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Abstract: The operation of technical systems is a stochastic process based upon the equipment, 
equipment operation and maintenance, equipment preparation and repairs, and also the personnel 
carrying out repairs, as well as the regulations for operations. From the mathematical point of view, 
the operation of technical systems and equipment is a discrete state space stochastic process without 
after-effects, so it can be approximated with a Markov-chain. After setting up the transition 
probability matrix, matrix-algebraic tools can be used for investigating these processes with systems 
approach analysis. This paper is aimed to demonstrate the possibilities of the use of Markov matrix in 
case of stationary maintenance processes. In this paper a well-algorithmizable method developed by 
the author for mathematical modeling of stationary stochastic maintenance process is presented. The 
presented modeling method can be used for the assessment of availability, reliability and maintenance 
cost of a technical system. 
 
Keywords: Maintenance; Markov-chain; Stochastic modeling 
 
Kivonat: Technikai rendszerek üzemeltetése egy a berendezésekre, azok üzemeltetését, karbantartását, 
előkészítését és javításukat végző személyekre és berendezésekre, illetve annak irányítására szolgáló 
utasításokra épülő sztochasztikus folyamat. Matematikai szempontból technikai rendszerek és berendezések 
üzemeltetése egy diszkrét állapotterű, utóhatásmentes sztochasztikus folyamat, így azt Markov-lánccal lehet 
matematikailag leírni. Az átmeneti valószínűségi mátrix felállítása után, mátrix-algebrai eszközök segítségével 
tudjuk a vizsgált folyamatot rendszerszemléletű megközelítéssel elemezni. A tanulmány célja bemutatni a 
stacionárius karbantartás folyamatok Markov-mátrix felhasználásának történő elemzési lehetőségeit. A cikk a 
Szerző által kidolgozott, jól algoritmizálható stacioner sztochasztikus modellmegoldási eljárást mutat, mely 
segítségével prognosztizálható a gyártóberendezések megbízhatósága, rendelkezésre állása, valamint 
karbantartási költségei. 
 
