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Abstract

We generalize the Raabe-formula to the q-loggamma function by giving an integral
formula for log Γq when q > 1. As a consequence, we get that the integral of the
logarithm of the fourth Jacobi theta function between its least imaginary zeros is
connected to the partition function and the Riemann zeta function.
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1 Introduction

The fourth Jacobi theta function is defined by the infinite sums

ϑ4(x, q) =
∞∑

n=−∞
(−1)nqn2

e2nix = 1 + 2
∞∑

n=1

(−1)nqn2

cos(2nx).

This is an entire function in the complex variable x for any fixed complex q
for which |q| < 1. See [4,25] on the theta functions in general.

The partition function P (n) gives the number of possible additive integer
partitions of the natural number n. In other words, P (n) is the number of
ways writing n as a sum of positive integers [3,11].
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In the present paper we reveal an analytic connection between the fourth
Jacobi function and the partition function.

It is easy to prove that for a fixed real q ∈ ]0, 1[ the function ϑ4(ix, q) is real
and strictly positive when x ∈ ] log

√
q,− log

√
q[, and it is zero at these two

endpoints (see the final remarks of Section 4). Our main result concerns on
the area under the graph of the fourth Jacobi function on this interval (the
graph can be found in the penultimate section).

Theorem 1 For any real q ∈ ]0, 1[,

∫ x∗

−x∗
log ϑ4(ix, q)dx = ζ(2)− log q · log

( ∞∑
n=0

P (n)q2n

)
.

Here x∗ = log
√
q, P (n) is the partition function, and i =

√
−1.

(Note that x∗ is negative and −x∗ is positive, so in the theorem the integration
goes from ”right to left” on the imaginary axis.)

To prove the theorem we need a q-analogue of Raabe’s integral

∫ 1

0
log Γ(x)dx = log

√
2π

for the Euler gamma function. This analogue uses the so-called q-gamma func-
tion and states:

∫ 1

0
log Γq(x)dx =

ζ(2)

log q
+ log

√√√√q − 1
6
√
q

+ log(q−1; q−1)∞ (q > 1),

where (q−1; q−1)∞ =
∏∞

n=0(1− 1/qn).

For a more general statement, see Theorem 2. The definition of Γq is given in
equation (2).

2 Preliminaries

In this section we set up all the necessary ingredients and preliminary propo-
sitions to prove our q-Raabe formula and the integral formula.
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2.1 Raabe’s formula

In 1840 J. L. Raabe [22] proved that for the Euler Γ function∫ 1

0
log Γ(x+ t)dx = log

√
2π + t log t− t (t ≥ 0).

This implies the special case (when we take the limit t→ 0+)∫ 1

0
log Γ(x)dx = log

√
2π,

and an immediate consequence is that∫ 1

0
log Γ(x)Γ(1− x)dx = log 2π.

(See [1] for an elementary proof of this special case.) We shall prove the appro-
priate integral formula for the q-gamma function when q > 1 (Theorem 2.).
Then we show that the Jacobi triple product identity connects the q-gamma
function to ϑ4 and our main formula (Theorem 1.) will follow.

To read more on the Raabe-formula and its extension to multidimensional
case, the reader may consult [16,23].

2.2 The q-gamma functions

F. H. Jackson defined, for 0 < q < 1, the q-analogue of the standard Euler
Γ(x) function for any x ∈ R \ {0,−1,−2, . . . } as [8,13,12]

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x (0 < q < 1) (1)

with the so-called q-Pochhammer symbol (x; q)∞ = (1−x)(1−qx)(1−q2x) · · · .
This Γq function is called as Jackson q-gamma function. This plays an impor-
tant role in the evaluation of basic hypergeometric series [8]. R. Askey also
contributed to the Jackson q-gamma function in a profound way, see [5,6]
for examples. On analytic properties of Γq (including information on poles,
residues, infinite sum representations) one can turn to the book [24, Section
6.4].

Another q-gamma function can also be defined for q > 1. It is

Γq(x) =
(q−1; q−1)∞
(q−x; q−1)∞

(q − 1)1−xq(
x
2) (q > 1). (2)
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This function was introduced by Jackson [12, p. 129], but he did not study
its properties. There are two fundamental papers of D. S. Moak [20,21], in
which he investigated its analytic properties (see also Exercise 1.23 of [8] and
Exercise 14 on p. 546 in [24]). Therefore in considering this contribution of
Moak, one might call the function in (2) the Moak q-gamma function.5

We emphasize that in the present paper we need and use only the q-gamma
function when q > 1.

