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Abstract.

Rényi entropy and generalized complexity measures are used to describe the chaotic
behaviour of dynamical systems. These measures are found to be sensitive to the fine details
of the Rössler and the Duffing maps. They are good descriptors of chaotic behaviour. Periodic
windows and the fractal character of the chaotic dynamics are nicely detected.

1. Introduction

There exist several quantities to study the chaotic behaviour of dynamical systems. Complexity
measures have proved to be especially efficient in this respect. One of these measures is the
LMC (Lopez-Ruiz - Mancini - Calbet) statistical complexity [1]. A couple of years ago, a one-
and a two-parameter extension [2] of this measure were put forward. These generalizations are
based on the Rényi entropy. First, some simple quantum systems (H-atom, harmonic oscillator
and square well) were studied with these measures. Recently, it has been demonstrated [3] that
these generalized complexity measures are suitable to describe chaotic behavior. The logistic
and Tinkerbell maps were analyzed.

In this work the Rössler and the Duffing maps are studied with the Rényi entropy and the
generalized complexity measures.

2. Rényi Entropy and Generalized Statistical Complexity Measures

Consider a set of discrete probabilites p1, ..., pN with
∑N

i=1 pi = 1. The Rényi entropy of order
α has the form

R(α) =
1

1− α
ln

∑
pαi , 0 < α < ∞, α 6= 1. (1)

The limit α → 1 gives the Shannon entropy:

S = −
∑

pi ln pi. (2)

The LMC complexity was defined as the product of two important information-theoretical

quantities: C = HQ, where H = eS is the Shannon entropy power, while Q = e−D = e−R(2)
is

the logarithm of the Rényi entropy or order 2. The disequilibrium D quantifies the deviation
of the probability distribution from uniformity. The Shannon entropy S, on the other hand, is
a measure of uncertainty. A one-parameter extension of the generalized statistical measure of

complexity [2] is C(α) = eR
(α)

−R(β=2)
. If α → 1 we obtain the LMC complexity.
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Figure 1. Bifurcation diagram, Rényi entropy(α = 6) and generalized complexity(α = 3, β = 6)
for the Duffing map.
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In the two-parameter extension, on the other hand, the generalized statistical measure of
complexity [2] has the form

C̃(α,β) = eR
(α)

−R(β)
, 0 < α, β < ∞ . (3)

Certainly, the special case α → 1 and β = 2 gives back the LMC complexity. Important
properties of the generalized complexity are detailed in [2]. It has been shown that the
generalized complexity extends the complexity measure to any kind of well behaved distribution.
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Figure 2. Enlarged bifurcation diagram of the Duffing map for −0.2981 < b < −0.2979 and
the Rényi entropy in the vicinity of a bifurcation point.

3. Application: Duffing and Rössler maps

Now, we apply the generalized complexity measure to characterize the Duffing and Rössler maps.
The Duffing map has the form:

xn+1 = yn, yn+1 = −bxn + ayn − y3n. (4)

The parameter a is taken as a = 2.75 and the parameter b is selected as a control parameter.
The initial coordinates were: x = 0.1 and y = 0.1. Fig.2 shows the x coordinate. (y behaves
similarly.) The probabilities pi were determined [4] by subdividing the interval [−2, 2] into 10000
equal bins. The number of iterates falling within a bin divided by the total number of iterations
(104) gives the probability. For an n-periodic dynamics there are only n probabilities that are
not zero. As these probabilities are all equal, the Rényi entropy is lnn, independent from the
parameter α, therefore the complexity is 1. From the definition (3) follows that C̃(α,β) ≥ 1 if
α < β and C̃(α,β) ≤ 1 if α > β. As one expects that complexity is larger for a more complex
behaviour, the case α < β is selected.

The upper panel of Fig. 1 presents the bifurcation diagram. (The values of x are plotted
against the parameter b.) Fig. 1 also shows the Rényi entropy for α = 6 (middle panel) and the
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Figure 3. Rössler bifurcation diagram and generalized complexity(α = 3, β = 6).

generalized complexity for α = 3 and β = 6 (lower panel) for the interval 0 < b < 1. Periodic
and chaotic behaviour can be seen in the bifurcation diagram, and can also be detected by the
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Figure 4. Enlarged Rössler bifurcation diagram and Rényi entropy.

Rényi entropy and the generalized complexity. In the bifurcation points both the Rényi entropy
and the generalized complexity icreases abruptly. Fig. 2b enlarges the Rényi entropy in the
vicinity of a bifurcation point. Fig. 2a shows an enlargement of the bifurcation diagram: a
very interesting behaviour in the intervals −0.86 < x < −0.94 and −0.2981 < b < −0.2979. At
b = −0.298075 the diagram is shifted, at b = −0.29801 it goes back to the original position.
There is another shift in the interval −0.29799 < b < −0.297985. A similar behaviour can be
observed for other values of x. These shifts can not be detected in the Rényi entropy and the
generalized complexity, because the values of the probabilities do not change.

The Rössler model is given by

dx

dt
= −y − z,

dy

dt
= x+ ay,

dz

dt
= b+ z(x− c). (5)

The parameters a and b were taken as a = 0.2, b = 0.2 and c is the control parameter. The initial
coordinates were: x = 0, y = −5 and z = 0. The differential equations were solved numerically
by the Runge-Kutta (second order). Poincaré sections were taken at x = 0 and the figures show
the coordinate y. Fig. 3 presents the bifurcation diagram and the generalized complexity(α = 3,
β = 6) for 1 < c < 15. Fig. 4 shows the enlarged bifurcation diagram and the Rényi entropy for
6.75 < c < 7.1. It is a very rich structure, the bifurcation diagram and the Rényi entropy reflects
different aspects. The regular and chaotic parts can be clearly distinguished. When periodic
windows appear, the Rényi entropy decreases. Further enlargements (not presented here) would
reveal additional fine details and the fractal character of the chaotic dynamics.

In summary, we used the Rényi entropy and the generalized complexity measures to describe
Rössler and the Duffing maps. These measures nicely show the regular and the chaotic behaviour
of dynamical systems. Periodic windows and the fractal character of the chaotic dynamics are
clearly detected.
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