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In cerebral cortex, the huge mass of axonal wiring that carries information between
near and distant neurons is thought to provide the neural substrate for cognitive and
perceptual function. The goal of mapping the connectivity of cortical axons at different
spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral
cortex. To appreciate the relationship between the connectome and cortical function,
we need to discover the nature and purpose of the wiring principles underlying cortical
connectivity. A popular explanation has been that axonal length is strictly minimized both
within and between cortical regions. In contrast, we have hypothesized the existence of a
multi-scale principle of cortical wiring where to optimize communication there is a trade-off
between spatial (construction) and temporal (routing) costs. Here, using recent evidence
concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local
circuit, and pathway scales. We report three main conclusions. First, the axonal and
dendritic arbor morphology of single neocortical neurons may be governed by a similar
wiring principle, one that balances the conservation of cellular material and conduction
delay. Second, the same principle may be observed for fiber tracts connecting cortical
regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful
assessment of the hypothesis at this scale of cortical organization. To avoid neglecting
neuron and microcircuit levels of cortical organization, the connectome framework should
incorporate more morphological description. In addition, structural analyses of temporal
cost for cortical circuits should take account of both axonal conduction and neuronal
integration delays, which appear mostly of the same order of magnitude. We conclude
the hypothesized trade-off between spatial and temporal costs may potentially offer a
powerful explanation for cortical wiring patterns.
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INTRODUCTION

“That apparent disorder of the cerebral jungle, so different from
the regularity and symmetry of the spinal cord and of the cere-
bellum, conceals a profound organization of the utmost subtility
which is at present inaccessible”

(p. 395, Cajal, 1937).

Communication has been defined as the flow of informa-
tion between a transmitter, generating a signal, and a receiver,
reconstructing a signal after its passage through a noisy chan-
nel (Shannon, 1948). In his theory of dynamic polarity, Cajal
(1899) had correspondingly divided a neuron, the fundamen-
tal unit of the brain, into three functional compartments: a
receptor apparatus (soma and dendrites), an emission appara-
tus (axon), and a distribution apparatus (terminal axon arbor).
Significantly, Cajal’s inferences about how axonal and dendritic
wiring are used to communicate derived from anatomical data
only. Physiological experiments confirmed Cajal’s inferences con-
cerning neural communication: an action potential (signal) gen-
erated by one neuron propagates along its axon and via a noisy
synaptic connection (channel) induces a response in the soma

and dendrites of other neurons (see Purves et al., 2007). The
notion of individual neuron polarity, though modified, remains
a foundation of our understanding of neural communication
in cerebral cortex (see DeFelipe, 2010). Mapping cortical con-
nectivity is, therefore, vital to defining the channels of infor-
mation flow underlying cortical function in both health and
disease.

Recent technical advances now offer significant improvements
in mapping the apparent disorder of the “cerebral jungle” across
a range of spatial scales. Large-scale serial electron microscopy
(EM) of gray matter volumes (<1 mm3) can be used to map
the fine structure of cerebral cortex (Mishchenko et al., 2010;
Bock et al., 2011). Trans-synaptic viral tracing methods now
make it possible to visualize multiple stages of synaptic connectiv-
ity (Wickersham et al., 2007). Combinatorial fluorescent protein
labeling methods are used to separately color the processes of
many individual neurons simultaneously to aid multiple axon
tracing (Lichtman et al., 2008). Combined magnetic resonance
imaging (MRI) techniques are now used to reconstruct the whole
cortico-cortical pathway network for an individual brain in vivo
(Hagmann et al., 2010). Thus, the future promises to yield far
more mapping data concerning cerebral cortex.
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Yet mapping cortical connectivity will not in itself tell us how
cerebral cortex works (see Douglas and Martin, 2011). Indeed,
even with these technical advances, the huge number of neu-
rons and synapses per cortical hemisphere make constructing a
whole map of synaptic connections or connectome impractical
(Lichtman et al., 2008; DeFelipe, 2010). From available mapping
data we need to discover the general organizing principles of the
“cerebral jungle” and to infer what purpose these principles may
serve in terms of cortical function.

To explain brain design, Cajal (1899) proposed that neuronal
morphology was regulated by distinct organizing principles that
sought to separately conserve cellular material (“wire”), conduc-
tion delay, and brain volume. Contemporary research on brain
design has focussed predominantly on the wiring minimization
principle (Mitchison, 1991; Cherniak, 1994; Chklovskii et al.,
2002). Strong claims have been made that this organizing prin-
ciple alone can explain, for example, the intracortical wiring
underlying functional maps (Koulakov and Chklovskii, 2001).
Recent studies suggest, however, that individual cortical neuron
morphology (Budd et al., 2010; Cuntz et al., 2010) and neural
networks are not organized by wire minimization only (Ahn et al.,
2006; Kaiser and Hilgetag, 2006; Bassett et al., 2010).

We have previously proposed a multi-scale wiring principle for
optimizing neuronal network communication in cerebral cortex
(Budd et al., 2010). This hypothesis states that the conservation
of cellular material (construction cost) is traded-off against the
need to minimize conduction delay (routing cost). Indeed, for a
modest excess of cellular material, this trade-off promotes precise
and rapid communication in cerebral cortex, which has implica-
tions for our understanding of neural coding and synchrony (see
Uhlhaas et al., 2009).

The main purpose of this article is to critically review recent
evidence to discover how well this hypothetical wiring principle
may explain cortical connectivity across different spatial scales.
The article is not intended as a review of the cortical connectome
approach per se but it does examine the utility of this framework
to help evaluate this and other hypothetical wiring principles. We
begin with a brief introduction to spatial networks and its appli-
cation to different levels of cortical organization before evaluating
evidence relating to the hypothesis.

SPATIAL CORTICAL NETWORKS: NEURONS, CIRCUITS, AND
PATHWAYS
Graph theory is a powerful technique for the mathematical
abstraction of real world problems (see Newman, 2010). Box 1
offers a short introduction to relevant graph theory concepts and
notation. Briefly, in a network each distinct entity of a given sys-
tem is represented by a single vertex and the pairwise relations
and processes between these entities is represented by an edge
(see Box 1; for further details, see Cormen et al., 2001). The net-
work configuration describes all possible paths of information
flow within the system. A graph theoretic approach is applicable,
therefore, if a system can be viewed as a collection of distinct yet
inter-related objects.

Neural systems can be decomposed into distinct objects and
pairwise relations. For example, pre- and post-synaptic neurons
are related yet distinct objects in a neural system as are, at a

more basic level, the individual branches of a neuron’s axonal
or dendritic tree. But applying graph theory to model a neu-
ral system naturally requires assumptions to be made about the
system’s architecture. Characterizing an entire axonal pathway
by a single edge, for instance, does not capture how informa-
tion is distributed by the divergence/convergence of presynaptic
axons in the target structure. Hence, it is important to be mindful
of model assumptions and granularity when making inferences
about cortical function from network models.

To construct a realistic biological network, the entities and
pairwise relations in the biological system must be mathemati-
cally defined using available empirical evidence. When existing
knowledge is insufficient or conflicting, however, it is necessary
to either exclude certain system properties from consideration
or make explicit assumptions regarding the system to resolve the
issue. Once constructed, measures can be taken to describe the
characteristics of the biological network and the results compared
with those of artificial networks generated using hypothesized
principles of organization. The degree of similarity between arti-
ficial and biological network characteristics can then be used to
determine whether the hypothesized organizing principle mer-
its further investigation, requires modification, or should be
rejected. Here, we focus on spatial cortical networks, where ver-
tices and edges have a physical correspondence to the anatomy
of cerebral cortex. While not ignoring the importance of other
relevant parameters, for reasons of available data we concentrate
on two main costs in neuronal communication: conduction delay
and cellular material.

SPATIAL NETWORKS
A spatial network is a graph whose vertices have spatial coordi-
nates and where measurements are taken with respect to their
physical space (Barthélemy, 2011). In spatial cortical networks,
each vertex represents a distinct neural feature in cerebral cor-
tex with anatomical coordinates and each edge represents an
uninterrupted path of communication between a vertex pair.

In an unweighted spatial network, analysis is directed toward
understanding the relationship between space and topology in a
given system, e.g., what connectivity patterns exist between par-
ticular groups of neurons? In the last decade or so, networks
whose topology is neither entirely regular nor entirely random—
complex networks—have generated considerable interest because
of their ability to account for the organization of large-scale bio-
logical, physical, and social system using simple connectivity rules
(Newman, 2010). In small world complex networks, for instance,
the average path length between any given vertex pairs is reduced
by incorporating a small percentage of long-distance connections
in a network of mostly short-range regular connections (Watts
and Strogatz, 1998). In scale-free complex networks, the vertex
degree (see Box 1) distribution is described by a power law in
which there are a small fraction of highly connected vertices called
hubs (Barabási and Albert, 1999). Analyzing network partitions,
subgraphs, may reveal further structural complexity. The condi-
tional probability of a vertex pair being additionally connected to
a third vertex is termed clustering, which is high in complex but
low in random networks (Watts and Strogatz, 1998). Relatedly,
when a given set of vertices has more connections in common
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Box 1 | Graph Theory.
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than with other vertices, the subgraph is considered a (vertex)
community or module (Girvan and Newman, 2002). Subgraphs
with frequently repeating patterns of connectivity are termed
network motifs (Milo et al., 2002).

In a weighted spatial network, analysis is focused on the rela-
tionships among cost, space, and topology, e.g., how much does
a specific spatial and/or topological arrangement of neural fea-
tures cost? Global network metrics are often used to address such
questions. The total cost of the network is equal to the sum of
all weighted network edges. For example, when edge cost is pro-
portional to the Euclidean distance between a vertex pair the
total cost gives the spatial construction cost of the network. In
this article, distance will refer to Euclidean distance unless other-
wise stated. A complementary metric is global routing cost, which
is the average or total path length of a network. There are two
alternative measures of routing cost. Latora and Marchiori (2001)
have defined network efficiency as the inverse of the shortest path
length and the average efficiency over all vertex pairs as a measure
of global efficiency. Gastner and Newman (2006) have proposed
route factor as a measure of efficiency for trees, the mean of metric
path length divided by radius from root to all vertices.

How a system is represented graphically influences what can
be inferred about its communication or processing character-
istics. Figure 1 illustrates this point by comparing the shortest
path length in unweighted (Figure 1A) and weighted network
representations (Figure 1B) for the same toy problem. Recall

that path length is measured differently between weighted and
unweighted networks (see Box 1). In the unweighted represen-
tation, the use of directional edges removes one of two possible
paths connecting vertex A to vertex D (Figure 1C). So if the
directions of information flow were known for the system but
not incorporated in the network model, inferences concerning
the directness of communication would be distorted; the undi-
rected network would allow information to flow along paths that
were impossible in the real system. Similarly, the shortest length
path in the unweighted network representation (Figure 1A, left)
is the one with the fewest hops whereas in the weighted net-
work representation of the same system (Figure 1B) it is the path
with the lowest total cost (see Figure 1C). This means that the
choice of graphical representation can for the same system iden-
tify different shortest paths, though this choice may be dictated by
available data.

