k2 , . . . ,  kN). 
Clearly, (k . . . . .  , kN) E V N - ' + ~ ,  s = 1, 2, where V N- ,+~  denotes  the set of all variations of order  N - s + 1 of elements 
1 , . . . ,  N.  Now we have: 

THEOREM 2. For the svstem in question, under the above  assumptions, independently o f  the initial state, the 
distribution of  the normalized random variable g~f~e(m) converges weakly to an exponential ly distributed random 
variable with parameter 

r t rN+ 1 

A = . . . .  1;k  . . . .  , k , , )  

il =I iN-~l ml (~I ..... k,~l)~Vl~' 

x 'u~'~(i/v+i) x #k~(iN+l) X . - -  X /~k~.,( iN+l) 1 
;~k, (i~,) A~,(ik,) + Ak.~(ik2) Ak~ (ik,) + - ' -  + Ae..(ik~) D '  

where 
N+I rl, rv 

D : E Z  Z 
p=l j v= l  ip=l (k l , . . . , kn)EVf f  

ip~jp 

7r0( i l , . . . , iN+l  : 
I / N + I  ) 2 .  

0 ;k l ,  ,kN~a (p) / { ~ " - ( q )  . . .  , i : , j p / k ~ . . , t  tLiqi a + ] ' 2 k l ( / N + l )  
- - - - q = l  
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P r o o f i  Let us introduce the following stochast ic  process: 

Z , ( t )  = (~ l ( t ) , . . .  ,~N+l( t ) :  Ye( t ) ; f lx ( t )  . . . .  , f ~ , ( O ) ,  

where 151(t),.. ,/Sy, ft) denote the indices of the messages in order of their arrival at the processor. It is easy to see 
that (Z , ( t ) ,  t > 0) is a multi-dimensional Markov chain with rather complex s ta te  space 

E = ( ( i l , . . . , i N + ~ :  s;kl . . . .  ,kN_,), i p = l , . . . , r p ,  p = l , . . . , N + l ,  (kx . . . . .  k N - , ) e  V/~ , s = 0  . . . .  ,N), 

where k0 = {0} by definition�9 Furthermore, let 

~-- N - s  ( a , , ) = ( ( i x , . . . , i N + , :  s ; k ,  . . . . .  kzv- , ) ,  i n 1 . . . .  , r p ,  p = l , . . . , N + l ,  (k ,  . . . . .  k N _ , ) E V f ~  , s = O , . . . , m )  

be a subset of the states. Hence, our aim is to de termine  the distribution of the first exit time of Z , ( t )  from (am), 
provided that Z,(0) < (am). It  can easily be verified that  the transition probabilities in any time interval (t, t + h) are 
the following: 

( i t ,  . -  �9 , / N + I  : s; kl . . . .  , kN- , )  

( i l , . - - , J p , - - - , i N + l :  S ; k l , . . . , k N - s )  

( i l , . . .  , iN+I  : S + 1;k2, .. , k N - s )  

( i l , . . .  , i N + l :  S -- 1;kl,  . . , k N - s + l )  

a(p) i~j~, s = 0 . . . . .  N ,  j p  # zp, 

p =  1 , . . . , N +  1; 

P~, ( iN+l )h  + o(h) ,  

s = O , . . . , N - 1 ;  

A~,~_,(i~.~_,)/~ + o ( h ) ,  

s = l , . . . , N .  

In addition, the sojourn t ime r , ( i l , . . . , i N + l  : s; k l , . . . ,  k N - ,  of Z , ( t )  in s ta te  ( i l , . . . , i N + l  : s; k l , . . . ,  kN-s)  is 
exponentially distributed with parameter 

~ ( i I  . . . . .  iN+l:  

_(1) a !N+I.) + t2kl ( iN+l) ,  s -= 0; Uili x + �9 . . + 1 N . ~ N +  I 

_(1) a!N+I)*N+t,N+I + ~ A j ( i i ) / S  + / l k l ( i N + l )  , S = 1, , N  - I ;  
S.l~l,..,,~ ~ ] ~ N - s  ~ = {~itil -t- " �9 �9 "~- � 9 1 4 9  