Kulcsszavak: Üzemeltetés; Markov-lánc; Sztochasztikus modellezés 
 
1 INTRODUCTION 
 
In case of a production line operation, equipment’s repairing time could be decreased, but it would 
increase the repair cost. The task the author undertook was to forecast the changes in system 
availability and total repair cost if new repairing technology were installed. 
 The aims were to solve the task above and, in addition, to develop a well-algorithmizable 
mathematical modeling method for this and similar problems. The solution and this paper have been 
inspired mainly by book of Rohács and Simon [12]. 
 The operation of a manufacturing system is a stochastic process based upon the equipment, its 
maintenance, its preparation, and also the personnel carrying out repair, and the regulations for the 
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whole process. This process can be considered as a mathematically continuous time, discrete state 
space Markov-process that can be approximated by a Markov-chain. 
 There are several books and papers that present the theory of Markov and Semi-Markov processes 
and their application to model and investigate operational systems of technical equipment. The 
mathematical basis of Markov-processes is discussed in the following: Bharucha-Reid [2], Helstrom, 
[6], Karlin and Taylor [8], Korn end Korn, [9]. 
 The paper of Jalali Naini et al. [7] studies a maintenance policy for a system composed of two 
components, which are subject to continuous deterioration and consequential stochastic failure. 
Deterioration of these components is inspected periodically and the degrees of deterioration are 
monitored. The components can be maintained using different maintenance actions with different 
costs. For using stochastic regenerative properties of the system, a stochastic model has been 
developed in order to analyze the deterioration process and a novel approach is presented. It 
simultaneously determines the time between two successive inspection periods and the appropriate 
maintenance action for each component based on the observed degrees of deterioration. The proposed 
approach considers different criteria like system reliability and long-run expected cost of the system.  
 Shahanaghi et al. emphasized that reliability is one of the most important issues in the assessment 
of industrial equipment or products. Their paper focused on a continuous deterioration of two-unit 
series equipment whose failure can not be measured by the cost criterion. For these types of systems 
avoiding failure during the actual operation of the system is extremely important. Shahanaghi 
determined inspection periods and maintenance policy in a way that failure probability is limited to a 
pre-specified value and then optimum policy and inspection period are applied to minimize long-run 
cost per time unit [13].  
 The paper of El-Dancese deals with a system of n-independent repairable units that can be 
described by a homogeneous, continuous-time, discrete-state Markov process [5]. Transition 
probability matrix of the system in the form of a modified Kronecker sum of transition-rate matrices of 
its units was investigated in the paper. 
 Orcesi and Cremona proposed a new methodology in their paper [10] to help the bridge owner in 
scheduling its bridge maintenance strategies at the scale of the transportation network. The originality 
of shown approach is in determining performance indicators through the use of Markov chains which, 
on the other hand, makes it possible to determine an event-tree decision at each inspection time. 
 The aim of Zhao et al.’s paper [16] is to discuss the problem of modeling and optimizing condition-
based maintenance policies for a deteriorating system in the presence of covariates. The expected 
average of maintenance cost per time unit is calculated by the authors, and the optimal 
inspection/replacement policies are derived from the different maintenance unit costs. The different 
policies proposed by the authors were compared and the limits of each one are pointed out. 
 Dijoux presents a new reliability model for complex repairable systems, which combines a bathtub 
shaped ageing and imperfect maintenance. A bathtub shaped initial intensity function allows taking 
into account the burn-in period, the useful life and wearing out of the systems. Repair effect is 
expressed by the reduction of system virtual age, which depends on the ageing of the system. The 
main characteristics of the model are derived. The most important is that the maintenance efficiency 
allows an extension of the system’s useful life duration. A statistical analysis of the model and an 
application to real failure data are presented by [4]. 
 Smith discusses and evaluates preventive maintenance practices. It is discussed in his book [14] 
how the reliability-centered maintenance method can provide for an extremely cost-effective 
manufacturing. 
 By Zheng and Liu Markov chains are stochastic processes that can be parameterized by empirically 
estimating transition probabilities between discrete states in the observed systems. The main property 
of the Markov chain is that, given the present state, future states are independent of the past states 
[15]. 
 A new methodology for failure rate evaluation with influencing factors was proposed by Brissaud 
et al. [3]. This proposed methodology combines a quantitative part to integrate available data, with a 
qualitative analysis to compensate for a potential lack of feedback knowledge. 
 Bertolini et al. defined that the management of failure analysis has a strategic importance within an 
oil refinery from the organizational, engineering and economic points of view [1]. 
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 The theoretical bases of aircraft maintenance management can be studied in the book of Rohács 
and Simon [12]. Pokorádi describes stochastic modeling methods to investigate aircraft operations 
system with Markov matrix [11]. 
 This paper is aimed to show the possibilities of the use of Markov matrix in the case of stationary 
maintenance processes. A well-algorithmizable method for mathematical modeling of stationary 
stochastic industrial process will be presented. This modeling method can be used to estimate 
maintenance cost and the time of availability of the investigated manufacturing equipment. 
 The structure of this paper is as follows: Section 1 contains the applied literatures and the main 
goals of investigation. Section 2 presents the Markov-processes. Section 3 contains the maintenance 
processes and their stationary modeling. Section 4 shows a case study for maintenance management 
decision. A summation, conclusion and the extension of the topic in the future will be given in Section 
5. 
 
2. MARKOV PROCESSES 
 
A stochastic process η(t) whose development in the future is influenced by its development in the past 
only through its development in the present, that is, a stochastic process without after- effects, is called 
Markov-process. 
 The mathematically described random process η(t) is called a Markov-one if the equation of 
conditional probabilities 
 