2.3 The zeta regularized product

We also need some recent results of Kurokawa and Wakayama. Let us consider
a sequence a = (a1, a2, . . . ). Its zeta regularized product is denoted and defined
by [14,15]

∞̂∏
n=1

an = exp

(
−Res

s=0

ζa(s)

s2

)
. (3)

Here

ζa(s) =
∞∑

n=1

a−s
n

is the zeta function associated with the sequence a. It is assumed that ζa(s)
is meromorphic at s = 0 or at least it can be meromorphically continued to
s = 0, and further, that around this point ζa(s) has the Laurent expansion

ζa(s) =
∑

m>m0

cm(a)sm

for some integer m0. Thus the zeta regularized product equals to exp(−c1(a)),
as well.

See [19] for nice applications of regularized products.

M. Lerch’s formula (5) implies that for a = (x, 1 + x, 2 + x, . . . )

∞̂∏
n=0

(n+ x) =

√
2π

Γ(x)
(x > 0). (4)

The sequence a above has the associated zeta function

ζa(s) = ζ(s, x) =
∞∑

n=0

(n+ x)−s (x > 0, <(s) > 1).

This is the well known Hurwitz zeta function. What Lerch proved is that [17]

ζ ′(0, x) = log
Γ(x)√

2π
(x > 0). (5)
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Then (4) easily follows. See [2, Theorem 1.3.4] for a proof of (5).

Now we step forward to the q-version of the above theorems. Let us introduce
the short and standard notation

[n]q =
qn − 1

q − 1
(q 6= 1).

With this abbreviation the zeta function associated with the sequence a =
([x], [1 + x]q, [2 + x]q, . . . ) is the so-called q-Hurwitz zeta function:

ζa(s) = ζq(s, x) =
∞∑

n=0

[n+ x]−s
q .

There are different q-extensions of the ordinary Hurwitz zeta function, see [24]
for different examples.

Since the analytical properties and convergence domains of this function are
crucial in the present investigation, we formulate the next proposition.

Proposition 1 For any fixed q > 1 the q-Hurwitz zeta function

ζq(s, x) =
∞∑

n=0

[n+ x]−s
q

converges when x > 0 and <(s) > 0. At the point s = 0 this function has a
simple pole with residue 1/ log(q).

The proof of this proposition can be found in the last section.

With respect to the q-gamma function, the parallel result of (4) is in the next
proposition.

Proposition 2 For any real q > 1 and x > 0, there holds

∞̂∏
n=0

[n+ x]q =
∞̂∏

n=1

qn+x − 1

q − 1
=

Cq

Γq(x)
, (6)

where

Cq = q−
1
12 (q − 1)

1
2
− log(q−1)

2 log q (q−1; q−1)∞. (7)

This is the second theorem of Kurokawa and Wakayama in [14] and this will
be our main tool. (A more general form of this theorem is presented in [19].)

For practical reasons we rephrase this zeta regularization theorem in a more
suitable form (employing (3) and (6)).
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Proposition 3 For any q > 1 and x > 0, there holds

log Γq(x) = logCq + Res
s=0

ζq(s, x)

s2
,

where Cq is defined by (7).

The statement follows from Proposition 2 by using the regularization formula
(3).

We split the proof of the main theorem to two sections. The next one contains
the generalized Raabe’s formula, the other contains the proof of the integral
formula of Jacobi’s function ϑ4.

3 Integral of the q-loggamma function – the q-Raabe formula

The q-analogue of Raabe’s theorem for q > 1 is given:

Theorem 2 If q > 1 and Γq(x) is defined by (2), then for any t > 0,

∫ 1

0
log Γq(x+ t)dx = (8)

logCq −
1

2qt log q

[
1− qt

1− q−t
(2 Li2(q

−t) + log2(1− q−t))+

2
1− qt

1− q−t
log

1− q
1− qt

log(1− q−t)− qt log2 1− q
1− qt

]
.

In particular, if t tends to zero then

∫ 1

0
log Γq(x)dx =

ζ(2)

log q
+ log

√√√√q − 1
6
√
q

+ log(q−1; q−1)∞. (9)

Here Li2(z) is the dilogarithm function [18]:

Li2(z) =
∞∑

n=1

zn

n2
.

It is an interesting question that how such a theorem looks like when we use
the Jackson q-gamma function (i.e., definition (1) and 0 < q < 1). To look for
a theorem of this flavour, our proof cannot be applied, since the two crucial
points – the q-Hurwitz zeta and the Kurokawa-Wakayama theorem – work
only when q > 1.
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To prove Theorem 2, we need the following statement on the integral of the
q-Hurwitz zeta function, which is interesting in itself.