�9 ~ j # k l  ..... k N - , ,  

N 
_(1) a !N+I-)  + ~ A j ( i j ) / r  s ~- N .  
tLitil ~- . . .  --~ lN411N+l 

j = l  

Thus, the transition probabilities for the embedded Markov chain are 

P* [(il . . . . .  iN+l :  S; kl . . . . .  k N - , ) ,  ( Q , . . .  , J r , ' " ,  iN+l  : S; k 1 . . . . .  kN-s)] 

Thus, E -+ 0 implies 

a(p) 
i,,j,, s = 0 ,  . , N ,  p 1 . . . .  , N + I ;  

7 r  S ; k l , . . . , k N _ s  ) 

Pe [(il . . . . .  iN+ 1 : s; k2 , . . .  , k N _ s ) ,  ( i i , . - - , i N + l  : s + 1; kl  . . . .  , kN-s+l ) ]  

~k, ( iN+l)  
= 7 e ( i l , . . . , i N + l  : s ; k l  . . . .  , k N _ s )  , s = O , . . . , Y -  1; 

Pe[(il . . . . .  iN+ 1 : s; k l , . . .  , k N _ , )  , ( i l , . . - ,  iN+l  : S -- 1; k l , . � 9  kN-s-1)] 

~k~,_,(ik,,_,)/e 
= 7 e ( i l , . . - , i N + l  : S ; k l , . . .  , k N - s ) '  S = 1 , . . .  , N .  

Pe[(il . . . .  , i N + l :  0; ~ 1 , . . - ,  k N ) ,  ( i l ,  � 9  , J p  . . . . .  i N + l :  0; ]~1 . . . .  , k N ) ]  

a(p) 
ipJv 

p = l , . . . , N + l ;  _(1) a(N+l) ' 
a i l i l  + ' ' "  + i N + l i N +  I "Sl- ]2kl( iN+l)  
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pe[(il . . . . .  iN+i: s ; k l , . . . , k N _ , ) , ( Q  . . . .  , j m . . . , i N + l :  S;kl . . . . .  kN-~ ) ]=o(1 ) ,  s = l  . . . . .  N,  p = l  . . . . .  N + I ;  

~ ,  (iN+l) 
pe [ ( i l , . . . , iN+l :  0;kl . . . . .  kN) , ( i l  . . . . .  iN+l :  1;k2 . . . . .  k N ) ] =  _(1) . a(N+l) 

t&iiil "91-... ~ iN+liN+ 1 "~ # k l  ( " / N + I )  

pe[(ix . . . .  , iN+l : S; k l , . . .  , kN-s) ,  (/1 . . . .  , iN+l : S + 1;k2 . . . .  ,kN-s)] 

uk, (iN+~)e (1 
= y]pe~,...,--~N_ i~,(i, ) +o(1 ) ) ,  s = l , . . . , N - 1 .  

This agrees with Conditions 1-4, but here the  zero level is the set 

((il . . . .  , iN+ l :  s;kl . . . .  , k N - , ) ,  i n = 1 . . . . .  rv, p =  1 , . . . , N + I ,  ( k l , . . . , k N _ , ) E  E f t - ' ,  s =  0,1), 

and the  q th  level is the set 

( ( i l , . . . , i N + l  : q +  1;kl . . . .  , k N _ q _ l )  , ip = 1 . . . . .  rp, p = 1 , . . .  , N  + 1, (kl . . . . .  kN-q-1)  E E f t - q - l ) .  

Since the  level 0 in the limit forms an essential class, the probabilit ies 

rro(il . . . . .  iN+l: 0;k l  . . . . .  kN), r ro ( i l , . . . , iN+l :  1;kl . . . . .  kN-1), 

i p = l , . . . , r p ,  p = l  . . . . .  N + I ,  (kl . . . . .  kN-s )  E V 2  -s , s =  0,1, 

satisfy the system of equations 

~0(Jl ,J2 . . . .  , J g + l  : 0;kl  . . . . .  kg )  