In network design, simultaneously minimizing both construc-
tion and routing costs is considered an intractable (NP-hard)
optimization problem because these are conflicting objective
functions (Hu, 1974; Alpert et al., 1995; Khuller et al., 1995;
Wu et al., 2002; Gastner and Newman, 2006). Figure 2 illus-
trates how a trade-off between these conflicting objective func-
tions affects the structure of a spatial network. Here, optimizing
total weight (construction cost) only leads to a minimum span-
ning tree (Figure 2A, left) or, if additional vertices are inserted,
a Steiner minimal tree design (Garey and Johnson, 1979). In

FIGURE 1 | Shortest path for the same problem can be different

depending on the type of network representation used. An example
network consists of four labeled vertices A, B, C, and D. The aim is to
find shortest path between vertex A to vertex D. (A) Unweighted
network representation. The topology of undirected (left) and directed
versions (right) is shown graphically (top) with their corresponding
adjacency (connectivity) matrices below (bottom). Brown lines show
shortest paths. Red cross indicates a counter-directional edge, which

creates an invalid path from vertex A to vertex D. (B) Weighted network
representation. Graphical representation (top) of an undirected weighted
graph with values of weights (distance) shown next to edges and
recorded in the cost or weight matrix below (bottom). Note in the cost
or weight matrix the absence of an edge is recorded as an infinite cost
(“inf”) while in adjacency matrix it is recorded as zero. (C) Summary
table for path length results corresponding to each type of network.
Shortest paths are shown in bold brown text.
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FIGURE 2 | Spatial and temporal cost trade-off alters arbor

morphology. An example network consists of 80 labeled vertices (small
yellow filled circles) plus a root vertex (large green filled circle). Here, total
wiring cost = spatial cost + (β × temporal cost), where the parameter β,
which varies between 0 and 1, is used to trade-off spatial construction cost
against temporal routing cost. (A) Artificial arbor structures optimized for
different values of a cost trade-off parameter, β = 0.0 (spatial cost

optimization, left), 0.8 (mixed cost optimization, middle), and 1.0 (temporal
cost optimization, right). (B) Relative communication costs vary as a
function of the trade-off parameter. Relative spatial cost (wire length)
increases with β rapidly when β > 0.8, while relative temporal cost (path
length) steadily decreases with β. Costs at equilibrium around β = 0.8.
Artificial arbors were generated using Gastner and Newman (2006)
algorithm.

contrast, optimizing average/total path length only (routing cost)
generates a star tree (Figure 2A, right), where there is direct
connection from a central hub to each remaining vertex to
create a hub-and-spoke design. Instead, a suboptimal minimiza-
tion of construction cost permits a low routing cost (Figure 2A,
middle). Figure 2B shows the relative change in communica-
tion costs in this spatial network for different values of β, a
parameter that trade-offs spatial construction cost against tem-
poral routing cost. When β = 0 then spatial cost is minimized
and temporal cost maximized. Whereas when β = 1, the situa-
tion is reversed. Between these extremes, temporal cost decreases
monotonically with increasing β while simultaneously spatial cost
increases slowly until after the equilibrium point (β = 0.79) when
it increases rapidly.

Here, the purpose of network analysis is to generate exper-
imentally testable hypotheses to help advance our understand-
ing of cortical organization and dynamics in health and dis-
ease (Bassett and Bullmore, 2009; Sporns, 2011; Leergaard
et al., 2012—see Frontiers in Neuroinformatics Research Topic
“Mapping the connectome: Multi-level analysis of brain connec-
tivity”). To date, all network analysis suggests cortical connec-
tivity has non-random, complex network characteristics (Sporns,
2011). In the following parts, we will discuss results obtained with
multi-scale spatial analysis of cortical organization.

SPATIAL SCALES OF CORTICAL ORGANIZATION
A connectome is a graph theoretic construct used to describe
neural architecture at different spatial scales in terms of neural
elements (vertices) and neural connections (edges) (see Sporns
et al., 2005). Ideally, each edge should be annotated with a range
of associated properties to completely describe its anatomical and
physiological connection characteristics including axonal length
and conduction delay. In the Human Connectome proposal,
Sporns et al. (2005) argued that the organization of cerebral cor-
tex could be viewed at three distinct spatial scales: microscopic
(micron spatial resolution of the processes of individual neurons
and synapses), mesoscopic (hundreds of micrometers spatial res-
olution of cortical columns and local circuits), and macroscopic
(millimeter spatial resolution of brain regions and pathways).
This framework elegantly utilizes the generality of graph theory
to abstract anatomical entities and their relationships at differ-
ent spatial scales of cortical organization. To understand brain
structure as a whole, DeFelipe (2010) argues we need to possess
connectomes for each spatial scale.

But the term “connectome” may be used too loosely (Kasthuri
and Lichtman, 2007; DeFelipe, 2010). EM is required to
confirm the presence of a synaptic connection (Peters et al.,
1991) otherwise putative synaptic connectivity can only be
inferred from the close spatial proximity such as axonal-dendritic
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membrane apposition (microscopic scale) or regional termi-
nation pattern (macroscopic scale) as is done in most stud-
ies using confocal microscopy. Consequently, a connectivity
(adjacency) matrix constructed from axonal tracing but lacking
ultrastructural confirmation might more accurately be referred to
as a “projectome” (Kasthuri and Lichtman, 2007). Additionally,
a connectome whose connectivity has been confirmed by EM
might better be called a “synaptome” (DeFelipe, 2010). For
the sake of simplicity, we use the term “connectome” here to
mean the accurate structural description of connected neural
elements.

The Human Connectome scheme has some degree of cor-
respondence with the Levels of Brain Organization approach
(Shepherd, 1990). In this the top level is concerned with map-
ping systems and pathways level, which relates directly with the
macroscopic scale. The next level describes the local circuit level,
defined as regional groups of interconnected neurons, which
matches with the microscopic scale. However, the correspondence
breaks down because the levels approach appears to lack a meso-
scopic scale and the Connectome scheme lacks both a neuron
level—discrete nerve cells as morphological entities with inte-
grative properties—and a microcircuit level—stereotyped patterns
of synaptic connections forming neuronal subunits. While the
advantages of having a well-defined mesoscopic scale in cerebral
cortex are clear (Bohland et al., 2009), no precise, and univer-
sal defintion currently exists (Horton and Adams, 2005; da Costa
and Martin, 2010; Rockland, 2010). Here the problem lies in the
fact that there is no consensus what should be the measure of
dimension of mesoscopic connections.

COMMUNICATION COSTS AT DIFFERENT SPATIAL SCALES
To evaluate the proposed multi-scale wiring principle, we now
examine the results from the analyses of graphical representa-
tions of cortical organization at three different spatial scales (see
Figure 3): neuron, local circuit, and pathway scales. The reason
for choosing these scales is that they offer a simple hierarchi-
cal organization of cerebral cortex into individual functional
elements, connectivity within a cortical region, and connectiv-
ity between cortical regions, respectively. Local circuit (micro-
scopic) and pathway (macroscopic) scales are represented in
both approaches discussed in the previous section. But this
scheme includes a neuron scale, which is absent in the Human
Connectome proposal, because we are interested in how commu-
nication costs may have shaped neuronal morphology as well as
cortical circuits. We recognize that this scheme limits our con-
sideration to specific spatial scales and so may neglect subtle
intermediate-scale wiring strategies.

NEURON SCALE
To explain qualitative observations made from Golgi impreg-
nated neurons, Ramón y Cajal proposed that neuronal morphol-
ogy is controlled by laws separately conserving cellular material
(“wire”), conduction delay (time), and brain volume (Cajal,
1899). Cajal did not attempt to quantify these relationships nor
explain how they might interact. But he noted that in some
cases the conservation laws might conflict “sacrificing economy
of matter in favor of economy of time” (Cajal, 1899), which

FIGURE 3 | Elementary graphical representations of cortical

organization at different spatial scales. (A) Neuron scale. Each vertex
represents the location of a cellular landmark obtained from the 3D
reconstruction of individual axonal or dendritic arbors (e.g., location of the
presynaptic terminal boutons) with an undirected edge representing the
section of membrane linking these vertices either by the actual path length
or the direct distance between a vertex pair. (B) Local Circuit scale. Each
vertex represents the somatic location of a single neuron with a directed (or
undirected) edge representing the sum of the axonal and dendritic lengths
connecting a pair of neuronal somata. (C) Pathway scale. Each vertex
represents a distinct cortical brain region in grey matter with a directed (or
undirected) edge representing the axonal fiber tract connecting a pair of
cortical regions, where its length describes the actual path or direct
distance of its course within white matter.
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pre-dates observations made regarding cost trade-offs in network
design (Section “Spatial Networks”).

To explain features of neuronal morphology and synaptic con-
nectivity, research initially focussed almost exclusively on the role
of conserving cellular material or wire length—the wiring mini-
mization principle (Mitchison, 1991; Cherniak, 1994; Chklovskii
et al., 2002). The ability of this solitary principle to explain con-
nectivity has been highly influential in shaping thinking about
brain design and explaining CNS connectivity (Chklovskii and
Koulakov, 2004). For example, it was claimed that the wiring
minimization principle could completely explain the wiring pat-
tern of the roundworm C. elegans (Cherniak, 1994), the only fully
mapped CNS connectome.

In recent years, however, a steady accumulation of evidence
has eroded the over-riding importance of wire length minimiza-
tion. In particular, the wiring pattern of C. elegans connectome
is not strictly minimized for wire length because of the exis-
tence of long-range connections, which runs counter to the wiring
minimization principle (Ahn et al., 2006; Kaiser and Hilgetag,
2006). The dominance of the wiring minimization principle,
however, resulted in less attention being given to the other con-
servation laws of conduction delay and volume minimization and
to understanding how these distinct laws interact. To redress the
balance, two recent studies independently investigated Cajal’s laws
of material and conduction delay conservation in relation to the
axonal and dendritic arbors of individual neocortical neurons,
respectively.

