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a b s t r a c t

Computer simulations are often used to replace physical experiments for exploring the
complex relationships between input and output variables. We study the optimal design
problem for the prediction of a stationary Ornstein–Uhlenbeck sheet on a monotonic set
with respect to the integrated mean square prediction error criterion and the entropy
criterion. We show that there is a substantial difference between the shapes of optimal
designs for Ornstein–Uhlenbeck processes and sheets. In particular, we show that the
optimal prediction based on the integrated mean square prediction error does not
necessarily lead to space-filling designs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction 1

A common problem in spatial statistics is deciding how to choose a set of sample locations in order to predict a 2

random process in an optimal way. In the present paper we study the problem of optimal design for the prediction of an 3

Ornstein–Uhlenbeck (OU) sheet on a monotonic set with respect to the integrated mean square prediction error (IMSPE) 4

criterion and the entropy criterion. 5

We consider the stationary process 6

Y (s, t) = θ + ε(s, t) (1.1) 7

with the design points taken from a compact design space X = [a1, b1] × [a2, b2], where a1 < b1 and a2 < b2 and ε(s, t), 8

s, t ∈ R, is a stationary OU sheet, that is a zero-mean Gaussian process with covariance structure 9

E ε(s1, t1)ε(s2, t2) =
σ 2

4αβ
exp (−α|s1 − s2| − β|t1 − t2|) , (1.2) 10

where α > 0, β > 0,σ > 0. We remark that ε(s, t) can also be represented as 11

ε(s, t) =
σ

2
√

αβ
e−αs−βtW


e2αs, e2βt , 12

where W(s, t), s, t ∈ R, is a standard Brownian sheet (Baran et al., 2003; Baran and Sikolya, 2012). 13
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In order to apply the usual notation of spatial modelling (Kiseľák and Stehlík, 2008) we introduce σ := σ/(2
√

αβ) and1

instead of (1.2) we investigate2

E ε(s1, t1)ε(s2, t2) = σ 2 exp (−α|s1 − s2| − β|t1 − t2|) , (1.3)3

where σ is considered as a nuisance parameter.4

Further, we require that the shifted OU sheet (1.1) is measured at the points constituting a monotonic set. A monotonic5

set can be defined in an arbitrary Hilbert spaceH , with real or complex scalars. For x, y ∈ H , we denote by ⟨x, y⟩ the real part6

of the inner product. A set E ⊂ H×H is calledmonotonic (seeMinty (1962, 1963)) provided that for all (x1, y1), (x2, y2) ∈ E7

we have ⟨x1 − x2, y1 − y2⟩ ≥ 0. A practical example of such a set is provided by the measurements on isotherms of a8

stationary temperature field, with several applications in thermal slab modelling (see e.g. Babiak et al. (2005) or Koizumi9

and Jin (2012)). In this paper we consider the following version of a monotonic set:10

Condition D. The design points {(s1, t1), (s2, t2), . . . , (sn, tn)} ⊂ X, n ∈ N, are not overlapping (observations without11

repetitions); moreover, 0 < s1 < s2 < · · · < sn and 0 < t1 < t2 < · · · < tn hold.12

For the shifted OU sheet (1.1) observed at points satisfying Condition D, Baran and Stehlík (submitted for publication)13

derived the exact form of the Fisher information (matrices) corresponding to the trend parameter θ and to covariance14

parameters r = (α, β), and the authors investigated the problemofD-optimal designs for the estimation of these quantities.15

We derive the exact form of the IMSPE recently used in several papers (see e.g. Crary (2002) or Sacks et al. (1989)), and16

show that in contrast to the case for the OU process on a compact interval investigated by Baldi Antognini and Zagoraiou17