Z rro(ii,j,_,... ,Jg+l : 0; kl ,  L ' (1) , (1) _(2) 4" a{ N+I) . . . .  , ~N)aitji tailq + uj=j= + - .- _ .~N+t.~N+I +/-lki ( ]N+I ) ) - I  
ii #Jl 

. . .  a(N+l) - , (2) , ( I )  a {2) -b + + p . k , ( j N + l ) )  -1- t -  + Z rro( j l , j2 , . . .  , JN+I:  0; kl . . . .  ,xN)ai=J=t"J,J, + ,=,= .J~+,.JN+, " '"  
i~ # jr~ 

+ Z 7ro(j l ,J2 . . . . .  i N + l :  0 ; k , ,  .,kN)alN++ll)~+,(ap,}i" <'>, + a  (N+i ,  . .  - t -  aj=jl -} - ' ' "  _ _  iN+l iN+l  + ~ k i ( / N + l ) )  - 1  

iN+I#JN+I 

+rr ( j l  . . . . .  JN+l : 1; ki . . . . .  kN-1) ,  

lr0(jl . . . . .  J N + I :  1 ;kl  . . . . .  kN- l )  = rro(ji . . . . .  i N + l :  O ; k N , k l  . . . . .  k N - 1 )  

�9 - 1  " "  W a ( 1 )  4- a ( N + l )  -I- # k  ~ ( 3 g + i ) )  �9 X#krlt3N+llt JlJl ~" " ' ' - -  J N + I J N + I  

To apply (1) we need the solution of (2) and (3) with normalizing condit ion 

(2) 

(3) 

N + I  rr, 

E E Z . . . . .  ',,,+,: 
p = l  ip=l (kl,...,k~) 

0 ; k l , . . . , k N ) + r r 0 ( i l , . . . , i N + l :  1 ; k l , . . . , k N _ l ) } = l .  (4) 

Suppose that  we have this solution�9 Then,  by substituting it into (1), we get 

r l  
g(<~.,)) = ~-, ~ . . .  

i1=1 

rN+l  

Z E r ro ( i l , . . . , iN+l :  1;k2 . . . . .  kN) 
i N + I = I  (kt,...,kN )EVff 

U~=(iN+i) #~3(iN+X) U~ . . . .  (iN+,) 
Ak,(ik,) x A~ , ( ik , )+Ak: ( ik : )  x . . - x  A k , ( i ~ , ) + - - - + A ~ = ( i k = )  ( 1 + ~  x 

Taking into account the exponentiality of % ( i l , . - - , i N + l :  s; k l , . . . ,  k/v_j) for fixed e ,  we have 

E e x p { i e m O r e ( i l , . . . , i N + l  : 0;k i  . . . .  ,kN-~)}  = l + e m 
iE) 

a(N+l)_. (1 + o(1)). 
a !~! + ' "  + + ~ < ( i N + , )  ilZl iN+ l iN+l  
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Observe that fie = e '~ and,  therefore, recalling Corollary 1 we immediately conclude that emf/e(rn) converges weakly 
to an exponentially dis t r ibuted random variable with parameter  

r l  r N + l  

A= 51- -  Y: . . . .  

Q = l  i N + t  = '  ( k i  . . . . .  k ~ ) E V ~  

/~2 (iN+l) P~a(iN+I) P~+l(iN+l)  1 
X A~,(i~,) X A~,(it ,)+A~=(i~=) x - ' . x  A~, ( i~ , )+."+A~, , , ( i~=)D'  (5) 

which completes the proof. 
It should be noted that  this asymptotic approach considerably reduces the calculations, since solving the system (2) 

and (3) is much easier t h a n  getting the stat ionary dis t r ibut ion of (Ze(t), t _> 0 ) a n d  the system of stochastic relations 
concerning its sojourn t ime in (a,~). Note that  if p~(iN+~) = #(iN+,), p -~ 1 , . . . , N ,  a closed-form solution can be 
obtained. Namely, by subs t i tu t ing  (3) into (2), we get 

r r0 ( j , , j 2 , . . .  , jN+I:  O;kl . . . .  ,kN) 