Axon arbors
To analyze the wiring characteristics of single intracortical axon
arbors, Budd et al. (2010) applied a range of graph theory opti-
mization techniques to 19 in vivo reconstructions of excitatory
spiny (pyramidal and spiny stellate) and inhibitory basket cells
(Buzás et al., 2001; Kisvárday et al., 2002; Buzás et al., 2006). A
3D graphical representation was constructed for each axon arbor
(see Figure 3A). Here, each fixed vertex corresponded to one of

the thousands of putative presynaptic axonal boutons associated
with the arbor plus a root vertex to represent the axon origin.
The edges linking these vertices represented the arrangement of
axon branches and collaterals in the arbor reconstructions. Edge
weight was determined from the distance between the locations
of connected vertex pairs. Total axonal wire length and average
path length metrics were used to compare biological axon arbors
against cost optimized artificial arbors.

Neocortical axon arbors were not strictly minimized for either
total axonal length or average path length; arbors used approxi-
mately 10–20% more axonal length than strictly necessary (Budd
et al., 2010). Axon arbors used this excess wire to substantially
improve average path length from axon origin to axonal bou-
tons (Figure 4A). Strictly minimizing wire length only generated
artificial arbors with a tortuous morphology and poorer average
path lengths. In contrast, when artificial arbors were strictly min-
imized for path length only, they used a huge amount of axonal
wire. Excess axonal wire in biological arbors was associated with
branching close to the parent cell body and internodal axon seg-
ments lacking any boutons, which were often found between ter-
minal branch clusters. Extrapolating from reported intracortical
axon conduction velocity values (e.g., Luhmann et al., 1990),
axonal path length distributions in this study suggested a narrow
temporal dispersion of axonal latency within an arbor and a tight
relationship between axonal latency and cortical distance (Budd
et al., 2010). This prediction receives some support from the
strong correlation between EPSP latency and cortical distance in
the connections from layer 4 spiny neurons to layer 2/3 interneu-
rons observed in vitro (see Figure 3C in Helmstaedter et al., 2008).
Due to their greater branching complexity, the estimated axonal
latencies of inhibitory basket cell were less dispersed than those
of excitatory spiny cell axons. Thus, as expected for spatial net-
works generally (see “Spatial Networks”), neocortical axon arbors
appear to trade-off communication costs using a small amount of
extra axonal wire to ensure rapid and temporally precise signal
propagation.

FIGURE 4 | Communication cost trade-off at Neuron scale of cortical

organization. (A) Similar degree of trade-off between path length and wire
length economy of intracortical spiny (left) and basket cell axon arbors (right)
between corresponding path length optimized star trees and wire length
optimized minimal spanning trees (MST), which were all more economical

than random arbors (Reprinted from Budd et al., 2010). (B) Examples of spiny
pyramidal cell dendritic arbors generated using different trade-off balancing
factor (bf ) values show that the most realistic looking arbor was obtained for
bf = 0.7 (Reprinted from Cuntz et al., 2010). Note bf parameter is equivalent
to β parameter in Figure 2.
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It should be mentioned that little is known about the trade-
off across different species and neuronal types. The above study
examined intracortical axons from adult cat primary visual cor-
tex only and did not examine other neuronal types accounting
for 10–15% of all neocortical neurons (see Budd et al., 2010).
It would be interesting to know whether the communication
cost trade-off extends universally to other neuronal types (typ-
ically short-axon types), cortical areas and species. In addition,
axon diameter was not considered as an optimizing parameter
in this study for reasons of computational complexity and mea-
surement accuracy (see “Cortical Network Design Problem”).
Finally, like other structural analyses, this study extrapolated
temporal characteristics from published estimates of axonal con-
duction velocity. This general limitation of structural network
analyses is examined in more detail later (see “Physiological
Considerations”).

Dendritic arbors
To investigate how Cajal’s principles might shape dendritic arbor
morphology, Cuntz et al. (2010) “grew” artificial arbors starting
from a single root vertex and then incrementally added edges
to connect a set of sample (carrier) points. These sample points
were selected uniformly at random from a 3D probability den-
sity distribution of branch and terminal points derived from
multiple morphological reconstructions of actual pyramidal cell
dendritic arbors in a specific cortical layer. At each iteration, a
minimal spanning tree (MST) algorithm connected the existing
arbor to the carrier point with the next lowest total cost until all
points were connected to the tree (Cormen et al., 2001). Total
cost was equal to the total wire length plus path length cost,
which was multiplied by a balancing factor, bf (equivalent to β

in Figure 2). For bf = 1, wire length and path length costs were
treated equally; when bf = 0 then path length cost was ignored,
minimizing wire length only. This approach has been previously
applied to spatial network design problems outside neuroscience
(Alpert et al., 1995; Gastner and Newman, 2006). Spatial jitter was
randomly added to the artificial arbor vertices to mimic branch
tortuosity in the neuropil. To estimate neuronal electrotonic
cable properties, Cuntz et al. (2010) applied a radius-dependent
dendritic diameter-tapering rule to the edges of the final artifi-
cial arbor to obtain the average electrotonic compartment size.
Artificial arbors were morphologically compared with biological
arbors using branch order and path length distributions and Sholl
analysis descriptive statistics (Sholl, 1953).

Pyramidal cell dendritic arbors, regardless of cortical lam-
ina, were best approximated by artificial arbors with a balancing
factor of around 0.7 (Figure 4B). With a lower balancing fac-
tor, dendritic morphology was more tortuous and had a much
greater average compartment size than observed in correspond-
ing biological arbors. But Cuntz et al. (2010) noted pyramidal
dendritic arbors had greater variability than dendritic trees in
other neural structures. Interestingly, with a forest of growing
arbors competing for carrier points, Cuntz et al. (2010) were
able, by making each carrier point exclusive to the first arbor to
which it became attached, to reproduce realistic individual artifi-
cial arbors and spatial tiling at the same time. These simulations
demonstrate for the first time how balancing individual arbor

communication costs may also conform to Cajal’s law of brain
volume conservation.

This study is, however, open to a number of criticisms. First,
while artificial and biological pyramidal dendritic arbors visu-
ally appeared highly similar, no statistical tests for the degree of
fit were reported. Second, to replicate the morphology of whole
arbors the algorithm had to grow the apical tuft of an artifi-
cial neuron separately from its basal dendritic tree (see Cuntz
et al., 2010). This suggests that the current algorithm might
find it difficult to automatically reproduce more sparsely con-
nected structures such as large axon arbors (e.g., Buzás et al.,
2006). Third, the study was restricted to reproducing the morpho-
logical charcteristics of pyramidal cell dendritic trees neglecting
those of other cortical neuronal types, notably aspiny or smooth
type cortical neurons. Finally, it is not clear what biological
mechanism could reproduce the results of the growth algorithm
that appears to require global knowledge of vertex positions to
compute total cost.

Arbor self-similarity
Relatedly, the morphology of neocortical axon and dendritic
arbors have been separately described as possessing statistical self-
similarity (e.g., Tettoni et al., 1998; Binzegger et al., 2005; Rothnie
et al., 2006; Wen et al., 2009), implying common principles of
arbor construction across a range of spatial scales.

To gain insight into the morphological diversity of afferent
axon arbors innervating cerebral cortex, Tettoni et al. (1998)
examined the metric and topological characteristics of 3D recon-
structions of twenty-two callosal afferent axons from the area
17/18 border of cat visual cortex and seventeen thalamocorti-
cal afferent axons projecting from mouse ventrobasal thalamic
nucleus to primary somatosensory cortex. Although these visu-
ally distinct axons derived from different species and represented
different arbor types, they were similar metrically and topolog-
ically. Metrically, arbor types did not differ significantly in total
axonal length, total number of branches, or branching angles. The
topology of the two types of arbor proved highly similar when
compared for maximal branching order (centripetal ordering
scheme) and the distribution of branch order per arbor. However,
arbor types were distinguishable in at least two respects. First,
single thalamocortical arbors had on average five times more bou-
tons with a higher proportion of branches with boutons than
callosal arbors. Second, arbor types differed in their relation-
ship between branch order and branch length: as branch order
increased (distal to proximal direction), the individual branches
of callosal axons tended to lengthen while thalamocortical axon
branches shortened. Although there was individual arbor vari-
ability, this study suggests that corticocortical and corticothalamic
afferent axons may share a common topology and differ only in a
few metric parameters.

In a complementary study, Binzegger et al. (2005) system-
atically investigated the metric, topological, and fractal self-
similarities of 3D reconstructions of spiny, smooth, and thalamic
axon arbors intracellularly labeled in adult cat visual cortex (n =
39 axons). Here, each axon arbor was represented graphically with
its edges corresponding to the axon’s branch collaterals. Each edge
was assigned a length corresponding to the length of the branch
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collateral and labeled to denote its topological order according
to the Strahler centripetal scheme (see MacDonald, 1983). Arbor
complexity was measured using the fractal box-counting dimen-
sion (see Addison, 1997). Binzegger et al. (2005) found that
while smooth cell axon arbors branch more frequently than spiny
cell axons (see also Budd et al., 2010) these arbors have similar
branch length distributions. In addition, they reported the mor-
phological diversity amongst arbor types masked a highly similar
branching topology and statistical self-similarity (1.2–1.9 average
fractal dimension). Smooth cell axons tended to exhibit greater
complexity than either spiny or thalamocortical arbors. Although
the majority of arbors showed statistical self-similarity, it remains
unexplained why nearly 18% of arbors studied did not appear
fractal-like. Together, the results of Tettoni et al. (1998) and
Binzegger et al. (2005) imply a common principle of construction
for thalamocortical and both extrinsic and intrinsic corticocor-
tical axon arbors, where arbor topology is type-invariant but
metric parameter values vary to alter axon branching patterns and
synaptic bouton density.

In analyzing the basal dendritic arbors of pyramidal cells,
Wen et al. (2009) reported evidence of a statistical self-similarity
in the shape of 3D arbor reconstructions from cat visual cor-
tex and a scaling correlation between arbor radius and dendritic
length for these and more than two thousand 2D arbor images
from primate neocortex. To explain these results, Wen et al.
(2009) initially hypothesized that dendritic arbors sought only
to maximize the number of different combinations of poten-
tial synapses, axon and dendritic appositions within a dendritic
spine’s length (Stepanyants and Chklovskii, 2005). Yet this uncon-
strained objective function (entropy maximization) generated
space-filling artificial arbors with a tortuous morphology, because
the branches sought both to maximize total arbor volume and
spread out to avoid receiving multiple potential synapse from the
same axon. When the objective function was constrained by path
length cost (conduction delay), however, the less tortuous artifi-
cial arbor morphology was more realistic. This result highlights
the importance of conduction delay conservation as a constraint
on neuronal arbor design and communication.

