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Abstract. In this paper, we consider the Diophantine equation

bk + (a + b)
k

+ · · ·+ (a (x− 1) + b)
k

=

= dl + (c + d)
l
+ · · ·+ (c (y − 1) + d)

l
,

where a, b, c, d, k, l are given integers with gcd(a, b) = gcd(c, d) = 1,

k 6= l. We prove that, under some reasonable assumptions, the

above equation has only finitely many solutions.

1. Introduction and the main result

For a positive integer n ≥ 2, let

Ska,b (n) = bk + (a+ b)k + · · ·+ (a (n− 1) + b)k . (1)

It is easy to see that the above power sum is related to the Bernoulli

polynomials Bk(x) in the following way:

Ska,b (n) =
ak

k + 1

([
Bk+1

(
n+

b

a

)
−Bk+1

]
−
[
Bk+1

(
b

a

)
−Bk+1

])
, (2)

where the polynomials Bk(x) is defined by the generating series

t exp(tx)

exp(t)− 1
=
∞∑
k=0

Bk(x)
tk

k!

and Bk+1 = Bk+1(0). For the properties of Bernoulli polynomials which

will be often used in this paper, sometimes without special reference,
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we refer to [7, Chapters 1 and 2]. We can extend Ska,b for every real

value x as

Ska,b (x) =
ak

k + 1

(
Bk+1

(
x+

b

a

)
−Bk+1

(
b

a

))
. (3)

We denote by C[x] the ring of polynomials in the variable x with

complex coefficients. A decomposition of a polynomial F (x) ∈ C[x] is

an equality of the following form

F (x) = G1(G2(x)) (G1(x), G2(x) ∈ C[x]),

which is nontrivial if

degG1(x) > 1 and degG2(x) > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are

said to be equivalent if there exists a linear polynomial `(x) ∈ C[x] such

that G1(x) = H1(`(x)) and H2(x) = `(G2(x)). The polynomial F (x)

is called decomposable if it has at least one nontrivial decomposition;

otherwise it is said to be indecomposable.

In a recent paper, Bazsó, Pintér and Srivastava [1] proved the follow-

ing theorem about the decomposition of the polynomial Ska,b (x) defined

above.

Theorem 1.1. The polynomial Ska,b (x) is indecomposable for even k.

If k = 2v − 1 is odd, then any nontrivial decomposition of Ska,b (x) is

equivalent to the following decomposition:

Ska,b (x) = Ŝv

((
x+

b

a
− 1

2

)2
)
. (4)

Proof. This is Theorem 2 of [1]. �

Using Theorem 1.1 and the general finiteness criterion of Bilu and

Tichy [2] for Diophantine equations of the form f(x) = g(y), we prove

the following result.

Theorem 1.2. For 2 ≤ k < l, the equation

Ska,b(x) = Slc,d(y) (5)

has only finitely many solutions in integers x and y.
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Since the finiteness criterion from [2] is based on the ineffective

theorem of Siegel, our Theorem 1.2 is ineffective. We note that for

a = c = 1, b = d = 0 our theorem gives the result of Bilu, Brindza,

Kirschenhofer, Pintér and Tichy [3].

Combining a result of Brindza [5] with recent theorems by Rakaczki

[8] and Pintér and Rakaczki [6], for k = 1 and 3 we obtain effective

statements.

Theorem 1.3. For k = 1 and l /∈ {1, 3, 5}, the equation

S1
a,b(x) = Slc,d(y) (6)

implies max(|x|, |y|) < C1, where C1 is an effectively computable con-

stant depending only on a, b, c, d and l.

In the exceptional cases l = 3, 5 one can give some values for a, b, c, d

such that the corresponding equations possess infinitely many solutions.

For example, if k = 1, a = 2, b = 1, l = 3 or l = 5, c = 1, d = 0 we have

x2 = 1 + 3 + · · ·+ 2x− 1 = 13 + 23 + · · ·+ (y − 1)3

or

x2 = 1 + 3 + · · ·+ 2x− 1 = 15 + 25 + · · ·+ (y − 1)5,

respectively. These equations have infinitely many integer solutions, see

[9].

Theorem 1.4. For k = 3 and l /∈ {1, 3, 5}, the equation

S3
a,b(x) = Slc,d(y) (7)

implies max(|x|, |y|) < C2, where C2 is an effectively computable con-

stant depending only on a, b, c, d and l.

2. Auxiliary results

In this section, we collect some results needed to prove Theorem 1.2.

First, we recall the finiteness criterion of Bilu and Tichy [2]. To do this,

we need to define five kinds of so-called standard pairs of polynomials.

Let α, β be nonzero rational numbers, µ, ν, q > 0 and ρ ≥ 0 be

integers, and let ν(x) ∈ Q[x] be a nonzero polynomial (which may be

constant).
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A standard pair of the first kind is (xq, αxρν(x)q) or switched,

(αxρν(x)q, xq), where 0 ≤ ρ < q, gcd(ρ, q) = 1 and ρ+ deg ν(x) > 0.