= ~ lro(il ,J2, . , i N + , :  0 ;k l , .  L �9 (1) ,  (1) _(2) a(N+l) . . . .  ,~-N)aitj, (ai~i~ +czjaj= + . . . +  #N+,jN+, + #( jN+I))- `  
i t ~ j t  

i_ , (2) , (1) . (2) -4-a(N+I) 
+ E rr~ . . . . .  JN+I: 0;k, . . . . .  ~N)ai=ja(aJxJt +ai2i=+'" -- JN+,3N+x +p( jN+') )  -1 + ' ' "  

i= #J2 

�9 _ (2 )  . . .  4 -  a { N + l . )  + E 7ro(j , , j .  . . . .  , iN+l :  O;k, ,kN)a[N:,gN+,(a~'~, + . j : j .  + + # ( i N + , ) )  - I  ,) . . . .  I N + I I N + I  

]c . a ( , )  _ ( N + I )  + D(jN+I ) ) - ' -  (G) +Tro(Jl . . . .  , iN+l:  0; kN,kl . . . . .  N=,)#(3N+I)( 1,3, + " "  + "#u+tJN+, 

Denote by (Trl~), ip = 1 . . . . .  rp) the steady-state dis t r ibut ion of the governing Markov chains ({p(t), t > 0), p = 
1 . . . .  , N + 1, respectively. Clearly 

(P) (P) = E rr(P)-(P) rrj~ aj,,#,, i~ %, j , ,  p = 1 , . . . , N  + 1. (7) 
ip~j~ 

It  can be verified that the solution of (6) with (7) is 

7ro( j l ,J2 , . . . , jN+,:  0;kl . . . .  ,kN) n ,  (,) a(g+l)  D(rrj, 7r~N+'))( a('')" +"  " +/~(jN+I)) ,  
= " " " 2 ~ ' + 1  3 1 2 t  " -{" j , w + t j , ' g . t  

wo(Jl, , iN+, :  1;kl . . . .  , kN-1)  ,-,, (1) 7r(N+t), , .  "'" =]'J(TrJl "'" JN+t )~I"(JN+I]' 

where B is the normalizing constant, i.e., 

(s) 

(9) 

r l  r N +  1 

1 E ""> +-- +a . . . . .  ( T r i l  ' "  - -  i ~ ' + I i N + I  "1" 2 p ( i g + l ) ) .  B 
i 1 = 1  ; N + I = I  

Thus from (5) it follows that  emil(m) converges weakly to an exponentially distributed random variable with parameter  

1 k h = ~ .  . . .  
i l = l  

rN~l  

i N + I  = 1  {k~ . . . . .  k N ) e V f f  

x p(iN+I)  p( iN+l)  p(iN+I) (10) 
,xk , ( i<)  x ) ,k , ( i<)  + Ak=(ik,) x --- x A < ( i < )  + - . -  + Ak,n(ik,o)" 

Consequently, tile d is t r ibut ion of the time while the number  of active sources reaches tile (rn + 1)th level for the first 
time is approximated by 

P(f~c(m) > t) = P(e=f)~(m)  > emt) ~ exp(-emAt) .  
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In particular, when rn = N - 1 we get that  the busy-period length of the  receiver is asymptotical ly an exponentially 
distributed random variable with parameter 

~N-I A _ _ N - 1  1 ~ rt~+~ , (I) rr(N+l), , .  
- -~  ~.l  _ _ " "  ~ ~ uri, " "  iN+, /#t'2V+t, 

i l=l  iN+x=l (kx,...,kN)EVl~ 

#(iN+x) #(iN+l) /~(iN+I) (11) 
X ~ X  X - - - X  . 

~k, (i~,) .%, (ik,) + ~= (ik=) ~ ,  (i~,) + - - -  + ~k,~_, (i~._,) 

In the case where there are no random environments, that  is, # ( iN+l )  = P, kp(ip) = Ap, ip = 1 , . . .  , r  m p = 1 , . . .  ,N,  
from (11) we get 

g N - 1 h  -= e N-11-~" ~ P P x --- x # . (12) 
N! a.., PAk~ Akl + Aka Ak~ + . . .  + AkN_, 

(k,  ..... kN)eVNN 

Finally, for the  total ly homogeneous case, from (12) we obtain 

eN_IA _ 1 p g  (13) 
(N - i ) !  (,~/~.)N--1 

The utilization U~ of the receiver, which is the l ong -~n  fraction of t ime during which it is busy, can be given by 

U~ = ~ + I , (14) 

where I denotes its idle-period length. 