In a bold unifying approach, Snider et al. (2010) proposed that
all axonal and dendritic arbor types could be described by a single
truncated Gaussian spatial density function (envelope of aver-
aged arbor branching density). Yet a unimodal kernel cannot, for
instance, properly portray the spatial clustering of axon terminals
observed within the extent of long-range basket and pyramidal
cell axon arbors (e.g., Kisvárday et al., 2002; Binzegger et al., 2005,
2007; Budd et al., 2010). Moreover, this approach had to describe
separately the apical and basal dendritic trees of the same pyra-
midal neuron (Snider et al., 2010). Although Snider et al. (2010)
acknowledged their approach was not directly concerned with
branching topology, this work does emphasise the universality of
dense arbor branching close to the parent cell body, identified as
a source of excess wire length that helps reduce average axon path
length (Budd et al., 2010).

Summary
Structural evidence for balanced communication costs in single
cortical axons and dendritic arbors appears compelling, though

it remains to be seen whether this wiring principle is univer-
sal across all neuronal types, cortical regions, and species. To
test structural predictions, in vivo two-photon calcium imag-
ing microscopy might be used to reconstruct the morphology
of single cortical axon and dendritic arbors and then measure
the latency of signal propagation at various arbor locations (e.g.,
Katona et al., 2011). However, as the field of view of two-photon
microscopy is currently limited to less than 1 mm it would pro-
vide only a partial test for axon arbors (Katona et al., 2011).

Importantly, the results together suggest intracortical axon
and dendritic arbors may well follow the same wiring princi-
ple. If so this principle has at least three advantages for efficient
cortical design. First, it may provide the basis for arbor scal-
ing because it will, unlike wire length minimization, allow for
the addition of branches without significantly degrading com-
munication. Second, time and distance in cerebral cortex will be
strongly and positively correlated to promote temporal coherence
between simultaneously excited but equidistant sources. Third, it
implies a highly efficient genetic encoding of morphological neu-
ronal differentiation may account for neuronal diversity though
variation in the expression of relatively few molecular factors (see
Dent et al., 2011). We next consider whether this wiring principle
applies at larger spatial scales of cortical organization.

LOCAL CIRCUIT SCALE
Although individual axonal and dendritic arbors may separately
trade-off structural communication costs, it cannot be assumed
that these necessary conditions are together sufficient for local
cortical circuits to also trade-off communication costs. When
constructing graphical representations of local cortical circuits,
edge lengths must combine both the axonal path length from
presynaptic cell body and dendritic path length from synapse
to postsynaptic cell body (see Figure 3B). This means that axo-
somatic or axoaxonic connections should tend to be less costly
than axodendritic synapses, which are by far the most common
variety of cortical synapse (Beaulieu and Colonnier, 1985; Schüz
and Palm, 1989; Beaulieu et al., 1992). Somatic size limits the
number of axosomatic connections to at most a few hundred
(Fariñas and DeFelipe, 1991). Nonetheless these synaptic inputs
probably have a robust influence on firing due to the closeness
of their synapses to the action potential initiation zone, such as
inhibitory basket cell axons and axoaxonic cell contacts regulating
the phase of oscillatory firing (e.g., Cobb et al., 1995; Klausberger
et al., 2003). On the other hand, the spatially extended dendritic
arbors allow cortical neurons to each receive thousands of synap-
tic inputs (Feldman, 1984; Larkman, 1991). In deciding whether
communication costs have been optimized in local cortical cir-
cuits, however, we need to know whether particular types of axon
are constrained to target subcellular domains of dendritic arbors
in cerebral cortex (see Somogyi et al., 1998). If so then a fixed
offset should be subtracted from the edge length to compensate
for this constraint. Yet the evidence that different types of axonal
pathways innervate distinct subcellular domains of postsynap-
tic neurons is not clear-cut, e.g., thalamocortical axons (Ahmed
et al., 1994; Bagnall et al., 2011 cf. da Costa and Martin, 2011).

Due to the lack of morphologically reconstructed local cor-
tical circuits, there have to our knowledge been no published
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empirical studies of structural communication costs in cerebral
cortex at this scale. Instead we will focus on what is known about
the network topology of perhaps the most studied subcircuit of
neocortex.

Layer 5 networks
To investigate the topology of local circuits, network analysis has
been applied to data obtained from multiple simultaneous in vitro
electrophysiological recordings of thick tufted layer 5 (TTL5)
pyramidal cells taken from immature rat neocortical slice prepa-
rations (Song et al., 2005, postnatal day, P12–20; Perin et al., 2011,
P14–16). Using differential infra-red microscopy, this cell type is
readily identifiable for recording because of its relatively large cell
body (Markram et al., 1997). Consequently, the electrophysiol-
ogy, morphology, and synaptic properties of TTL5 neurons have
been studied extensively in vitro (Chagnac-Amitai and Connors,
1989; Larkman, 1991; Markram et al., 1997). TTL5 pyramidal cell
networks, which are sparsely interconnected via recurrent collat-
erals (∼10%) (Markram et al., 1997), are of interest because they
may be able to generate coherent theta-band oscillatory activity
in neocortex (Chagnac-Amitai and Connors, 1989; Budd, 2005).

To investigate the degree of randomness in local cortical circuit
connectivity, Song et al. (2005) analyzed quadruple whole-cell
recordings of over 800 TTL5 pyramidal neurons in visual cor-
tex obtained in a previous study (Sjöström et al., 2001). In
these quadruple recordings, action potentials were evoked in each
neuron in turn while recording the strength of any excitatory
postsynaptic response in the remaining cells. Song et al. (2005)
used these data to construct directed graphs for each quadruple
recording group. They concentrated their analysis on three neu-
ron groups for which there are 16 topologically distinct possible
subgraph configurations. By generating random networks using
their own estimates of unidirectional and reciprocal connection
probabilities, Song et al. (2005) reported the existence of a num-
ber of three neuron motifs, subgraphs that occur more frequently
than expected by chance, but only two of these achieved levels of
statistical significance. Importantly, Song et al. (2005) found the
more interconnected motifs tended to have stronger excitatory
connections, from which they inferred a general network archi-
tecture consisting of a skeleton of strongly interconnected motifs
surrounded by weaker and less connected neuronal motifs. They
concluded the connectivity of TTL5 pyramidal cell networks were
highly non-random.

Following a similar approach in somatosensory cortex, Perin
et al. (2011) recorded from up to 12 pyramidal cells at a time for a
total of over 1300 neurons. Like Song et al. (2005) they too discov-
ered specific three- and, in addition, four-neuron motifs that were
over-represented but obtained statistical significance only when
recording groups contained six or more neurons. This confirma-
tion of TTL5 pyramidal network structure suggests local cortical
circuits may be composed of repeated elementary subnetworks,
where each type of network motif serves a specific computational
function (see Milo et al., 2002).

In addition, Perin et al. (2011) observed that the connection
probability for a given neuron pair rose linearly with the num-
ber of connections they shared with other neurons—“common
neighbour” rule. This relationship was stronger for shared input

rather than output connections. This observation was indepen-
dent of the intersomatic separation distance within the slice (up
to 0.3 mm). Note the term “common” here does not necessarily
imply neurons were spatially close. Perin et al. (2011) found neu-
rons participating in a given motif which were often spread out
spatially (100–125 μm).

Using the common neighbor rule and empirically based esti-
mates of first-order distance-dependent connection probabilities,
Perin et al. (2011) generated and analyzed an artificial network
of 2000 point neurons. In this model, they identified nearly 40
spatially interlaced neuronal clusters, each of around 50 neurons.
The model topology lacked the characteristics of scale-free, ran-
dom, or regular networks but instead demonstrated small world
clustering; the average shortest path length (unweighted) between
any two neurons within a cluster was 1.9 hops, which is equivalent
to 2.9 edges (synapses); hop count is the number of intermedi-
ate vertices (neural elements) that must be “hopped over” in a
given path (see Box 1). This pattern of connectivity suggests a
neuron may communicate more easily with others within a clus-
ter regardless of its spatial location but less well with cells in other
clusters even when they are spatially adjacent.

These two studies are significant because they hint at a local
circuit topology that favors a high degree of clustering (small
worldness) and emphasize the importance of higher-order statis-
tics to determine connection probabilities. These higher-order
statistics indicate that to understand local circuit connectivity
requires more information than can be obtained from paired cell
recordings.

Yet as neither study reconstructed and traced the processes
connecting individual neurons, we cannot determine whether
these local circuits were optimized for structural communication
costs. We are unable to infer this, for instance, from electrode spa-
tial locations, typically around 0.05 mm (e.g., Song et al., 2005),
because these can these only give intersomatic distances between
cell pairs. The intersomatic distance ignores the length of axon
connecting a cell pair and the intracellular distance from den-
dritic synaptic input location to cell body, which alone is generally
greater than the electrode separation distance (0.08–0.58 mm,
Markram et al., 1997). To obtain the necessary data on whether
the communication trade-off hypothesis holds at the local cir-
cuit scale of cerebral cortical organization, therefore, requires a
reconstruction of the neuronal processes and tracing the connec-
tions of many individual neurons participating in a local cortical
circuit—a formidable task for future studies.

Mapping morphology in local circuits
To help reconstruct local circuits, large-scale volume serial-
section EM is now being used to map the fine structure of the
cortical neuropil (e.g., Mishchenko et al., 2010; Bock et al., 2011).
Manual annotation and tracing requirements of the very many
EM images involved, however, severely limits progress. For exam-
ple, Bock et al. (2011) examined a relatively small volume of
mouse visual cortex (0.008 mm3), containing large portions of
around 1500 upper layer neurons, but manually mapped only a
tiny fraction of all synapses (∼0.003%, 250 synapses out of 1 ×
109 total synapses per mm3 reported in Schüz and Palm, 1989). To
completely survey even relatively small cortical volumes within a
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reasonable time scale, automated or semi-automated annotation,
and tracing methods under development (e.g., Chothani et al.,
2011; Helmstaedter et al., 2011) will need to improve produc-
tivity by many orders of magnitude without endangering quality.
Mapping small cortical volumes though will not account for the
significant fraction of intrinsic connections originating from out-
side the local neuropil volume (Stepanyants et al., 2009) without
the use of additional labeling techniques. The productivity gains
achieved in the history of Genome mapping, however, does give
cause for optimism (see Lichtman and Sanes, 2008).

The current Human Connectome framework (Sporns et al.,
2005) does not appear to explicitly incorporate morphologi-
cal descriptions of neuronal processes. Yet to evaluate structural
hypotheses at the local circuit level, morphological descriptions
are required. The morphology of an axonal or dendritic arbor
cannot be recovered from a connectivity matrix alone because
of non-uniqueness. Specifically, for a neuron forming N synap-
tic connections, the connectivity matrix data could be accounted
for by any one of N(N−2) possible distinct tree configurations
(Cayley’s formula, Cormen et al., 2001). Reconstrucing a neu-
ron’s morphology is not only essential to estimate communication
costs in cortical circuits but vital for understanding signal inte-
gration and distribution. In dendritic trees, for example, synaptic
integration is shaped by arbor geometry, synaptic motifs, and
the spatiotemporal pattern of dendritic stimulation (see Sjöström
et al., 2008; Branco et al., 2010). On the positive side, how-
ever, incorporating an explicit 3D morphological description into
the Human Connectome framework should not involve much
additional computational cost. This is because to construct a con-
nection matrix the paths of neuronal processes connected to a
synapse must be traced back to the respective presynaptic and
postsynaptic neurons (e.g., Mishchenko et al., 2010).