A standard pair of the second kind is (x2, (αx2+β)ν(x)2) or switched.

Denote byDµ(x, δ) the µ-th Dickson polynomial, defined by the func-

tional equation Dµ(z+ δ/z, δ) = zµ + (δ/z)µ or by the explicit formula

Dµ(x, δ) =

bµ/2c∑
i=0

dµ,ix
µ−2i with dµ,i =

µ

µ− i

(
µ− i
i

)
(−δ)i.

A standard pair of the third kind is (Dµ(x, αν), Dν(x, α
µ)), where

gcd(µ, ν) = 1.

A standard pair of the fourth kind is

(α−µ/2Dµ(x, α),−β−ν/2Dν(x, β)),

where gcd(µ, ν) = 2.

A standard pair of the fifth kind is ((αx2−1)3, 3x4−4x3) or switched.

The following theorem is the main result of [2].

Theorem 2.1. Let R(x), S(x) ∈ Q[x] be nonconstant polynomials such

that the equation R(x) = S(y) has infinitely many solutions in rational

integers x, y. Then R = ϕ ◦ f ◦ κ and S = ϕ ◦ g ◦ λ, where κ(x), λ(x) ∈
Q[x] are linear polynomials, ϕ(x) ∈ Q[x], and (f(x), g(x)) is a standard

pair.

The following lemmas are the main ingredients for the proofs of The-

orems 1. 3 and 1. 4.

Lemma 2.1. For every b ∈ Q and rational integer k ≥ 3 with k /∈
{4, 6} the polynomial Bk(x) + b has at least three zeros of odd muliplic-

ities.

Proof of Lemma 2.1. For b = 0 and odd values of k ≥ 3 this result is

a consequence of a theorem by Brillhart [4, Corollary of Theorem 6].

For non-zero rational b and odd k with k ≥ 3 and for even values of

k ≥ 8 our lemma follows from [6, Theorem] and [8, Theorem 2. 3],

respectively. �
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Our next auxiliary result is an easy consequence of an effective theo-

rem concerning the S-integer solutions of so-called hyperelliptic equa-

tions.

Lemma 2.2. Let f(x) be a polynomial with rational coefficients and

with at least three zeros of odd multiplicities. Further, let u be a fixed

positive integer. If x and y are integer solutions of the equation

f
(x
u

)
= y2,

then we have max(|x|, |y|) < C3, where C3 is an effectively computable

constant depending only on u and the parameters of f .

Proof of Lemma 2.2. This is a special case of the main result of [5]. �

Let c1, e1 ∈ Q∗ and c0, e0 ∈ Q.

Lemma 2.3. The polynomial Ska,b(c1x+c0) is not of the form e1x
q +e0

with q ≥ 3.

Lemma 2.4. The polynomial Ska,b(c1x+ c0) is not of the form

e1Dν(x, δ) + e0,

where Dν(x, δ) is the ν-th Dickson polynomial with ν > 4, δ ∈ Q∗.

Before proving the above lemmas, we introduce the following nota-

tion. Put

Ska,b(c1x+ c0) = sk+1x
k+1 + skx

k + · · ·+ s0,

and

c′0 =
b

a
+ c0.

We have

sk+1 =
akck+1

1

k + 1
, (8)

sk =
akck1

2
(2c′0 − 1), (9)

sk−1 =
akck−11

12
k(6c′20 − 6c′0 + 1), k ≥ 2, (10)
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and for k ≥ 4,

sk−3 =
akck−3

1

720
k(k − 1)(k − 2)(30c′40 − 60c′30 + 30c′20 − 1). (11)

Proof of Lemma 2.3. Suppose that Ska,b(c1x+c0) = e1x
q +e0, where we

have q = k + 1 ≥ 3. It follows that sk−1 = 0, so 6c′20 − 6c′0 + 1 = 0.

Hence, c′0 /∈ Q, which is a contradiction. �

Proof of Lemma 2.4. Suppose that Ska,b(c1x+c0) = e1Dν(x, δ)+e0 with

ν > 4. Then

sk+1 = e1, (12)

sk = 0, (13)

sk−1 = −e1νδ, (14)

sk−3 =
e1(ν − 3)νδ2

2
. (15)

From (8), (12) and (9), (13), respectively, it follows that

e1 =
aν−1cν1
ν

and c′0 =
1

2
. (16)

In view of (10), substituting (16) together with k = ν− 1 into (14), we

obtain

−a
ν−1cν−21 (ν − 1)

24
= −a

ν−1cν1νδ

ν
, (17)

which implies

c21 =
ν − 1

24δ
. (18)