  ( ) ( )nnnnnnnn XtXtPXtXtXtP ====== ++++ )()()()()( 111111 ηηηηη Κ      (1) 

 
proves to be true with the probability 1 for each t1 < … < tn < tn+1  and X1 ;X2; … ;Xi ;Xi+1    real 
number [8]. 
 If process η(t) during the study period can have an X value at any moment, it is called a 
continuous-time process. If η(t) can only have some value at certain moments, the process is called a 
discrete-time one. A random process is considered to be a discrete state space one, if the possible 
values of variance η(t) constitute a finite set or a count non-finite set. 
 A Markov-process can be characterized unambiguously by supplying the transition probabilities, 
and the distributions of leaving different states. If distribution of leaving different states is not of the 
exponential character, such a stochastic process is called a Semi-Markov one [2]. 
 Finite or count non-finite stochastic processes, that is, the discrete state space ones with no after-
effects, are called Markov-chain [2]. In this case, the value established in the equation (1) is called the 
transition probability: 
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The transition probability expresses that η(tn+1) = Xj , supposing that  η(tn) = Xi . 

 
1, +nn

ijP  marking above also shows that the transition probability is not only the function of the i-th 

beginning state and of the j-th next state, but also the function of tn time. In order to have a simpler 
marking, the following formula is used: 
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Having N number of states, Pij transition probabilities can be arranged in matrix. The 
 
  ])([)( tPt ijNxN =P                        (4) 

 
matrix is called the Markov-matrix (or the transition probability matrix) of the process. 
 Using the Markov-matrix, the change in time of the probability of staying in different states can be 
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determined by 
 

  )()()( tttt T pPp =∆+  ,                    (5) 
 
where PT is the transposed matrix of P. 
 If the one-step transition probabilities are not time-dependent, we call the Markov-process 
stationary. In this case we can state that 
 

  1, += nn
ijij PP  ,                        (6) 

 
or  
 
  ][ ijNxN P=P                          (7) 

 
as it does not depend on the value of n, and Pij means that the value of η(t) is probably transiting from 
Xi to Xj during the (tn ; tn+1) or ∆t time interval. 
 For the sake of further analyses, it is advisable for us to consider the case where after ∆t time 
period the value of η(t) will be the beginning one again. So the determination of varieties in the main 
diagonal of the matrix is carried out as follows: 
 

  ∑−=

≠
=

N
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j

ijii PP
1

1  ,                       (8) 

 
(As the total space means that the object of operation enters into a new state or it remains in the 
beginning state.) 
 In case of stationary processes, using the property of unit matrix E, you can set up the equation 
 

  )()()( tttt T EppPp ==∆+  ,                    (9) 
 
which can be transformed into the following formula: 
 

  0pEP =− ][ T  ,                       (10) 
 
where 0 is the zero vector. 
 
3 MAINTENANCE PROCESSES 
 
The operational process of engineering systems (which is the complex of events that happen to the 
system from its manufacturing to its discarding) is a random in time and in frequency succession of 
so-called states of operation. This process can be described with the so called operational chain, that 
is, a Markov-chain from the mathematical point of view (see Fig. 1). 

 
Fig.1 Operational Chain (Example) 

1 — Applicability of Equipment; 2 — Type A Failure’s Repair;  
3 — Type B Failure’s Repair. 

 
 When analyzing operational processes with the systems approach, the actual succession of the 
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single states of the equipment is no concern of ours. It is rather complicated to describe the whole 
operational process with an operational chain. In order to achieve a clearer picture it is advisable to 
describe the operational process as a directed graph. 
 Within the graph operation states are represented by the nodes of the graph, and transitions from 
one state to another are represented by the directed edges of the graph (for example, Fig. 3).  
Analyzing the operational chain or the operational graph, we assume that states are clearly defined, 
and transitions occur during zero time. 
 The staying of the object of the operation in different states can also be characterized by the vector 
of mean costs k, and vector of mean work expenditures m of the staying in states of the operation. 
Knowing the characteristics above we are able to determine expected values of the total operational 
cost KΣ and work expenditure MΣ. 
 For characterization of transitions from one state to another, we use their probability transition 
(failure or repair) rates. The limiting value  
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is called transition probability (in this study: λ  - failure and µ - repair) density. 
 Naturally, these transition probability densities βij can be arranged in matrix B analogously to 
equation (7) 
 
  ][ ijNxN β=B   ,                     (12) 

 
then equation (10) can be modified as: 
 