(2010), the equidistant design is usually not optimal. This is an important observation, and also consistent with the results18

of Pronzato and Müller (2012), since statistical folklore is that space-filling designs have superior properties when it comes19

to the prediction of emulator functions. We also investigate the properties of the optimal design with respect to the entropy20

criterion (Baldi Antognini and Zagoraiou, 2010; Shewry and Wynn, 1987).21

Observe that by condition Condition D, the results presented here are not applicable for space-filling designs. In the22

general case themain problem is the difficulty of finding the inverse of the covariancematrix of the observations. The authors23

have some preliminary results for regular grid designs, where the covariance matrix is the Kronecker product of two simple24

covariance matrices corresponding to the two spatial dimensions, and this special form allows finding a reasonable form25

of the inverse and calculating the objective function for the IMSPE criterion. However, the presentation of these results is26

beyond the space limitations of this work.27

2. Optimal design with respect to the IMSPE criterion28

Suppose we observe our process Y (s, t) at the design points {(s1, t1), (s2, t2), . . . , (sn, tn)} satisfying Condition D. The29

main aim of the kriging technique consists in predicting the output of the simulator on the experimental region, and for30

any untried location x = (x1, x2) ∈ X the estimation procedure is focused on the best linear unbiased estimator of Y (x)31

given byY (x) =θ + Q⊤(x)C−1(n, r)(Y− 1nθ), where Y = (Y (s1, t1), . . . , Y (sn, tn))⊤ is the vector of observations, 1n is the32

column vector with entries 1 of length n, C(n, r) is the covariance matrix of Y, Q(x) is the vector of correlations between33

Y (x) and Y defined by Q(x) = (ϱ(x, s1, t1), . . . , ϱ(x, sn, tn))⊤ with ϱ(x, si, ti) := exp (−α|x1 − si| − β|x2 − ti|) andθ is34

the generalized least squares estimator of θ , that isθ =

1⊤
n C

−1(n, r)1n
−1 1⊤

n C
−1(n, r)Y. Usually, correlation parameters35

α, β are unknown and will be estimated by the maximum likelihood method. Thus, the kriging predictor is obtained by36

substituting the maximum likelihood estimators (MLE) (α,β) for (α, β) and in such a caseY (x) is called the MLE–empirical37

best linear unbiased predictor (Santner et al., 2003).38

Thus natural criteria will minimize suitable functionals of the mean squared prediction error (MSPE) given by39

MSPE
Y (x)


:= σ 2


1 −


1, Q⊤(x)

  0 1⊤

n

1n C(n, r)

−1 
1, Q⊤(x)

⊤
. (2.1)40

Since the prediction accuracy is often related to the entire prediction region X, the design criterion IMSPE is given by41

IMSPE
Y := σ−2


X

MSPE
Y (x)


dx.42

Without loss of generality, we can assume that the design space X = [0, 1]2. Therefore, as extrapolative prediction is not43

advisable in kriging, we can set t1 = s1 = 0 and tn = sn = 1.44

Theorem 2.1. In our set-up,45

MSPE
Y (x)


= σ 2


1 − ϱ(x, sn, tn)2 −

n−1
i=1

(ϱ(x, si, ti) − ϱ(x, si+1, ti+1)qi)2

1 − q2i
46

+


1 +

n−1
i=1

1 − qi
1 + qi

−1 
1 − ϱ(x, sn, tn) −

n−1
i=1

ϱ(x, si, ti) − ϱ(x, si+1, ti+1)qi
1 + qi

2
 ,47
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Fig. 1. IMSPE corresponding to the optimal design for the prediction and Fisher information on θ as functions of correlation parameters (α, β) for n = 3.

where qi := exp(−αdi − βδi) with di := si+1 − si and δi := ti+1 − ti, i = 1, 2, . . . , n − 1. Further, 1

IMSPE
Y = 1 − An +


1 +

n−1
i=1

1 − qi
1 + qi

−1

Bn, (2.2) 2

where 3

An = R1,1 +

n−1
i=1

Ri,iq2i − 2Ri+1,iqi + Ri+1,i+1

1 − q2i
, (2.3) 4

Bn = 1 − 2ωn + Rn,n +

n−1
i=1


Ri,i − 2Ri+1,iqi + Ri+1,i+1q2i

(1 + qi)2
+ 2

(Rn,i − ωi) − (Rn,i+1 − ωi+1)qi
1 + qi


+ 2

n−1
i=2

i−1
j=1

Ri,j − Ri+1,jqi − Ri,j+1qj + Ri+1,j+1qiqj
(1 + qi)(1 + qj)