Similarly, comparing the forms (11) and (15) of sk−3 with the substi-

tutions k = ν − 1 and (16), we obtain

7aν−1cν−41 (ν − 1)(ν − 2)(ν − 3)

5760
=
aν−1cν1(ν − 3)νδ2

2ν
, (19)

which implies

c41 =
7(ν − 1)(ν − 2)

2880 δ2
. (20)

After substituting (18) into (20), we obtain 7(ν − 2) = 5(ν − 1), which

implies ν = 9/2, a contradiction. �
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One can see that the condition ν > 4 is necessary. Indeed,

S2
2,1(x) =

4

3
x3 − 1

3
x =

4

3
D3

(
x,

1

12

)
,

and

S3
2,1(x) = 2x4 − x2 = 2D4

(
x,

1

8

)
− 1

16
.

3. Proofs of the Theorems

Proof of Theorem 1.3. Using (3), one can rewrite equation (6) as

cl

l + 1

(
Bl+1

(
y +

d

c

)
−Bl+1

(
d

c

))
=

1

2
ax2 +

(
b− a

2

)
x

or

8acl

l + 1

(
Bl+1

(
y +

d

c

)
−Bl+1

(
d

c

))
= 4a2x2 + 8a

(
b− a

2

)
x

= (2ax+ 2b− a)2 − (2b− a)2.

Then our result is a simple consequence of Lemmas 2.1 and 2.2.

Proof of Theorem 1.4. Following Theorem 1.1, we have

S3
a,b(x) =

a3

4

(
x+

b

a
− 1

2

)4

− a3

8

(
x+

b

a
− 1

2

)2

+
a4 − 16a2b2 + 32ab3 − 16b4

64a
.

Using the above representation, we rewrite equation (7) as

64aSlc,d(y) = (2ax+2b−a)4−4a2(2ax+2b−a)2+a4−16a2b2+32ab3−16b4

or

64aSlc,d(y) + 3a4 + 16a2b2 − 32ab3 − 16b4 = (X − 2a2)2,

where X = (2ax + 2b − a)2. As in the previous case, Lemmas 2.1 and

2.2 complete the proof.

Proof of Theorem 1.2. If the equation (5) has infinitely many integer

solutions, then by Theorem 2.1 it follows that Ska,b(a1x+a0) = φ(f(x))

and Slc,d(b1x + b0) = φ(g(x)), where (f, g) is a standard pair over Q,

a0, a1, b0, b1 are rationals with a1b1 6= 0 and φ(x) is a polynomial with

rational coefficients.
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Assume that h = deg φ > 1. Then Theorem 1.1 implies

0 < deg f, deg g ≤ 2,

and since k < l, we have deg f = 1, deg g = 2. In particular, k + 1 = h

and l + 1 = 2h, so l = 2k + 1. Therefore, if l 6= k + 1, we then must

have h = deg φ = 1 and l = 2k + 1.

Condition k 6= 1 implies k ≥ 2 and since l = 2k + 1, it follows

that l ≥ 5. Since deg f = 1, there exist f1, f0 ∈ Q, f1 6= 0, such that

Ska,b(f1x+ f0) = φ(x), so

Ska,b(f1g(x) + f0) = φ(g(x)) = Slc,d(b1x+ b0).

As g(x) is quadratic, by making the substitution x 7→ (x − b0)/b1, we

obtain that there are c2, c1, c0 ∈ Q, c2 6= 0, such that

Ska,b(c2x
2 + c1x+ c0) = Slc,d(x).

Since degSka,b(x) = k + 1 ≥ 2 and c2 6= 0, we have a decomposition of

Slc,d(x) which is equivalent to S((x + b/a − 1/2)2) for some S ∈ Q[x]

with degS = k + 1, according to Theorem 1.1. Therefore, there exists

a linear polynomial l(x) in C[x] such that

c2x
2 + c1x+ c0 = l((x+ b/a− 1/2)2)

and S(x) = Ska,b(l(x)). Hence, there are A,B ∈ C, A 6= 0, such that

c2x
2 + c1x + c0 = A(x + b/a − 1/2)2 + B. Clearly, this implies that

A,B ∈ Q and

Ska,b
(
A(x+ b/a− 1/2)2 +B

)
= S2k+1

c,d (x).

By the linear substitution x 7→ x− b/a+ 1/2, we obtain

Ska,b(Ax
2 +B) = S2k+1

c,d (x− b/a+ 1/2). (21)

Thus, we have an equality of polynomials of degree 2k + 2 ≥ 6. We

calculate and compare coefficients of the first few highest monomials

participating in the above polynomials. The coefficients of the poly-

nomial in the right–hand side above are easily deduced by setting

c1 = 1, c0 = −b/a + 1/2 in (8), (9), (10) and (11). Therefore, if we

denote

S2k+1
c,d (x− b/a+ 1/2) = r2k+2x

2k+2 + · · ·+ r1x+ r0,
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and

c′0 =
d

c
− b

a
+

1

2
,

then the coefficients are:

r2k+2 =
c2k+1

2k + 2
,

r2k+1 =
c2k+1

2
(2c′0 − 1),

r2k =
c2k+1(2k + 1)

12
(6c′20 − 6c′0 + 1),

r2k−2 =
c2k+1(2k + 1)2k(2k − 1)

720
(30c′40 − 60c′30 + 30c′20 − 1).