Summary
The absence of sufficient data for estimating structural commu-
nication costs at the local cortical circuit is a major hurdle in
evaluating the multi-scale hypothesis. It is probable that soon
fragments of a canonical cortical circuit will be reconstructed
to permit the estimation of structural communication costs. In
the meantime, progress in evaluating the hypothesis might be
made by examining whether any trade-off between communica-
tions costs varies as the number of neurons per network motif
increases.

PATHWAY SCALE
Cortical regions are connected via fiber tracts, bundles of effer-
ent axons of various calibers and mostly myelinated, that course
through white matter to their target cortical region (see Salin and
Bullier, 1995). On entering gray matter, each axon ramifies to pro-
duce one or more terminal arbors that synapse with many post-
synaptic neuronal processes in a characteristic laminar-specific
pattern (Salin and Bullier, 1995). Individual axonal pathways may
be classified as feedforward (traveling away from primary sensory
areas), feedback (traveling toward primary sensory areas) or lat-
eral (Rockland and Pandya, 1979; Felleman and Van Essen, 1991;
Rockland, 1997). Based on the differential laminar termination
patterns and physiological effect of afferent axons, feedforward

pathways are thought to drive neuronal activity while feedback
pathways act to modulate neuronal gain (Johnson and Burkhalter,
1996, 1997; Budd, 1998; Larkum et al., 2004; Rothman et al.,
2009). Macroscopic cortico-cortical networks may be constructed
by mapping fiber tracts to their end points to define regional
vertex positions and using the tract itself to define the connect-
ing edge (see Figure 3C). Edge costs can be defined according
to tract morphological properties such as fiber length and fiber
density/number.

Tracer-derived networks
By injecting molecular labeling agents such as biocytin or
Phaseolus vulgaris-leucoagglutinin (PHA-L) into anatomically
identified cortical regions, the origin or termination sites of indi-
vidual cortical axons can be traced over long-distances (Rockland,
2004). Individual axons can have quite convoluted trajectories
(Rockland, 1997) and may diverge to terminate in more than
one cortical area (Schwartz and Goldman-Rakic, 1982; Bullier
et al., 1984). By combining results from different laboratories
for a variety of tracer agents, it has been possible to construct
draft qualitative adjacency matrices of inter-areal cortical con-
nectivity (Felleman and Van Essen, 1991; Scannell et al., 1995),
of which some are publicly available, e.g., CoCoMac database
for macaque cerebral cortex (http://cocomac.g-node.org/drupal/,
Stephan et al., 2001; Kötter, 2004). An example is shown in
Figure 5A. Analyses of these draft connectivity matrices have
proved useful in, for example, establishing the high incidence of
reciprocal pathways in macaque cortex (Felleman and Van Essen,
1991), offering an anatomical basis for separate ventral and dorsal
functional streams in visual cortex (Young, 1992), and discovering
“nearest-neighbour” and “next-nearest-neighbour” connectivity
rules between cortical areas (Felleman and Van Essen, 1991;
Young, 1992). But in the latter case these rules only partly explain
the full connectivity matrix (Scannell et al., 1995; Costa et al.,
2007).

To discover whether cerebral cortex macroscopic networks
were minimized for wire length, Kaiser and Hilgetag (2006) used
CoCoMac data to construct a 3D spatial network. This network
comprised 95 vertices, where each vertex represented the 3D
centre-of-gravity of a distinct cortical area or subarea obtained
from a standardized cortical parcellation surface map, and 2402
edges, where each edge represented a pathway revealed by tracer
injections. Edge cost was estimated from the distance between the
3D positions of vertex pairs rather than the actual length of the
fiber tract. Kaiser and Hilgetag (2006) found the macaque cortico-
cortical network does not appear to be strictly minimized for
wire length. Optimization algorithms were able to significantly
shorten the total wire length of the original macaque network
(>30%) mainly by reducing the number of long-distance con-
nections (Kaiser and Hilgetag, 2006), though this significantly
increased the average path length (hops) between cortical areas
(Figure 5B). Kaiser and Hilgetag (2006) concluded that the excess
wire associated with long-range pathways introduced shortcuts to
reduce the number of “processing steps” between cortical areas.
This conclusion is consistent with the results from the optimiza-
tion analysis of single intrinsic axon and dendritic arbors (Budd
et al., 2010; Cuntz et al., 2010).
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FIGURE 5 | Communication cost trade-off at Pathway scale of cortical

organization. (A,B) Macaque tracer-derived pathway connectivity.
(A) Example of directed connectivity (adjacency) matrix of visual and
somatomotor macaque cerebral cortex (Reprinted from Sporns et al., 2007),
where black squares indicate evidence supporting a axonal pathway
connection between areas (matrix rows as sources and columns as target
cortical regions). (B) Macaque cerebral cortical network is suboptimal for total
axonal length (left) but minimal length network increased averaged path
length (right) (Reprinted from Kaiser and Hilgetag, 2006). (C,D) Human

DSI-derived pathway connectivity. (C) An undirected spatial cortical network
(bottom) is constructed from vertices of cortical regions (top, left) and edges
determined from the probability of fiber tracts existing between
corresponding pairs of cortical regions based on tractography tracing
algorithms (top, right) (Reprinted from Hagmann et al., 2008). (D) Human DSI
network is suboptimal for wire length (left) but minimal length network has
lower topological dimension than observed cortical network (right) (Reprinted
and partly redrawn from Bassett et al., 2010). Topological dimension here is a
fractal measure of a network’s degree of internal connectedness.

Does it matter that this study assumed straight-line fiber tra-
jectories? Kaiser and Hilgetag (2006) acknowledged their assump-
tion underestimated pathway length, though in fairness, there
is insufficient actual fiber length data available. This issue may
not be a significant problem provided tract curvature is rela-
tively constant, i.e., if pathways are all similarly curved. In primate
prefrontal cortex, for example, around 55% of the fiber tract
trajectories measured were approximately straight though the
remainder had some degree of curvature with denser tracts tend-
ing to be straighter than sparse ones (Hilgetag and Barbas, 2006).
Moreover, these measurements are not easy to make because ini-
tially compact fibers bundles can splay and divide so that fibers
may take different trajectories through white matter (Hilgetag and
Barbas, 2006). This uncertainty about the effect of tract length on
communication costs makes it important to investigate this issue
further.

In general, network analysis based on tracer study data has
been impeded by the absence of a systematic quantification
of axonal pathways properties such as axon length or axon
(connection) density (see Salin and Bullier, 1995). The CoCoMac
database, for example, provides a limited integer rating of con-
nection density/strength but no information on pathway length
(Stephan et al., 2001; Sporns et al., 2007). There are understand-
able reasons for the absence of these data. Tracer label may not fill
all axonal branches especially when it is of a fine caliber (<1 μm)
and plotting the trajectory of long, fine cortical axons, and
measuring their structural parameters is hugely time-consuming
(Salin and Bullier, 1995; Rockland, 2002). Moreover, tracer
studies report considerable between-individual variability in the
fiber density of specific cortio-cortical pathways (e.g., Scannell
et al., 2000). Even when the labeling methodology is carefully
controlled, Markov et al. (2011) found, as well as discovering
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previously unreported pathways to well-studied visual cortical
areas, that connection density could vary upto five-fold between
individuals. But caution should be used in assuming that path-
ways of equal axon number have an equal postsynaptic effect on
target neurons, especially when one may be feedforward and the
other feedback (Johnson and Burkhalter, 1997). Moreover, con-
nectivity matrices derived from the composite results of tracer
injection studies tacitly assume that network topology is the same
for all individuals of the same species. It is unclear whether this
assumption is secure.

MRI-derived networks
Axonal tracer studies can only be used map relatively few fiber
tracts per animal (see Salin and Bullier, 1995) making them
ill-suited to map all extrinsic cortico-cortical pathways in an indi-
vidual brain. Recently, by combining two complementary in vivo
MRI techniques whole macroscopic cortico-cortical networks can
be mapped non-invasively for an individual brain. An example
is shown in Figure 5C. This approach offers the possibility to
study individual differences in health and disease (Bassett and
Bullmore, 2009; Hagmann et al., 2010).

In the first stage, structural MRI is used to construct a 3D sur-
face model of the cerebral hemispheres at the boundary where
fibers enter and leave cortical gray matter. A standardized parcel-
lation template is applied to the surface model to identify cortical
areas in each subject, after which these areas are subdivided into
distinct, equally sized regions of interest (ROI), typically ∼cm2

of surface area (Hagmann et al., 2008; Echtermeyer et al., 2011).
Each network vertex corresponds to a distinct ROI (Figure 5C,
top, left).

In the second stage, to help construct network topology, dif-
fusion MRI (diffusion spectrum imaging, DSI) is used to trace
fiber tracts to and from ROIs. Fiber tracts are identified and
traced from the anisotropic diffusion of water molecules along
their length (Moseley et al., 1990; Conturo et al., 1999; Wedeen
et al., 2012). Tractography algorithms trace paths of maximal
diffusion coherence (correlation) to generate a connection prob-
ability of each pseudo-fiber (see Hagmann et al., 2010; Figure 5C,
top, right). Tract density and length may also be estimated from
pseduo-fiber constructions (Hagmann et al., 2008), though fibers
cannot be traced once they enter gray matter with this method
because of the relative lack of anisotropic water diffusion here
(Conturo et al., 1999). To decide whether to add an undirected
edge to the network, a threshold is typically applied to the raw
connection probability matrix (see Rubinov and Sporns, 2010;
Figure 5C, bottom). Validation of DSI tractography for human
cortex using tracer methods is not possible for obvious ethi-
cal reasons and dissection approaches are considered unreliable
at this level of detail (Hagmann et al., 2010). However, the
postmortem application of tract tracing histological tools (e.g.,
lipophilic tracer, DiI, Galuske et al., 2000) can be envisaged.
Recently, Axer et al. (2011) have shown 3D-polarized light imag-
ing applied to postmortem tissue can trace fiber tracts in white
matter at a sub-millimeter resolution though it cannot yet follow
individual fine caliber (<1 μm) axons.

To date, two studies have investigated the communication costs
in human MRI-derived large-scale cortical networks (Hagmann

et al., 2008; Bassett et al., 2010). Analyses of networks constructed
from functional MRI data report similar results (e.g., Achard and
Bullmore, 2007) though are not discussed here.