Theorem 3 If q > 1, t > 0 and <(s) > 0, then

∫ 1

0
ζq(s, x+ t)dx =

(q − 1)s

s log q

(qt − 1)1−s

qt 2F1(1, 1; s+ 1; q−t).

Here

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!

is a hypergeometric function and (a)n = a(a+1) · · · (a+n−1) is the Pochham-
mer symbol. See a good introduction to hypergeometric functions in [10].

Proof of Theorem 3. To use the series representation of the q-Hurwitz zeta
function, we have to assume that t > 0, q > 1 and <(s) > 0 (see Proposition
1). Then we have that

∫ 1

0
ζq(s, x+ t)dx =

∫ 1

0

∞∑
n=0

[n+ x+ t]−s
q dx =

(q − 1)s
∞∑

n=0

∫ 1

0
(qn+x+t − 1)−sdx.

This latter integral can be computed if we determine the Taylor series of the
integrand with respect to the variable x and then we integrate term by term.
A lengthy computation finally shows that the integral can be expressed by
hypergeometric functions:

∫ 1

0
(qn+x+t − 1)−sdx =

1

s log q

[
(qn+t − 1)1−s

qn+t 2F1(1, 1; s+ 1; q−n−t)−

(qn+t+1 − 1)1−s

qn+t+1 2F1(1, 1; s+ 1; q−n−t−1)

]
.

(It can be realized that the above subtraction comes from the Newton-Leibniz
formula, so one can read out the primitive function and then check this integral
by derivation, too.) Since

2F1(1, 1; s+ 1; q−n−t) =
∞∑

k=0

k!

(s+ 1)k

1

(qn+t)k
,

and because of <(s) > 0,

∞∑
n=0

∫ 1

0
(qn+x+t − 1)−sdx =
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1

s log q

∞∑
n=0

∞∑
k=0

k!

(s+ 1)k

(
(qn+t − 1)1−s

(qn+t)k+1
− (qn+t+1 − 1)1−s

(qn+t+1)k+1

)
.

If we interchange the order of the summation – which can be done by absolute
convergence –, we see that the sum over n is telescopic, so the only one term
which not cancels belongs to n = 0. Thus the above expression simplifies to

1

s log q

∞∑
k=0

k!

(s+ 1)k

(qt − 1)1−s

(qt)k+1
=

(qt − 1)1−s

sqt log q

∞∑
k=0

k!

(s+ 1)k

1

(qt)k
.

This latter sum is again hypergeometric with parameters (1, 1; s+1; q−t), hence
we get our Theorem. 2

Proof of Theorem 2. Proposition 3 gives that∫ 1

0
log Γq(x+ t)dx = logCq +

∫ 1

0
Res
s=0

ζ(s, x+ t)

s2
dx.

Since the residue is taken with respect to s, we can carry out it before the
integral. Hence, by Theorem 3,∫ 1

0
log Γq(x+ t)dx = logCq + Res

s=0

(q − 1)s

s3 log q

(qt − 1)1−s

qt 2F1(1, 1; s+ 1; q−t).

The residue can be calculated as follows: we leave s3 in the denominator,
then we look for the coefficient of s2 in the Taylor expansion of the remaining
function. A lenghty calculation shows that the residue equals to

−1

2qt log q

[
(1− qt)

∂2

∂s2 2F1(1, 1; s; q−t)

∣∣∣∣∣
s=1

+ (10)

2(1− qt) log
1− q
1− qt

∂

∂s
2F1(1, 1; s; q−t)

∣∣∣∣∣
s=1

− qt log2 1− q
1− qt

]
.

Now we deal with the partial derivatives. Symbolically,

∂n

∂sn 2F1(1, 1; s; z) =
∞∑

n=0

(1)n(1)n
∂n

∂sn

1

(s)n

zn

n!
. (11)

The Pochhammer symbol can be rewritten with the Γ function:

(s)n =
Γ(s+ n)

Γ(s)
,

whence
∂

∂s

1

(s)n

=
−1

(s)n

(ψ(s+ n)− ψ(s)), (12)

and
∂2

∂s2

1

(s)n

=
(ψ(s+ n)− ψ(s))2

(s)n

− ψ′(s+ n)− ψ′(s)
(s)n

.
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Here

ψ(z) =
Γ′(z)

Γ(z)

is the digamma function [5,9]. When n is a positive integer, then [2, p. 13]

ψ(n) =
1

1
+

1

2
+ · · ·+ 1

n− 1
− γ = Hn−1 − γ, (13)

and

ψ′(n) = − 1

12
− 1

22
− · · · − 1

(n− 1)2
+ ζ(2) = −Hn−1,2 + ζ(2).