, (2.4) 5

with 6

ωi =
1

αβ


2 − e−α(d1+···+di−1) − e−α(di+···+dn−1)

 
2 − e−β(δ1+···+δi−1) − e−β(δi+···+δn−1)


, (2.5) 7

Ri,j =


1
2α


2e−α(dj+···+di−1) − e−α(2d1+···+2dj−1+dj+···+di−1) − e−α(dj+···+di−1+2di+···+2dn−1)


+ (dj + · · · + di−1)e−α(dj+···+di−1)


×


1
2β


2e−β(δj+···+δi−1) − e−β(2δ1+···+2δj−1+δj+···+δi−1) − e−β(δj+···+δi−1+2δi+···+2δn−1)


+ (δj + · · · + δi−1)e−β(δj+···+δi−1)


, i, j ∈ N, 1 ≤ j ≤ i ≤ n. (2.6) 8

Example 2.2. Consider a three-point design, that is n = 3, s1 = t1 = 0, s2 := d, t2 := δ, s3 = t3 = 1. For this particular 9

design we obviously have d1 = d, d2 = 1 − d, δ1 = δ, δ2 = 1 − δ. By analysing the partial derivatives of IMSPE
Y one 10

can easily show that the minimum of IMSPE is reached at d = 1/2, δ = 1/2, so for n = 3 the equidistant design is optimal. 11

In Fig. 1, IMSPE
Y corresponding to the optimal design and the Fisher information on the shift parameter θ are plotted 12

as functions of correlation parameters (α, β). Having a look at the figures for IMSPE and Mθ one can observe that there is
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Fig. 2. The values of d∗

1, d
∗

2 and δ∗

1 , δ
∗

2 giving the optimum of IMSPE as functions of correlation parameters (α, β) for n = 5.

a substantial difference between the variations of the estimation and the prediction criterion with respect to correlation1

parameters (α, β). The equilateral lines for Mθ differ considerably from equilateral curves for IMSPE, which shows the2

different level of sensitivity of these criteria to the misspecification of correlation parameters. For more information on3

the sensitivity of optimal design criteria with respect to parameter misspecification, see e.g. Stehlík (2004).4

Theorem 2.3. IMSPE given by (2.2) is symmetric in the sense that the interchange of pairs of distances (di, δi) and (dn−i, δn−i),5

i = 1, 2, . . . , n − 1, does not change the value of IMSPE
Y.6

Theorem 2.3 gives us some idea of the behaviour of the optimal design with respect to the IMSPE criterion.7

Corollary 2.4. The optimal designwith respect to the IMSPE criterion is symmetric, that is if the optimum of IMSPE
Y is reached8

at (d∗

1, d
∗

2, . . . , d
∗

n−1, δ
∗

1 , δ
∗

2 , . . . , δ
∗

n−1) then d∗

i = d∗

n−i and δ∗

i = δ∗

n−i, i = 1, 2, . . . , n.9

Example 2.5. Consider a five-point design, that is n = 5 and s1 = t1 = 0, s5 = t5 = 1. By Corollary 2.4, for the optimal10

design we have d∗

1 = d∗

4, d
∗

2 = d∗

3 and δ∗

1 = δ∗

4 , δ
∗

2 = δ∗

3 . In Fig. 2 the values of d∗

1, d
∗

2 and δ∗

1 , δ
∗

2 are plotted as functions of11

correlation parameters α and β both varying between 0 and 3. We remark that by symmetry, d∗

1 + d∗

2 = δ∗

1 + δ∗

2 = 1/2.12

3. The optimal information gain for a shifted OU sheet13

Another approach to optimal design is to find locations which maximize the amount of information obtained. Following14

the ideas of Shewry and Wynn (1987), one has to maximize the entropy Ent(Y) of the observations corresponding to the15

chosen design, which in the Gaussian case form an n-dimensional normal vector with covariance matrix σ 2 C(n, r), that is16

Ent(Y) =
n
2


1 + ln(2πσ 2)