To non-invasively map inter-regional connectivity in human
cerebral cortex, Hagmann et al. (2008) constructed and analyzed
networks each of 998 ROI vertices for five healthy human subjects.
An edge was inserted if at least one pseudo-fiber identified by DSI
connected an ROI pair. In some versions of the network, edges
were weighted with a length, l(e), based on the average length of
pseudo-fiber trajectories, and a density, w(e), based on the num-
ber of pseudo-fibers per mm2. From their analysis, Hagmann
et al. (2008) identified a network core consisting of a relatively
small number of highly interconnected cortical hubs. By virtue of
having low average path lengths to all other cortical regions, the
network had high local efficiency. Six main modules were related
to these hubs. The study reported a good but imperfect corre-
spondence between the gross cortical pathways of macaque and
human brains. The study did not, however, investigate whether
network communication costs were optimized.

To investigate topology and wiring costs in human cortical
macroscopic networks, Bassett et al. (2010) analyzed a modified
version of the Hagmann et al. (2008) DSI network for single
human subjects and, for comparison, a network derived on gray
matter volumes covariation (GMC). GMC is an indirect anatom-
ical marker for connectivity (He et al., 2007) obtained from
averaging over many human subjects. In contrast to Hagmann
et al. (2008), network topology was determined by threshold-
ing connection probabilities between ROI pairs. Moreover, while
edges were assigned a length cost, based on the distance between
ROI pairs instead of pseudo-fiber length, they were not given a
density parameter. Bassett et al. (2010) acknowledged this is likely
to underestimates actual fiber length but they judged pseudo-fiber
measurements unreliable (see later). Bassett et al. (2010) reported
evidence of network modularity over a range of scales, consis-
tent with statistically self-similar connectivity. This hierarchical
modularity or “modules within modules” architecture (Simon,
1962) was more clearly defined in DSI than GMC networks. The
“modules within module” architecture offers a high degree of net-
work efficiency (see “Spatial Networks”) because in general fewer
vertices are traversed to reach a target vertex than in regular or
random architectures (Simon, 1962). Importantly, Bassett et al.
(2010) found human cortical networks were not strictly mini-
mized for wire length (Figure 5D, left). Indeed, strictly minimiz-
ing wire length reduced or eliminated hierarchical modularity,
which in turn reduced the cost-efficiency of balancing topological
complexity within available physical space (Bassett et al., 2010;
Figure 5D, right). Topological complexity here was reported
using a fractal measure of the network’s topological dimension,
its degree of internal connectedness. These findings agree with the
conclusions of Kaiser and Hilgetag (2006) regarding the balancing
of communication costs in macroscopic networks.

Networks constructed using DSI are, however, subject to limi-
tations. First, diffusional MRI fiber tracing suffers from a distance
bias. Long-range fibers may not be reliably traced because of
an exponential decrease in coherent diffusion with distance and
short tracts may not be detectable due to the spatial sampling
limitations of MRI (Hagmann et al., 2007; Gigandet et al., 2008).
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Second, tractography algorithms have difficulties segmenting
proximal fiber tracts such as distinguishing “kissing” from cross-
ing fiber bundles because MRI lacks the spatial detail of tracer
studies, which may also mean that splaying fiber tracts are under-
represented (Schmahmann et al., 2007; Gigandet et al., 2008;
Hagmann et al., 2010). In vivo MRI spatial resolution is limited
to at best a few hundred microns (e.g., Schmahmann et al., 2007).
Third, ROI size choice affects network topology (Hagmann et al.,
2007; Echtermeyer et al., 2011) with implications for drawing
robust inferences about network properties such as motif distri-
butions (Echtermeyer et al., 2011). Fourth, unlike tracer studies,
diffusional MRI cannot provide information concerning the lam-
inar origin or termination of tract axons in gray matter (Conturo
et al., 1999). Hence, MRI-derived networks cannot currently
employ directed edges. The use of undirected edges, however,
tacitly assume that communication has an equal (postsynaptic)
impact in either direction when, as mentioned earlier, there are
reasons for believing this may not be the case, e.g., feedforward vs.
feedback cortical afferent pathways (Rockland and Pandya, 1979;
Felleman and Van Essen, 1991; Johnson and Burkhalter, 1996,
1997; Rockland, 1997; Budd, 1998; Larkum et al., 2004; Rothman
et al., 2009). In addition, while in primate cerebral cortex most
axonal pathways between cortical areas are reciprocal it appears
some are not (Felleman and Van Essen, 1991). Finally, threshold-
ing connection probabilities to determine whether an edge exists
necessarily generates different network topologies for the same
dataset: high thresholds lead to sparsely connected networks that
may accidentally eliminate weak but actual pathways, while low
thresholds may result in densely connected networks including
erroneous edges generated by noise.

Summary
Evidence from two studies, one based on a composite network
of axonal tracer data of macaque cortex (Kaiser and Hilgetag,
2006) and the other from individual MRI-based human cortico-
cortical networks (Bassett et al., 2010), offer support for the main
hypothesis. Both studies concluded that, like single intracortical
axonal (Budd et al., 2010) and dendritic arbors (Cuntz et al.,
2010), cortical wiring is not strictly length-minimized with excess
wire used to promote rapid communication. To better understand
corticocortical communication costs at this scale, however, future
research will need to incorporate the density of connection and
postsynaptic effect of fiber tracts into network models. Given such
a wide range of individual differences in connection density (e.g.,
Scannell et al., 1995; Markov et al., 2011), it seems improbable
that this variation has a negligible influence on information flow.

PHYSIOLOGICAL CONSIDERATIONS
What is the justification for inferring temporal cost (delay) from
path length in spatial networks? The total signaling delay of a
stimulus in a cortical network, ttotal , may be separated into two
main components (Nowak and Bullier, 1997): a presynaptic com-
ponent, axonal conduction delay, and a postsynaptic component,
neuronal integration delay (see Figure 6). We now examine these
distinct components and consider how they should be used in
estimating temporal cost in cortical networks at different spatial
scales.

FIGURE 6 | Total communication delay between neurons separable

into a presynaptic axonal conduction delay and a postsynaptic

neuronal integration delay. (A) Schematic circuit diagram shows the time
taken by an action potential generated in the presynaptic neuron (left
neuron, blue) to propagate along the axon to a presynaptic terminal, where
it causes the release of neurotransmitter into the synaptic cleft, defines the
axonal conduction delay (taxon). The postsynaptic neuronal integration delay
(tint) is the sum of the time taken for neurotransmitter molecules to induce
a local postsynaptic response (synaptic delay, tsyn) and the latency for this
response to propagate down the dendritic tree to the axon initial segment,
where its integration produces an action potential in the postsynaptic
neuron (right neuron, orange) (dendritic delay, tdend). (B) Total delay (ttotal )
between the timing of a presynaptic spike occuring (top, blue line) and the
generation of a postsynaptic spike (bottom, orange line) is determined by
the sum of presynaptic and postsynaptic delay components.

PRESYNAPTIC TEMPORAL COST
Presynaptic axonal conduction delay (taxon) is the time taken for
an action potential to propagate from its initiation site at the axon
initial segment (AIS) or axon hillock (Stuart et al., 1997) along the
axon arbor to a given presynaptic terminal (see Figure 6A).

Axonal conduction delay may be estimated from the product
of the weighted path length between axon origin and presynap-
tic terminal and the average conduction velocity along this path
(see Laxon, Figure 3B). Weighted path length is thought to be
the major determinant of conduction delay for intracortical axon
arbors (Manor et al., 1991). Conduction velocity increases with
axon diameter and in the presence of myelination but may be
reduced when branch points and axon varicosities are encoun-
tered (see Debanne et al., 2011). Intrinsic corticocortical axons
have a narrow, positively skewed diameter distribution (0.1–
1.0 μm) with the majority of their arbor length composed of
unmyelinated branches, as so far reported (e.g., Haug, 1968;
Braitenberg and Schüz, 1991; Peters and Sethares, 1996). In con-
trast, extrinsic corticocortical axons, though with a similarly
shaped diameter distribution, tend to be thicker (e.g., ∼1–3 μm
in macaque) and most are myelinated along their length until
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arborization (e.g., Houzel et al., 1994; Anderson and Martin,
2002; Wang et al., 2008). Correspondingly, the conduction veloc-
ity of intracortical axons is generally reported as slower (0.1–
0.6 m/s, Komatsu et al., 1988; Luhmann et al., 1990; Hirsch and
Gilbert, 1991; Lohmann and Rörig, 1994; Feldmeyer et al., 2002)
than extrinsic corticocortical pathway axons (>1 m/s, Harvey,
1980; Girard et al., 2001). Typically axonal pathways are het-
erogeneous, composed of axons with a range of calibers (e.g.,
Anderson and Martin, 2002; Wang et al., 2008) and conduc-
tion velocities (Harvey, 1980; Girard et al., 2001). Interestingly,
conduction latency distributions between reciprocally connected
cortical areas overlap (Raiguel et al., 1989; Girard et al., 2001).
In general, action potentials are reliably transmitted throughout
cortical axon arbors (Cox et al., 2000) even along thin varicose
branches at least up to 100 Hz (Raastad and Shepherd, 2003).
However, propagation failures can occur under certain circum-
stances such as spike bursting (Raastad and Shepherd, 2003; see
Debanne et al., 2011). Short-term spiking history can induce a
modest change in conduction velocity in some types of corti-
cal axon (2–22%, Swadlow et al., 1978; Shlosberg et al., 2008).
Overall, these findings suggest that when mean conduction veloc-
ity is known it is not unreasonable to estimate presynaptic axonal
conduction delay from weighted path length.

POSTSYNAPTIC TEMPORAL COST
Postsynaptic neuronal integration delay (tint) is the time taken
for postsynaptic depolarization arising from a given presynaptic
axon to generate one or more action potentials in response (see
Figure 6A). We divide this delay into two subcomponents.

First, there is a synaptic delay (tsyn), the time taken for
neurotransmitter molecules released presynaptically to activate
postsynaptic receptors, which for glutamate and GABA fast trans-
mission at central synapses is thought to be brief (<0.5 msec,
Sabatini and Regehr, 1996; Markram et al., 1997). The amplitude
and width of the presynaptic action potential, however, can affect
the degree of synaptic delay (Boudkkazi et al., 2007, 2011).