(Hn and Hn,2 are the harmonic- and second order harmonic numbers, respec-
tively. H0 = H0,2 = 0.) Now (11), (12) and (13) gives that

∂

∂s
2F1(1, 1; s; z)

∣∣∣∣∣
s=1

=
∞∑

n=0

n!n!
−Hn

n!

zn

n!
= −

∞∑
n=0

Hnz
n =

log(1− z)

1− z
.

The last equality is straightforward (see [10]). Similarly, for the second order
derivative

∂2

∂s2 2F1(1, 1; s; z)

∣∣∣∣∣
s=1

=
∞∑

n=0

n!n!

(
H2

n

n!
+
Hn,2

n!

)
zn

n!
=
∞∑

n=1

H2
nz

n +
∞∑

n=1

Hn,2z
n.

(14)
By Cauchy’s product, the latter sum is simply

1

1− z

∞∑
n=1

zn

n2
=

Li2(z)

1− z
.

The first sum can be determined easily. Note that

H2
n−1 =

(
Hn −

1

n

)2

= H2
n +

1

n2
− 2

Hn

n
,

whence
∞∑

n=1

H2
n−1z

n =
∞∑

n=1

H2
nz

n +
∞∑

n=1

zn

n2
− 2

∞∑
n=1

Hn

n
zn. (15)

The last sum equals to [7]

∞∑
n=1

Hn

n
zn = Li2(z) +

1

2
log2(1− z). (16)

If we temporarily introduce the function

f(z) =
∞∑

n=1

H2
nz

n,
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then (15) and (16) implies that

zf(z) = f(z) + Li2(z)− 2(Li2(z) +
1

2
log2(1− z)),

hence

f(z) =
∞∑

n=1

H2
nz

n =
Li2(z) + log2(1− z)

1− z
.

Altogether, (14) becomes

∂2

∂s2 2F1(1, 1; s; z)

∣∣∣∣∣
s=1

=
2 Li2(z) + log2(1− z)

1− z
.

The partial derivatives in (10) are determined and the first part of the Theorem
(i.e. formula (8)) is proved.

The second part, formula (9), can be proven if we take the limit t→ 0 in (8).
Since this step is not trivial, we give the details:

lim
t→0

−1

2qt log q

[
1− qt

1− q−t
(2 Li2(q

−t) + log2(1− q−t))+

2
1− qt

1− q−t
log

1− q
1− qt

log(1− q−t)− qt log2 1− q
1− qt

]
=

−1

2 log q

[
−2 Li2(1)− lim

t→0

(
+ log2(1− q−t) + 2 log

1− q
1− qt

log(1− q−t) + log2 1− q
1− qt

)]
=

−1

2 log q

−2 Li2(1)− lim
t→0

(
log(1− q−t) + log

1− q
1− qt

)2
 =

−1

2 log q

[
−2 Li2(1)− lim

t→0
log2

(
(1− q)1− q−t

1− qt

)]
=

1

2 log q
(2ζ(2) + log2(q − 1)).

Thus (8) tends to the simple expression

∫ 1

0
log Γq(x)dx = logCq +

1

2 log q
(2ζ(2) + log2(q − 1)).

The definition (7) of Cq enables us to get a more simple identity. Since

logCq = − 1

12
log q +

1

2
log(q − 1)− log2(q − 1)

2 log q
+ log(q−1; q−1)∞,

the term log2(q−1)
2 log q

cancels and a trivial modification gives the second formula

(9) of our Theorem 2. 2
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4 The proof of Theorem 1.

The (2) definition of the q-gamma function and some reduction gives that for
any q > 1 and y > 0

1

Γq2

(
1
2

logq

(
q
y

))
Γq2

(
1
2

logq(qy)
) = (17)

(q
1
2 )1−log2

q y

(q−2; q−2)3
∞(q2 − 1)

(q−2; q−2)∞(y/q; q−2)∞(1/(yq); q−2)∞

This product can be rewritten by Jacobi’s triple product identity [8, p. 15]:

(q−2; q−2)∞(y/q; q−2)∞(1/(qy); q−2)∞ =
∞∑

n=−∞
(−1)nq−n2

yn (q > 1, y 6= 0).

In (17) we choose y = q1−2x. Then 1
2

logq

(
q
y

)
= x and 1

2
logq(qy) = 1 − x, so

Jacobi’s triple product identity yields

1

Γq2(x)Γq2(1− x)
=

(q
1
2 )1−(1−2x)2

(q−2; q−2)3
∞(q2 − 1)

∞∑
n=−∞

(−1)nq−n2

(q1−2x)n.