On the other hand, the coefficients sk+1, sk, . . . s0 for the polynomial

Ska,b(x) can be found by setting c1 = 1, c0 = 0 in (8), (9), (10) and (11).

Since

Ska,b(Ax
2 +B) =

k+1∑
m=0

sm

m∑
i=0

(
m

i

)
(Ax2)iBm−i,

it follows that if we put

Ska,b(Ax
2 +B) = t2k+2x

2k+2 + · · ·+ t1x+ t0,

then

t2k+2 =
akAk+1

k + 1
,

t2k+1 = 0,

t2k = akAkB +
akAk

2

(
2

(
b

a

)
− 1

)
,

t2k−1 = 0,

t2k−2 =
akk

2
Ak−1B2 +

akk

2
Ak−1B

(
2

(
b

a

)
− 1

)
+

akk

12
Ak−1

(
6

(
b

a

)2

− 6

(
b

a

)
+ 1

)
.

Now we compare the coefficients. Comparing the leading coefficients

yields

akAk+1

k + 1
=

c2k+1

2k + 2
, so 2akAk+1 = c2k+1, (22)
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and
2c

a
=

c2k+2

ak+1Ak+1
.

Therefore,

k+1

√
2c

a
∈ Q.

If a and c do not fulfill the above condition, we are through, otherwise

we proceed. Comparing the coefficients of index 2k + 1, we get

c2k+1

2
(2c′0 − 1) = 0,

so c′0 = 1/2, which implies
d

c
=
b

a
.

If the coefficients a, b, c and d do not satisfy the last property above,

then we eliminate the possibility deg φ > 1. Therefore, we proceed with

the case where a, b, c and d do satisfy this property. Comparing the next

coefficients and using (22), we obtain

b

a
− 1

2
= − 1

12
A(2k + 1)−B. (23)

Comparing the coefficients of index 2k − 2 and using c′0 = 1/2, we get

akk

2
Ak−1B2 +

akk

2
Ak−1B

(
2

(
b

a

)
− 1

)
+

akk

12
Ak−1

(
6

(
b

a

)2

− 6

(
b

a

)
+ 1

)

=
7

8
· c

2k+1(2k + 1)2k(2k − 1)

720
.

By using also (22) and simplifying, we obtain

B2

2
+
B

2

(
2

(
b

a

)
− 1

)
+

1

12

(
6

(
b

a

)2

− 6

(
b

a

)
+ 1

)
=

7(4k2 − 1)A2

1440
.

By using also (23), the last relation above can be transformed into

B2

2
+B

(
− 1

12
A(2k + 1)−B

)
+

1

2

(
− 1

12
A(2k + 1)−B

)2

− 1

24

=
7A2(4k2 − 1)

1440
.
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After simplification, we obtain

A2(k − 3)(−2k − 1) = 15.

For k ≥ 3, the expression in the left–hand side above is negative or zero,

which is a contradiction. If k = 2, then A2 = 3, which contradicts the

fact that A ∈ Q. Therefore there are no rational coefficients a, b, c, d, A

and B such that (21) is fulfilled, which implies that deg φ = 1.

Now, we have

Ska,b(a1x+ a0) = e1f(x) + e0 and Slc,d(b1x+ b0) = e1g(x) + e0,

where 0 6= e1, e0 ∈ Q. Further, we have deg f = k+1 and deg g = l+1.

In view of the assumptions on k and l, it follows that the standard

pair (f, g) cannot be of the second kind, and with the exception of the

case (k, l) = (3, 5), of the fifth kind either.

If it is of the first kind, then one of the polynomials Ska,b(a1x + a0)

and Slc,d(b1x+b0) is of the form e1x
q +e0 with q ≥ 3. This is impossible

by Lemma 2.3.

If (f, g) is a standard pair of the third or fourth kind, we then have

Slc,d(b1x + b0) = e1Dν(x, δ) + e0 with ν = l + 1 ≥ 5 and δ ∈ Q∗, which

contradicts Lemma 2.4 or k = 2, l = 3. In this case Theorem 1.4 gives

an effective finiteness result.

Now returning to the special case (k, l) = (3, 5), by using formula

(10) for k = 3 it is easy to see that S3
a,b(c1c+ c0) = e1(3x

4 − 4x3) + e0

is impossible, see the proof of Lemma 2.3. �
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