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Abstract. We prove that for most n, the numerator of the Bernoulli
number B2n is divisible by a large prime.
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1. Introduction

For a positive integer n, we write ω(n) for the number of distinct
prime factors of n. Let {Bn}n≥0 be the sequence of Bernoulli numbers
given by B0 = 1 and

Bn = 1−
n−1∑
k=0

(
n

k

)
Bk

n− k + 1
for all n ≥ 1.

Then B1 = −1/2 and B2n+1 = 0 for all n ≥ 0. Furthermore, we have
(−1)n+1B2n > 0. Write B2n =: (−1)n+1Cn/Dn with coprime positive
integers Cn and Dn. The denominator Dn is well-understood by the
von Staudt–Clausen theorem which asserts that

Dn =
∏

p−1|2n

p. (1)

As for Cn, it was proved in [3] that the estimate

ω

(∏
n≤x

Cn

)
≥ (1 + o(1))

log x

log log x
holds as x→∞.

Here, we look at the largest prime factor of Cn. For a positive integer
m we put P (m) for the largest prime factor of m.
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Theorem 1. The inequality

P (Cn) >
1

4
log n

holds for most positive integers n.

Here and in what follows, we use the symbolsO and o with their usual
meaning. We also use c1, c2, . . . for computable positive constants and
x0 for a large real number, not necessarily the same from one occurrence
to the next.

Proof. We let x be large. Put

M(x) := {x/2 ≤ n ≤ x : P (Cn) ≤ (1/4) log x}. (2)

Put y := xlog log log x/ log log x. We let

L1(x) := {n ≤ x : P (n) ≤ y}. (3)

It is known (see Chapter III.5 in [5]), that

#L1(x) = x exp(−(1 + o(1))u log u), where u :=
log x

log y
.

Since for us u = log log x/ log log log x, we get easily that

#L1(x) = O

(
x

(log x)1/2

)
. (4)

We let τ(m) stand for the number of divisors of m. We put

L2(x) := {n ≤ x : τ(n) > (log x)2}. (5)

Since ∑
n≤x

τ(n) = O(x log x),

(see Theorem 320 on Page 347 in [2]), it follows easily that

#L2(x) = O

(
x

log x

)
. (6)

Let

L3(x) := {n ≥ x : p−1 | 2n for some prime p with P (p−1) > y}. (7)

The proof of Theorem 1.1 in [1] shows that

#L3(x) = O

(
x

(log x)0.05

)
. (8)

From now on, we look at integers n in

N (x) :=M(x)\ ∪3
i=1 Li(x). (9)
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Put z := (log x)2 and let I be an arbitrary interval in [x/2, x] of length
at most z. Put T := (1/4) log x and put K := π(T ). We show that for
x > x0, I contains less than K + 3 numbers from N (x). Assume first
that we have proved this and let us see how to finish the argument.
Then

#N (x) ≤
([

x− x/2
(log x)2

]
+ 1

)
(K + 2) = O

(
x

(log x)2
· T

log T

)
= O

(
x

log x log log x

)
, (10)

which together with estimates (4), (6), (8) shows that

#M(x) ≤ #L1(x) + #L2(x) + #L3(x) + #N (x) = O

(
x

(log x)0.05

)
.

(11)
The desired estimate now follows by replacing x with x/2, then with
x/4, etc., and summing up the resulting estimates (11).

It remains to prove that indeed I cannot contain K + 3 numbers
from N (x) for x > x0. Assume that it does and let them be n1 <
n2 < · · · < nK+3. Put λi := ni − n1 for i = 1, . . . , K + 3. Then
0 = λ1 < λ2 < · · · < λK+3 ≤ z. Let n = ni for some i = 1, . . . , K + 3.
We use the formula

ζ(2n) = (−1)n+1B2n
(2π)2n

2(2n)!
=
Cn(2π)2n

Dn2(2n)!
,

as well as the aproximation

ζ(2n) = 1 +
1

22n
+

1

32n
+ · · · = 1 +O

(
1

22n

)
,

to get that

Cn = Dn
2(2n)!

(2π)2n
ζ(2n) = Dn

2(2n)!

(2π)2n

(
1 +O

(
1

22n

))
. (12)

We take logarithms in (12) above to arrive at

logCn−logDn−log(2(2n)!)+2n log(2π) = log

(
1 +O

(
1

22n

))
= O

(
1

2x

)
.

(13)
We now let pj for j = 1, . . . , K be all the primes p ≤ T and write

Cni
= p

αi,1

1 p
αi,2

2 · · · pαi,K

K for all i = 1, . . . , K + 3.
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Observe that since τ(2n) ≤ 2τ(n) ≤ 2(log x)2, we have that

Dn =
∏

p−1|2n

p ≤ (2n+1)τ(2n) ≤ (2x+1)2(log x)2 < exp(3(log x)3) (x > x0).

(14)
Thus, from formula (12), we have that

Cn ≤ Dn
2(2n)!