Next consider the definition of the Jacobi function ϑ4 on the first page. It is
not hard to see that we arrive at the next formula:

1

Γq2(x)Γq2(1− x)
=

q2x(1−x)

(q−2; q−2)3
∞(q2 − 1)

ϑ4

(
1

2i
(1− 2x) log q,

1

q

)
.

In the next step we take logarithm of both sides and integrate on [0, 1].∫ 1

0
log Γq2(x)Γq2(1− x)dx =

log(q−2; q−2)3
∞(q2−1)−log q

∫ 1

0
2x(1−x)dx−

∫ 1

0
log ϑ4

(
1

2i
(1− 2x) log q,

1

q

)
dx.

Using Theorem 2, the right hand side must be equal to

2ζ(2)

log q2
+ log

q2 − 1
6
√
q2

+ log(q−2; q−2)2
∞.

An elementary simplification implies that∫ 1

0
log ϑ4

(
1

2i
(1− 2x) log q,

1

q

)
dx = log(q−2; q−2)∞ −

ζ(2)

log q
.

We transform the integral:∫ 1

0
log ϑ4

(
1

2i
(1− 2x) log q,

1

q

)
dx =

−i
log q

∫ 1
2
i log q

− 1
2
i log q

log ϑ4

(
x,

1

q

)
dx.
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Therefore∫ 1
2
i log q

− 1
2
i log q

log ϑ4

(
x,

1

q

)
dx =

1

i

[
ζ(2)− log q log(q−2; q−2)∞

]
. (18)

Let us consider the left endpoint of the integration:

ϑ4

(
−1

2
i log q,

1

q

)
=

∞∑
n=−∞

(−1)nqn−n2

.

It is straightforward to see that all terms cancel, so

ϑ4

(
−1

2
i log q,

1

q

)
= 0.

Similarly,

ϑ4

(
1

2
i log q,

1

q

)
= 0.

Note that if q > 1, as we suppose, then the second argument of the theta
function, 1/q, is between 0 and 1. So, for the sake of simplicity, from now on
we change to q = 1

q
and we restrict q to the interval ]0, 1[ .

To visualize the roots, we draw ϑ4(ix, 1/2)

From the graph it is obvious that there are no roots of ϑ4(ix, q) between
]i log

√
q,−i log

√
q[ and that this function is positive on this interval. Thus

the first claim of the introduction is strenghtened.

In addition, changing our variable q as we did above the graph, (18) also
modifies:∫ −i log

√
q

i log
√

q
log ϑ4 (x, q) dx =

1

i

[
ζ(2) + log q log(q2; q2)∞

]
(0 < q < 1).

Interchanging the limits of the integration, substituting ix in place of x and
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using the well known generating function [3]

∞∑
n=0

P (n)qn = (q; q)−1
∞ ,

we are done. 2

5 Proof of Proposition 1

To put the paper in a logically closed form, there is one more statement left
to prove. We have to justify that the series

ζq(s, x) =
∞∑

n=0

[n+ x]−s
q

converges when x is a positive real number, q > 1 and <(s) > 0. Having these
assumptions, for the general term the next estimation is valid:

0 <
1

[n+ x]q
=

q − 1

qn+x − 1
<

q − 1

qn+x − q
=

1

q

q − 1

qn−1+x − 1
=

1

[n− 1 + x]q
.

Therefore, by induction,

1

[n+ x]q
<

1

qn

1

[0 + x]q
=

1

qn

q − 1

qx − 1
.

This shows that the general term exponentially decreases for any fixed, positive
real x. (Note that for complex x there are additional singularities of this
function and the present argument cannot be applied.) Now we have that

ζq(s, x) =
∞∑

n=0

[n+ x]−s
q <

q − 1

qx − 1

∞∑
n=0

1

(qs)n
.

If <(s) > 0 then 1/qs has absolute value less than one, so the sum on the right
converges.

However, when s = 0, ζq(s, x) obviously diverges. Kurokawa and Wakayama
[14, p. 297] proved the next asymptotic estimation around s = 0 of the q-
Hurwitz function:

ζq(s, x) =
1

log(q)

1

s
+

1

2
− x+

log(q − 1)

log(q)
+O(s).

This shows that at s = 0 this function has a simple pole with residue 1/ log(q),
as we stated in our proposition.
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[23] J. L. Raabe, Angenäherte Bestimmung der Function Γ(1 + n) =∫∞
0 xne−xdx, wenn n eine ganze, gebrochene, oder incommensurable

sehr grosse Zahl ist, J. Reine Angew. Math. 28 (1844), 10-18.

[24] H. M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated
Series and Integrals, Elsevier (2011).

[25] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis,
Cambridge Univ. Press, 4th edition (1996).

15


