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SQUARE PRODUCT OF THREE

INTEGERS IN SHORT INTERVALS

L. Hajdu∗and Á. Pintér∗∗

Abstract. In this paper we list all the integer triplets taken from an interval of

length ≤ 12, whose products are perfect squares.

1. Introduction

Let f and k be positive integers with f ≤ k. The sets of distinct integers
n1, . . . , nf ∈ [n + 1, . . . , n + k] with the property that there is a nontrivial way to
multiply them to obtain a perfect power, was investigated by Erdős and Turk [ET].
This question is related to the Erdős-Selfridge theorem (see [ES]), which states that
the product of two or more consecutive integers is never a perfect power, that is, if
f = k ≥ 2, then

(1)
f∏

i=1

ni = xm (x ∈ N, m ≥ 2)

has no solutions. Moreover, Erdős and Turk conjectured (cf. [ET]) that (1) has no
solutions with (k, f, m) = (4, 3, 2). This conjecture was verified by Tzanakis [T].

In this paper we list all the integer triplets (f = 3) taken from a short interval
(k ≤ 12), whose products are perfect squares.

2. Result

Now we formulate our result.

Theorem. Let (a, b, c) ∈ Z3 with a < b < c such that c−a = k−1 < 12. If abc 6= 0
is a perfect square, then the triplet (a, b, c) is one of the following:

k = 5: (−2,−1, 2), (2, 3, 6),
k = 6: (−4,−1, 1), (3, 6, 8), (5, 8, 10), (240, 243, 245),
k = 7: (−4,−2, 2), (−3,−1, 3), (2, 4, 8), (6, 8, 12), (48, 50, 54),
k = 8: (−4,−3, 3), (1, 2, 8), (2, 8, 9), (7, 8, 14), (21, 27, 28),
k = 9: (−6,−3, 2), (−4,−1, 4), (1, 4, 9), (2, 5, 10), (12, 15, 20), (24, 27, 32),

(242, 245, 250),
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k = 10: (−8,−2, 1), (−6,−2, 3), (−3,−2, 6), (3, 4, 12), (3, 9, 12), (6, 10, 15),
(18, 24, 27),

k = 11: (−9,−4, 1), (−9,−1, 1), (−8,−4, 2), (−8,−1, 2), (−5,−4, 5), (−5,−1, 5),
(−2,−1, 8), (2, 6, 12), (5, 12, 15), (8, 9, 18), (8, 16, 18), (10, 18, 20), (14, 21, 24),
(20, 24, 30), (40, 45, 50), (2880, 2888, 2890), (10082, 10086, 10092),

k = 12: (−9,−8, 2), (−9,−2, 2), (−8,−6, 3), (1, 3, 12), (7, 14, 18), (11, 18, 22),
(22, 24, 33), (44, 45, 55), (88, 98, 99), (693, 700, 704).

As a consequence of the theorem we obtain that the interval [44, 45, . . . , 55] is
the smallest one which contains two disjoint triplets of positive integers with the
relevant property: {44, 45, 55} and {48, 50, 54}.

3. Proof

To prove our theorem, we will reduce equation (1) to several elliptic equations. Re-
cently, Gebel, Pethő and Zimmer [GPZ], and independently Stroeker and Tzanakis
[ST] have developed an algorithm for resolving elliptic equations. Their method is
based on the approach of Zagier [Z], and on the recent estimates of linear forms
in elliptic logarithms, due to David [D]. The algorithm outlined in [GPZ] has been
implemented by Gebel in the program package SIMATH (cf. [SIM]), and we use
this program package to resolve our elliptic equations.

Proof of the Theorem. Let (a, b, c) ∈ Z3 be a triplet with the desired property, and
put x = a, u = b− a and v = c− a. To prove the Theorem we have to resolve the
system of elliptic equations

x(x− u)(x− v) = y2

with 0 < u < v < 12 in integers x, y. Using the results of Erdős and Selfridge [ES],
and Tzanakis [T], we may suppose that v ≥ 4, and we obtain 52 equations. By a
simple substitution we transform these elliptic equations into Weierstrass normal
form, and we can resolve them by the SIMATH. We obtained just the solutions
listed in our Theorem. �

We are grateful to the referee for his useful remarks and observations.
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