  0pEB =− ][ T  .                      (13) 
 
 Introducing the matrix 
 

  MEB =− ][ T  ,                      (14) 
 
the equation (13) can be modified as: 
 
  0Mp =  .                        (15) 
 
 During the solution of the system of equations (15) there is a problem, that the numerical 
algorithms provide (or can provide) the p = 0 trivial solution. It is obvious that the concern of 
investigation is to achieve a solution different from the trivial one. Because the aim of the author was 
to develop a well-algorithmizable method for this problem, the system of equations with N unknowns 
(15) is transformed into a system of equations with N+1 unknowns by equation 
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=
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of probability of total event space. Thus the system of equations has changed to  
 



Debreceni Műszaki Közlemények 2013/1 (HU ISSN 2060-6869) 

 42 

  























=













































Σ 1

1

011

1

1 1

Μ
Μ
ΜΜ

ΜΚ
ΛΛΛΛΛ

Μ
ΜΜ

Μ

Λ

P

P

P

N

M

 

.                   (17) 

 
 The solution of the system of linear equations is reached by any numerical algorithm will result in a 
solution of the system of equations (15) different from the trivial one. 
At this point a question emerges: when can an operational process be approximated as a stationary 
one? 
 The bathtub curves (see Fig. 2) are often used to present the failure rate in the function of time. The 
curve has three stages [4]: 
 
I.      The first stage shows decreasing failure rate, known as the early-life failures, where the system 

is adapting to the new situation.  
II.       The second stage is characterized by constant hazard, where the system performs its functions in 

optimal conditions. The initial intensity is constant during this stage.  
III.  During the third stage, also called the wear-out phase of the system, the intensity is increasing.  
 

 
Fig. 2. Bathtub Curve 

 
 During the second stage, the bathtub curve shows constant failure rate, therefore at this stage the 
operational–maintenance process can be approximated as a stationary one. We must admit that a few 
authors — for example, Smith in reference [14] — have criticized the bathtub curve. But their age-
reliability patterns contain linear, basically constant failure rate stages; in this case the failure and 
maintenance processes can be modeled as non-transient ones. Our investigation will model and study 
only these stationary operational stages. 
 
4 CASE STUDY 
 
During the operation of investigated manufacturing equipment four main types of failures can be 
experienced. These (Type A; B; D and E) failures occur more then 94 % of equipment outages. (The 
other ones will be modeled by Type C failures.) When Type B failures where repaired, the servicemen 
detect frequently that Type A failure will occur shortly, then Type A failure repair is carried out as 
well. During the repair of Type D and Type E failures a similar situation can occur. Maybe in these 
cases the other failure should be repaired too. Table 1 shows the main failure and repair data of 
investigated production line equipment (where MTBF means Mean Time Between Failures and MTR 
means Mean Time to Repair). 
 Modifying the repairing technology, MRT of Type A failure will be decreased from 7.08 hours 
approximately to 5.5 hours, and Mean Work Expenditure will decrease from 14.16 to ab. 11 man 
hours. At the same time the repairing cost of Type A failure is increased from 150.2 to around 190 
Euros. The task undertaken by the author was to forecast the total repair cost, work expenditure and 
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the potential gains of the application of the new technology. 
 

 
Fig. 3  Graph of the Investigated Maintenance Process 

1 — Equipment is Applicable; 2 — Type A Failure’s Repair; 
3 — Type B Failure’s Repair; 4 — Type C  Failures’ Repair; 
5 — Type D  Failure’s Repair; 6 — Type E Failure’s Repair 

 
Failures A-type B-type C-type D-type E-type 

MTBF  
τ [hour] 

1316.3 892.8 1339.4 1410.1 1396.4 

Failure rate 
λ [hour-1] 

7.60 10-4 1.12 10-3 7.47 10-4 7.91 10-4 7.61 10-4 

MTR τ 
[hour] 

7.08 9.63 2.14 8.21 7.62 

Repair rate 
 µ [hour-1] 