Second, there is a dendritic delay (tdend), the time taken for the
local postsynaptic dendritic depolarization to induce one or more
action potentials following its propagation to and integration at
the AIS. The dendritic propagation delay depends on dendritic
path length (Ldend, see Figure 3B) and the mean dendritic con-
duction velocity along this path. Dendritic conduction velocity
depends on the electrical properties of these dendritic branches,
which is in turn influenced by arbor geometry such as branching
ratio and dendritic diameter and, importantly, whether the signal
is conducted actively or passively along the dendritic branch (see
London and Häusser, 2005; Spruston, 2008). Morphologically,
a pyramidal cell dendritic arbor, for example, is typically com-
posed of a largely spherical basal dendritic arbor around the
cell body and a main apical dendritic trunk, oriented toward
the pia, which emits a number of proximal oblique branches
before bifurcating to produce a densely branched distal apical tuft
(Feldman, 1984). Passively conducting EPSPs in the basal and
oblique apical branches conduct rapidly to the soma (at most
a few milliseconds) but EPSPs from distal apical tuft can take
longer (up to 10 msec or more) (Agmon-Snir and Segev, 1993;
Markram et al., 1997; Ulrich and Stricker, 2011). The synaptic

activation of voltage- and calcium-dependent dendritic spiking
amplifies and more rapidly conducts dendritic EPSPs to the soma
from all locations of the pyramidal dendritic tree (Yuste et al.,
1994; Larkum et al., 1999; Schiller et al., 2000; Nevian et al.,
2007; Larkum et al., 2009). In vivo-like spontaneous synaptic
background activity, observed in neuronal recordings of awake
animals, differentially reduces the delay of distal compared with
proximal dendritic EPSPs (Rudolph and Destexhe, 2003a). The
higher conductance state decreases the effective membrane time
constant that regulates the rate of temporal integration, so the
neuron responds more readily to sharp fluctuations in membrane
conductance than slowly changing dendritic signals (Rudolph
and Destexhe, 2003b). However, intrinsic delayed potassium cur-
rents in cortical neurons may defer spiking (Storm, 1988; Beggs
et al., 2000). Hence, there is more scope for variability in the
postsynaptic than the presynaptic component of total signaling
delay.

Based on in vivo electrophysiological recordings following sen-
sory stimulation, Nowak and Bullier (1997) estimated that the
minimum neuronal integration delay for quiescent (low conduc-
tance state) cortical neurons was 5–10 ms but faster at 1–5 ms
for already depolarized neurons (high conductance state). This
suggests the level of spontaneous synaptic background activity
may regulate neuronal integration delay. Based mostly on cat
and monkey data, the minimum total signaling delay between
cortical areas is thought to be around 10 msec (see Nowak and
Bullier, 1997), though it might be different in other species such
as rodents.

ESTIMATING TEMPORAL COST IN NETWORKS
Figure 1 illustrated that the shortest path length between a given
pair of vertices in the same network may be different depend-
ing on whether path length was measured using the number of
edges/hops (unweighted path length) or the sum of edge lengths
(weighted path length). While weighted path length only was used
to estimate temporal cost in intrinsic axonal and dendritic corti-
cal arbors (Budd et al., 2010; Cuntz et al., 2010), both measures
have been used for local cortical circuits and large-scale extrin-
sic cortico-cortical networks (Kaiser and Hilgetag, 2006; Bassett
et al., 2010; Perin et al., 2011).

So which path length measure is the most appropriate to use
to estimate temporal cost at each spatial scale of cortical organi-
zation? At the single neuron scale, temporal cost is isolated from
the network in which it is embedded. Hence, temporal costs esti-
mated from either axonal or dendritic weighted path length can
assume average levels of activity. Yet for local or large-scale corti-
cal networks scales we are interested in combined presynaptic and
postsynaptic delays, which will vary according to the conductance
state of each neuron traversed in a path.

There are three main parameter regimes to consider here.
First, when presynaptic axonal conduction delays are much longer
than the postsynaptic neuronal integration delays (taxon >> tint)
then weighted path length dominates total signaling delay esti-
mates. This regime operates when, relative to the other source of
delay, axons are long or integration delays brief. Second, when
presynaptic conduction delays are much shorter than postsynap-
tic neuronal integration delays (taxon << tint) then hop count
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becomes a more representative measure of total signaling delay.
This regime occurs when axons are relatively short or integration
delays long. Third, when the presynaptic conduction delay is of a
similar order of magnitude to the postsynaptic neuronal integra-
tion delay (taxon ∼ tint) then a combined measure should be used
to estimate total signaling delay.

To examine under which parameter regime local and circuit
macroscopic pathway scale networks may operate, we calculated
what percentage of estimated axonal delays (presynaptic compo-
nent) fell within an order of magnitude of the minimum neuronal
integration delay (postsynaptic component) (1–5 ms for high-
and 5–10 ms for low-conductance or quiescent states; see Nowak
and Bullier, 1997). We estimated axonal conduction delays based
on empirical distributions of path length in individual spiny neu-
ron axons from cat visual cortex (n = 22,001 paths, Budd et al.,
2010) and fiber tract lengths estimated for macaque cerebral cor-
tex (Kötter, 2004; Kaiser and Hilgetag, 2006; n = 2390 tracts;
see www.biological-networks.org). To estimate axonal conduc-
tion delay, intrinsic spiny axon path lengths were divided by a
realistic range of mean conduction velocities for intrinsic cortical
axons (0.1–0.6 m/s, Komatsu et al., 1988; Luhmann et al., 1990;
Hirsch and Gilbert, 1991; Lohmann and Rörig, 1994; Feldmeyer
et al., 2002), while extrinsic fiber tract lengths were divided by a
realistic range of mean conduction velocities for extrinsic cortical
axons (1–10 m/s, Miller, 1975; Swadlow et al., 1978; Harvey, 1980;
Girard et al., 2001).

Figure 7 shows the results for both single intrinsic axon
and extrinsic fiber tract data were quite similar. For the low-
conductance state, virtually all axonal conduction delays were
within an order of magnitude of neuronal integration delay
almost regardless of mean conduction velocity (Figures 7A,B,
square symbols). For the high-conductance state, except at the
very lowest conduction velocities, the majority of the conduction
delays were comparable to integration delays (Figures 7A,B, circle
symbols). These results suggest that in both local and macro-
scopic cortical networks presynaptic axonal conduction delays
may be mostly of a similar order of magnitude as postsynaptic
neuronal integration delays (i.e., taxon ∼ tint). To determine the
shortest path length between a pair of neural elements, therefore,
it is important to take into account both the number of neu-
ral elements in the path as well as its physical length estimated
from measuring axonal and/or dendritic processes. It is unclear
whether assigning a cost for each vertex as well as each edge would
significantly affect the results for cortical networks previously
analyzed (Kaiser and Hilgetag, 2006; Bassett et al., 2010).

DISCUSSION
OVERVIEW
Although cerebral cortex appears a jungle of axonal and dendritic
wiring, as we explore deeper into its structure we find an order
to its organization that helps explain how, in a vast network com-
posed of billions of highly interconnected yet spatially distributed
neurons, information is processed accurately and rapidly. In this
article, we critically examined an hypothesis to help at least par-
tially explain cortical wiring and connectivity at multiple scales of
organization in terms of a trade-off between spatial and tempo-
ral communication costs (Budd et al., 2010). This hypothesis is

grounded in Cajal’s laws of conservation for cellular material and
conduction delay (Cajal, 1899). We found supporting evidence
for the hypothesis from studies applying network analysis at sin-
gle neuron and macroscopic pathway network spatial scales. But
a lack of available structural data prevented any meaningful eval-
uation at the local circuit scale. To progress this evaluation, we
have identified the need for a more detailed morphological com-
ponent in the Human Connectome framework. Recent advances
in high-resolution cortical connectivity mapping (Mishchenko
et al., 2010; Bock et al., 2011) make it timely to consider how
morphological data should be recovered and suitably databased
to aid analysis and modeling (e.g., Ascoli, 2007). To better esti-
mate temporal cost in local circuit and macroscopic (pathway)
scale networks, we suggest combining edge (axonal conduction)
and vertex (neuronal integration) delays.

LIMITATIONS OF GRAPH THEORY
Network descriptions, like other types of model, provide a sim-
plified representation of a real world system. Yet there is a risk
that viewing cerebral cortex simply in terms of discretely inter-
connected neural elements may blinker us to what Cajal (1937)
referred to as “the utmost subtleties” of its structure. To gain
insight into a phenomenon, the process of abstraction neces-
sarily involves discarding some details considered less important
though this risks leaving out key elements to its understanding.
We now consider the appropriateness of applying graph theory to
understanding cortical wiring.

Here, the abstraction of neural architecture into vertices (neu-
ral elements) and edges (neural connections) is most straight-
forward when there is a direct physical correspondence with
distinct anatomical features. At the single neuron level, axon and
dendritic arbors are easily identified from the visualized pro-
cesses of neurons. In contrast, defining precisely what a vertex
represents at the mesoscopic scale has proved problematic. The
mesoscopic appears inextricably linked with the cortical column
concept (Horton and Adams, 2005; Rockland, 2010; da Costa and
Martin, 2010), where considerable controversy exists regarding
its spatio-functional dimensions. While pathways may be eas-
ily identified, there is, however, no universally accepted scheme
regarding how to divide cerebral cortex into regions (Van Essen
et al., 2012a,b), which means there is no standard vertex set.
Moreover, edge definitions can be more complicated at this scale.
Modeling a reciprocally connected pair of cortical regions by a
single edge (Hagmann et al., 2008; Bassett et al., 2010) ignores
differences that may exist between feedforward and feedback
pathways in the laminar termination pattern of their afferent
axons and likely postsynaptic effect (Johnson and Burkhalter,
1996, 1997; Rockland, 1997; Budd, 1998; Larkum et al., 2004;
Rothman et al., 2009). Ideally, each of pair of pathways should
each be represented by a pair of directed edges and weighted in
some way to record their relative influence on the flow of informa-
tion. This is problematic for human cerebral cortex where these
data are wholly absent. In addition, there is a tacit assumption
that a single edge represents a fairly homogeneous fiber system
whereas, like callosal pathways, it may be composed of a diverse
range of myelinated and unmyelinated axons of various calibers
(Houzel et al., 1994; Wang et al., 2008; Caminiti et al., 2009).

Frontiers in Neuroanatomy www.frontiersin.org October 2012 | Volume 6 | Article 42 | 16

http://www.biological-networks.org
http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Budd and Kisvárday A communication cost wiring principle

FIGURE 7 | Most estimated intrinsic and extrinsic axonal conduction

delays are within an order of magnitude of neuronal integration delays

apart from when axons conduct at their slowest rate and neurons

operate in a high-conductance state. (A) Intrinsic axon path lengths of

spiny neuron within gray matter in adult cat cerebral cortex (n = 22,001 paths
from 19 neuron reconstructions). Data taken from Budd et al. (2010). (B)

Extrinsic axonal fiber tract lengths in adult macaque cerebral cortex (n = 2309
pathways). Data taken from Kaiser and Hilgetag (2006).