4. N u m e r i c a l  R e s u l t s  

This section presents a number of validation experiments (cf. Tables 1-8) examimng the credibility of  the  proposed 
approximation against exact results for the utilization at equilibrium. Note  that, to the best of our knowledge, an 
exact formula for it is known only for homogeneous systems that are not  affected by random environments,  and it is 
given (via the P a l m  formula) by 

N N 

where p = (A/e ) /p .  This is the reason why there are validation exper iments  for this case only. Ins tead of the overall 
utilization U~, U~, let us consider the utilization of the receiver wi th  respect  to the pth source, denoted  by Up, U~, 
respectively. Clearly Up = U~/N and U~ = U~/N, that  is, they are so-called normalized utilizations. In this ease, 
relations (13) and (14) reduce to the following approximation: 

1 N~ 
Up = N N! + (i.~/(a/$)) N" 

The numerical  results can be seen in Tables 1-8. It can be observed that  the approximate values for {Up} a r e  
very much comparable  in accuracy to those provided by the exact results for {U~}. However, the computational 
complexity, due to  the proposed approximation, has been considerably reduced. As A/e becomes greater  than p, the 
{Up} approximations,  as expected, approach the exact values of {Up}. Clearly, the greater the number  of sources the 
less the number  of steps needed to reach the exact results. 

TABLE 1. N = 3. 
p v; up 
1 0.3125 0.285714286 
2 0.329113924 0.326530612 
22 0.332657201 0.332467532 
23 0.333237575 0.333224862 
24 0.333320592 0.333319771 
25 0.333333169 0.333331638 
2 o 0.333333125 0.333333121 
2' 0.333333307 0.333333307 
2 s 0.333333333 O. 333333333 
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P 

2 
22 
23 
2 4 

2.~ 

T A B L E  2. N = 4. 
u; 

0.246153846 
0.249605055 
0.249968310 
0.249997756 
0.249999999 

up 
0.24 

0.249350649 
0.249959317 
0.249997457 
0.249999999 

0.25 0.25 

T A B L E  3. N = 5. 

2 
22 

2 ~ 
24 
25 

u; 
0.199386503 
0.199968409 
0.199998732 
0.199999955 
0.199999998 

0.2 

v~ 
0.198347107 
0.199947930 
0.199998372 
0.199999949 
0.199999998 

0.2 

TABLE 4. N = 6. 
. u; 
1 0.166581502 
2 

22 
23 

0.166664473 
0.166666623 

0.166435506 
0.166666305 
0.166666661 

0.166666666 0.166666666 

T A B L E  5. N = 7. 
p up 

2 
2 2 

2 ~ 

u; 
0.142846715 
0.142857009 
0.142857142 

0.142828804 
0.142856921 
0.142857141 

0.142857143 0.142857143 

TABLE 6. N = 8. 
p up 

2 
22 

u; 
0.124998860 
0.124999993 

0.125 

0.1249969 
0.124999988 

0.125 

TABLE 7. N = 9. 
u; 

0.111110998 

up 
1 0.111110805 
2 0.111111111 0.111111111 

TABLE 8. N =  10. 
p up u; 

0.099999999 
'0.1 

0.099999999 
0.1 

5. C o n c l u d i n g  R e m a r k s  

In  th is  paper, we presented a queueing model to ana lyze  the  behavior of an  F C F S  heterogeneous finite-source 
communica t ion  system with a single processor. The sys t em operates  in Markovian  env i ronmen t s  and the messages 
ar r ive  fast  compared to thei r  service. An  asymptot ic  app roach  was provided to o b t a i n  t he  distr ibut ion of the  t ime  
to t he  first system failure. The  credibil i ty of the me thod  is i l lus t ra ted with some s imple val idat ion experiments,  and  
favorable  comparisons against  exact  results  are made. 
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