0.141 0.104 0.467 0.122 0.131 

Mean  
Repairing 
Cost [€] 

150.2 115.4 98.7 210.8 352.4 

Mean Work Expenditure 
[man-hour] 

14.16 14.45 5.35 24.63 17.5 

λij  

[hour-1] 
— 0.427 — 0.613 0.524 

 
Table 1 Main Data of Statistical Analysis 

 
 The statistical analysis of data has showed that the failure and repair rates are independent on the 
operating time of the investigated equipment. The data analysis suggests that the process is stationary 
and its Markov model can be described by matrix equation (15), matrix M  is the following: 
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where elements of the matrix are determined by Table 2. 
 To get a non-trivial solution of the system of equations (15), the method presented in Section 3 was 
used. 
 Knowing the cost of different repairs, the expected value of the total repairing cost is: 
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and the  expected value of the work expenditure is: 
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where: 
T — investigated time-interval; 
MTRi — Mean Time to i-th Repair  
ki — mean cost of the i-th repair; 
mi — mean work expenditure of the i-th repair. 
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Table 2 Coefficients of Matrix M  

 
 The non-vanishing solution of equation (17) by data of Table 1 is following probabilities of the 
staying in states: 
 

P1 = 0.973994 ; P2 = 0.011453 ; 
P3 = 0.002054 ; P4 = 0.001556 ; 
P5 = 0.005101 ; P6 = 0.005844 . 

 
 The expected total repairing cost of the present maintenance system for 10000 hours is: 
 
51996.0 Euros, 
 
and expected work expenditure is: 
 
4252.43 man hours 
 
 For forecasting of the total repair cost of the new technology the above calculation is completed by 
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the following modification: 
 
MTRB = 5.5 hours ;   kB = 190 €  and  mb = 11 man hours. 
 
Its results — probabilities of the staying in states — are 
 

P1 = 0.976496 ; P2 = 0.008920 ; 
P3 = 0.002059 ; P4 = 0.001560 ; 
P5 = 0.005114 ; P6 = 0.005859 . 

 
The expected total cost of modified maintenance system is: 
 
51830.7 Euros, 
 
and expected work expenditure is: 
 
3618.65 man hours. 
 
 From the results mentioned above, the following conclusions can be drawn (see Fig. 4): 
 
− the probability of staying in Type A failure’s repair state will decrease measurably (by 2.533 ‰); 
− the probabilities of staying in other failures’ repair state will increase slightly (by 0.004 ~ 0.015 

‰); 
 
 These conclusions should be taken into account during the organization of the new maintenance 
system management: 
 
− 10000 hours-related expected total repair cost will be reduced by 165.3 Euros (relatively: 3.178 

‰); 
− 10000 hours-related expected work expenditure will be decreased by 633.78 man hours (relatively: 

14.9 %), the follow-up work of the repairing team can become more flexible  (it is important to 
mention that the given repair can be delayed frequently due to other tasks of the servicemen) 

− the availability of the equipment will be increased by 5.5 ‰, which generates more profit by the  
improvement of the reliability and the productivity of the production line. 

 

 
Fig. 4. Comparing Probabilities of Staying in Repair States 

 
 These positive economic consequences should be compared with the installation cost of the new 
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repairing technology. It contains charges of new repairing equipment and cost of subsidiary failures 
and problems occurred during the adaptation to the new maintenance situation. (see Stage 1 of Bathtub 
Curve – Figure 2). These questions go beyond of this study. 
 
5.  CONCLUSIONS 
 
The paper showed a well-algorithmizable method developed by the author for mathematical modeling 
and investigation of stationary stochastic industrial processes. The presented modeling method can be 
used to estimate the applicability of equipment, maintenance cost and work expenditures of 
manufacturing systems. 
The general conclusion of this paper is that the stationary Markov model of operational processes can 
be used to investigate maintenance systems and processes. 
During prospective scientific research related to this field of mathematics and the science of 
engineering management, the author would like to develop 
 
− other models to investigate the maintenance processes of engineering systems;  
− methods to analyze the parametrical uncertainties of the model presented  above. 
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