A heterogeneous pathway may reflect the existence of a number
of parallel functional streams that selectively target separate neu-
ronal groups and/or at different conduction velocities, e.g., the
pathway between area V1 to V2 in macaque monkey visual cortex
(e.g., Sincich et al., 2010). To represent heterogeneous pathways,
therefore, it might be more accurate to use multiple edges con-
necting a pair of distinct cortical regions, each assigned different
properties. Finally, other forms of communication should not be
forgotten such as local ephaptic interactions between neigboring
neurons (Anastassiou et al., 2011) and cortical inhibition without
direct synaptic connections (Oláh et al., 2009), as well as global
extrasynaptic neuromodulation that can alter neuronal state (see
Bargmann, 2012).

Despite these limitations, this review has provided ample evi-
dence of the utility of graph theory abstractions to help gain
insight into cortical design and concomitantly wiring economy.
It should be borne in the mind that the success of such models
depends not on their fidelity in replicating the physical features of
the biological system but on the accuracy of their predictions and
what insight this offers into the system studied.

CORTICAL NETWORK DESIGN PROBLEM
Natural selection as a designing agent is a unifying concept
in biology (Maynard Smith, 1978). It follows from this notion
that the characteristics of brain architecture and function have
adapted to improve an organism’s survival in its environment
(e.g., Kaas, 1989). Here, a cost function can be viewed as an
hypothesis about what selective forces are responsible for cor-
tical network design. A test of this hypothesis is how well cost
optimization explains the characteristics of brain structure and

function. In this article, we have focussed on two known costs
concerning the cortical network design problem but clearly there
are others. We now evaluate how well the wire length metric
approximates spatial cost (cellular material) and consider the
influence of other costs on cortical network design. Path length
as an approximation for temporal cost was evaluated earlier (see
“Physiological Considerations”).

Almost all optimization studies discussed in this review have
approximated Cajal’s conservation of cellular material to mini-
mizing wire length (Mitchison, 1991; Cherniak, 1994; Koulakov
and Chklovskii, 2001; Kaiser and Hilgetag, 2006; Wen et al., 2009;
Bassett et al., 2010; Budd et al., 2010). The main assumptions
underlying this approach are: (1) wire length is directly propor-
tional to the amount of cellular material used; and, (2) distance
traveled is directly proportional of the degree of conduction delay
(Cajal, 1899; see Chklovskii and Koulakov, 2004). Although both
assumptions are valid, this approach does not take account of
other characteristics of neuronal processes that have a bearing on
cellular material and conduction delay conservation, in particular
axonal and dendritic diameter, which we now discuss.

Axonal and dendritic diameter regulates the rate of ionic dif-
fusion per unit length responsible for the conduction velocity of
electrochemical signals (see Debanne et al., 2011). Doubling the
diameter of a myelinated axon, for instance, would be expected to
halve the conduction time for a given length of axon because of
the approximately linear relationship between axon diameter and
conduction velocity (Hursh, 1939; Waxman and Bennett, 1972).
However, for an unmyelinated axon the conduction time differen-
tial would be less because conduction velocity is proportional to
the square root of axon diameter (Rushton, 1951; Hodgkin, 1954).
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Hence, an increase in axon or dendritic diameter causes a squared
expansion in the volume of cellular material while conduction
velocity increases, at best, linearly.

Currently, a lack of data prevents an optimization analysis
combining axon diameter and length. Because of the spatial reso-
lution limits of light microscopy (LM), EM is needed to accurately
measure the finest caliber axons found in both extrinsic and
intrinsic corticocortical axon pathways (see Peters et al., 1991). To
control for morphological irregularities such as swellings, multi-
ple sample points are needed to obtain the average diameter of an
axon branch. Hence, for a single axon arbor hundreds of diame-
ter measurements under EM might be required. Population axon
diameter distribution data does exist but only for a fraction of the
hundreds of extrinsic corticocortical pathways; the callosal path-
way is probably the most studied in this regard (e.g., Houzel et al.,
1994; Wang et al., 2008). In contrast, axonal length is readily mea-
sured from LM reconstructions typically by the piecewise linear
approximation of curvilinear axon trajectories.

In this article, construction cost has referred to the cost of the
mature and stable cortical network. So we have not discussed the
developmental cost of constructing the mature network or the
plasticity cost of remodeling connections of the mature network
in response to environmental changes in the adult brain. The
task of arranging billions of connections efficiently using develop-
mental mechanisms of axonal and dendritic outgrowth, guidance,
branching, and remodeling is immense and appears to require
a sophisticated orchestration of molecular cues and gradients as
well as activity-dependent modification (Price et al., 2006).

We do not yet know enough about cortical development to
determine which cost factors most influence the construction
of cortical networks. Developmental chronology may, however,
offer some clues. For instance, astroctye and oligodendrocyte cell
differentiation lag intrinsic axonal development (Müller, 1992;
Bandeira et al., 2009) while the cortical capillary blood supply co-
develops with intrinsic axons, most probably guided by common
molecular cues (Ben Hamida et al., 1983; Risau, 1997; Tieman
et al., 2004). These observations suggest glia and blood vessels
may act primarily as supportive rather than strongly constrain-
ing factors in the development of cortical networks. The role
of oligodendroctyes is of special interest here because their sig-
nals are necessary to induce local axon caliber expansion (e.g.,
Sánchez et al., 1996) yet their number is thought to be reg-
ulated by regional axon-derived signals (e.g., Barres and Raff,
1993). Taken together with the developmental chronology, we
might infer from this that as axons extend toward their most
distant targets it is important to conserve the amount of cel-
lular material used. But later, once axons have reached their
targets and are remodeled, thickening selected axonal branches
may become more important in order to significantly reduce
conduction delays within the network. This example of devel-
opmental chronology suggests that the relative influence of
cost factors in cortical network formation may vary during
development.

Metabolic cost is widely considered as a unifying influence
on brain design and function because it is a limited resource
essential to an organism’s survival (Laughlin and Sejnowski,
2003). A significant proportion of the energy budget is expended

on maintaining ionic equilibrium and communicating signals
between cortical neurons (e.g., Attwell and Laughlin, 2001). Both
construction and routing costs can be defined in energetic terms.
The energy required to maintain ionic equilibrium is propor-
tional to the amount of cellular material. The energy required to
propagate action potentials and subthreshold signals is related to
the path distance a signal must travel along an axon or dendrite
from its source to each target.

In summary, we suggest that understanding of the corti-
cal network design problem has been improved by considering
construction and routing costs together rather than either by
itself. However, a more complete appreciation of cortical net-
work design will require the consideration of other important cost
factors such as axon diameter (see Perge et al., 2012).

ROLE OF CORTICAL DYNAMICS
In this article, we have considered structural communication costs
at different scales of cortical organization. But we are keen not
to give the impression that we consider dynamics unimportant—
clearly signals do not flow unaltered through cortical circuitry and
network structure and cortical dynamics are inextricably linked
(e.g., Sporns et al., 2000). To generate hypotheses concerning
function, structural network analysis examines how information
may potentially be communicated. Given the considerable com-
plexity of neuronal and synaptic dynamics (Herz et al., 2006),
let alone when combined in cortical circuits, structural network
analysis offers a simpler alternative for gaining insight into cor-
tical function by generating experimentally testable hypotheses
such as the one examined here. It should be remembered that
Cajal (1899) made considerable progress in understanding neural
communication without being able to record the electrochemical
dynamics of the Golgi-stained neurons he studied.

SCALABLE BRAIN ARCHITECTURE
Mammalian brains vary greatly in size (see Kaas, 2000). For
example, the surface area of primary visual area V1 in humans
(2134 mm2, Adams et al., 2007) is more than 1500 times larger
than that of the mouse (1.40 mm2, McCurry et al., 2010). Yet
anatomically the substance of cerebral cortex appears similar in
many respects. First, neocortical neuronal types such as spiny
pyramidal and smooth basket cells are conserved across species
(Tyler et al., 1998) though some differences may exist between
cortical areas (e.g., Elston, 2003) and between species (e.g.,
DeFelipe et al., 2003). Second, the ratio of white matter to gray
matter volumes of cerebral cortex appears constant across species
(Zhang and Sejnowski, 2000). Third, changes in axon diameter
and myelination help preserve latency across brain size in cortic-
ocortical pathways such as corpus callosum (Wang et al., 2008;
Caminiti et al., 2009). Therefore, it is a puzzle how cortical design
appears to remain invariant over these dramatic changes of spatial
scale (Kaas, 2000; Clark et al., 2001; Stevens, 2001).

The hypothetical principle examined here is consistent with
the notion of a scaleable cortical architecture because the trade-
off between minimizing spatial and temporal costs should be
scale-invariant. In the case of intrinsic axon arbors, for instance,
the addition of neuronal branches to increase connectivity
would do so without destroying its communication capabilities
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(see “Axon Arbors”). However, a central issue is whether the
balance between communication costs in cortical design is rel-
atively constant, that is, universal or varies according to the
particular processing demands of a cortical region or particular
niche environment of a species.

CONCLUSIONS
In this article, we reviewed current evidence to evaluate the
hypothesis that to optimize communication spatial (construc-
tion) and temporal (routing) wiring costs are traded-off across
different scales of cortical organization (Budd et al., 2010). We
conclude the following:

• At the single neuron scale, a trade-off between spatial and
temporal communication costs appears to capture the core
morphological structure of axonal and dendritic trees of the
most common neuronal types, though this conclusion may not
apply for all intrinsic and afferent arbor types. The predictions
of the hypothesis can at least be partly validated using existing
physiological techniques.

• At the local circuit scale, higher-order statistics obtained from
multiple electrode recordings seem to provide a better explana-
tion of network design than those derived from paired record-
ings. In the absence of complete anatomical reconstructions
of local circuits, however, it has not been possible to estimate

structural communication costs and test the hypothesis at this
scale. Nevertheless, the predictions of the hypothesis might be
investigated using fragmentary circuit reconstructions.

• At the pathway scale, corticocortical fiber tracts may also
trade-off spatial and temporal communication costs. However,
network analysis at this scale is more complicated because there
is no standard parcellation scheme and considerable individ-
ual variation in corticocortical pathway properties (e.g., fiber
density/number and postsynaptic effect on target regions).

• When estimating temporal cost in local circuit and pathway
level networks account should be taken of both presynap-
tic axonal delay and postsynaptic neuronal integration delay,
which may be of a similar order of magnitude.

• Recent technical advances in cellular tracing will soon yield
massive volumes of data to help evaluate wiring principles
of cerebral cortex. To aid hypothesis testing of wiring princi-
ples, however, the connectome framework needs to incorpo-
rate more morphological data into its description of cortical
connectivity.
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