(2π)2n
ζ(2) ≤ 2ζ(2)Dn

(2π)2n
(2n)2n <

2ζ(2)Dn

π2n
n2n

<

(
2ζ(2) exp(3(log x)3)

πx

)
x2x < x2x for x > x0,

which implies that

αi,j ≤
2x log x

log pj
≤ 2x log x

log 2
< 3x log x for all 1 ≤ i ≤ K+3, 1 ≤ j ≤ K.

Let ∆ := (∆1, . . . ,∆K+3) be a nonzero vector in the null-space of the
(K + 2)× (K + 3) matrix

A =



a1,1 a2,1 · · · aK+3,1

a1,2 a2,2 · · · aK+3,2
...

... · · · ...
a1,K a2,K · · · aK+3,K

1 1 · · · 1
n1 n2 · · · nK+3

 .

Such a vector exists and can be computed with Cramer’s rule. It’s
height satisfies

max{|∆i|}1≤i≤K+3 ≤ (K + 2)! max{|αi,j|, |n`|, i, j, `}K+2

< (3x(K + 2) log x))K+2 < (3x(log x)2)π(T )+2

< x2(π(T )+2) < exp((log x)2), (15)

for x > x0. We now evaluate formula (13) in n = ni for i = 1, . . . , K+3
and take the linear combination with coefficients ∆1, . . . ,∆K+3 of the
resulting relations getting∣∣∣∣∣
K+3∑
i=1

∆i logCni
−

K+3∑
i=1

∆i logDni
−

K+3∑
i=1

∆i log(2(2ni)! +
K+3∑
i=1

2∆ini log(2π)

∣∣∣∣∣
= O

(∑K+3
i=1 |∆i|

2x

)
. (16)
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In the left–hand side of estimate (16) above, the first sum vanishes;
i.e.,

K+3∑
i=1

∆i logCni
= 0,

because the vector ∆ is orthogonal to the first K rows of A. Similarly,
the last sum also vanishes; i.e.,

K+3∑
i=1

∆ini = 0,

because ∆ is orthogonal to the last row of A. Finally, writing

2(2ni)! = 2(2n1)!(2n1+1)(2n1+2) · · · (2ni) =: 2(2n1)!Xi (i = 1, . . . , K+3),

we get that
log(2(2ni)!) = log(2(2n1)!) + logXi.

Hence,

K+3∑
i=1

∆i log(2(2ni)!) =
K+3∑
i=1

∆i log(2(2n1)!)+
K+3∑
i=1

∆i logXi =
K+3∑
i=1

∆i logXi,

(17)

where we used
∑K+3

i=1 ∆i = 0, because ∆ is orthogonal to the first before
last row of matrix A. Thus using also (15), estimate (16) becomes∣∣∣∣∣

K+3∑
i=1

∆i log(Dni
/Xi)

∣∣∣∣∣ = O

(
(K + 3) exp((log x)2)

2x

)
= O

(
1

2x/2

)
.

(18)
In the left–hand side of estimate (18) we have a linear form in loga-
rithms. Further,

Xi < (2x)2(ni−n1) ≤ (2x)2z < exp(3(log x)3) (x > x0), (19)

which is the same estimate as estimate (14) with Dni
replaced by Xi for

all i = 1, . . . , K + 3. For each i = 1, . . . , K + 3, let Pi := P (ni). Then
Pi | Xi. Also, Pi does not divide Dnj

for any j = 1, . . . , K + 3. Indeed,
otherwise there would exist q := Pi such that for some j, we have that
q | Dnj

. Thus, there exists a prime number p such that q | p − 1 and
p− 1 | 2nj. However, this is not possible because nj 6∈ L3(x). Also, Pi
divides Xj for all j ≥ i but does not divide Xj for any j < i. Indeed,
this last claim follows because if Pi | Xj for some j < i, then there exists
m ∈ [2n1, 2nj] such that Pi | m. But also Pi | ni, so Pi | 2ni −m, and
this last number is nonzero since 2ni 6∈ [2n1, 2nj]. However, this is not
possible for large x since it would lead to y < Pi ≤ 2ni−m ≤ 2z, which
is impossible for x > x0. This shows that the linear form appearing in
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the left–hand side of (17) is nonzero (indeed, if i is maximal such that
∆i 6= 0, then the coefficient of logPi in the left is exactly ∆i 6= 0).

We apply a linear form in logarithms á la Baker in the left–hand side
of (18) (see [4], for example). We get that the left–hand side of (18) is
at least

> exp

(
−c1cK2

(
K+3∏
i=1

max{logDni
logXni

}

)
log max{|∆i|}

)
,

for some appropriate constants c1 and c2. With the bounds (14), (19)
and (15), the above expression is at least

> exp
(
−c1cK2 (3(log x)3)K+3(log x)2

)
,

which compared with (18) gives

x(log 2)/2− c3 < c1(3c2(log x)3)K+3(log x)2,

with some appropriate constant c3. This last estimate implies easily
that the inequality K > (1/3 − ε) log x/ log log x holds for all ε > 0
and x > x0 (depending on ε). Taking a sufficiently small value for ε
(say ε := 1/100), and invoking the Prime Number Theorem to estimate
K = π(T ), we get a contradiction. This finishes the argument and the
proof of the theorem. �
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Universidad Nacional Autonoma de México
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E-mail address: fluca@matmor.unam.mx