+

1
2
ln det C(n, r).17

Theorem 3.1. Under the conditions of Theorem 2.1, entropy Ent(Y) has the form18

Ent(Y) =
n
2


1 + ln(2πσ 2)


+

1
2

n−1
i=1

ln

1 − q2i


. (3.1)19

For any sample size, the equidistant design when values αdi+βδi, i = 1, 2, . . . , n−1 (and in this way qi), are constant is optimal20

with respect to the entropy criterion.21

Remark 3.2. Observe that the equispaced monotonic design d1 = d2 = · · · dn, δ1 = δ2 = · · · = δn clearly optimizes the22

entropy criterion.23

Remark 3.3. If the design space X is the unit square then the optimal value of the entropy equals24

n
2


1 + ln(2πσ 2)


+

n − 1
2

ln (1 − exp (−(α + β)/(n − 1))) → −∞ as n → ∞.25
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Table 1
IMSPE values corresponding to the optimal and to the equispaced monotonic design and relative efficiency of the equispaced monotonic design.

n α = 0.5, β = 0.8 α = 1, β = 1 α = 1, β = 10 α = 2.5, β = 1.5 α = 3, β = 3

4
Optimal 0.2602 0.4008 0.9266 0.6549 0.8487
Equispaced 0.2693 0.4010 0.9326 0.6598 0.8493
Rel. eff. (%) 96.62 99.95 99.36 99.26 99.93

5
Optimal 0.2309 0.3699 0.8290 0.5981 0.7866
Equispaced 0.2473 0.3700 0.8409 0.6065 0.7873
Rel. eff. (%) 93.37 99.97 98.58 98.62 99.91

6
Optimal 0.2130 0.3529 0.7593 0.5640 0.7502
Equispaced 0.2351 0.3530 0.7766 0.5763 0.7509
Rel. eff. (%) 90.60 99.97 97.77 97.87 99.91

7
Optimal 0.2007 0.3423 0.7066 0.5241 0.7269
Equispaced 0.2274 0.3424 0.7288 0.5571 0.7275
Rel. eff. (%) 88.26 99.97 96.95 94.08 99.92

8
Optimal 0.1692 0.3351 0.6655 0.5007 0.7111
Equispaced 0.2222 0.3352 0.6918 0.5441 0.7115
Rel. eff. (%) 76.15 99.97 96.20 92.02 99.94

9
Optimal 0.1620 0.3300 0.6325 0.4858 0.6997
Equispaced 0.2184 0.3301 0.6626 0.5348 0.7001
Rel. eff. (%) 74.18 99.97 95.46 90.84 99.94

10
Optimal 0.1570 0.3262 0.6057 0.4756 0.6912
Equispaced 0.2155 0.3262 0.6390 0.5278 0.6915
Rel. eff. (%) 72.87 99.98 94.79 90.11 99.95

Table 2
Optimal four-point designswith respect to the IMSPE criterion.

α = β = 0.5 α = β = 1 α = β = 1.5

d1 = δ1 0.3372 0.3401 0.3421
d2 = δ2 0.3256 0.3199 0.3158
d3 = δ3 0.3372 0.3401 0.3421

4. Numerical experiments 1

4.1. Comparison of the IMSPE criterion and the entropy criterion 2

In order to compare the performances of the two criteria we compare the optimal values of IMSPE(Y ) calculated using 3

the fmincon function of Matlab to its values corresponding to the equispaced monotonic design which is optimal for the 4

entropy criterion. In Table 1 the values of IMSPE are given for both designs together with the relative efficiency of the 5

equispaced monotonic design with respect to the optimal one for various sample sizes and combinations of parameters 6

(α, β). Unfortunately, larger sample sizes cause technical problems in optimization, since for n design points one has to find 7

numerically the constrained minimum of functions with 2n − 2 parameters. 8

Observe that for symmetric models when α = β , the efficiency of the equispaced monotonic design is nearly 100%, 9

while for different covariance parameters it reduces significantly. However, even in this special case the optimal designs 10

with respect to the IMSPE and entropy criteria do not coincide. As an example, consider Table 2 where distances di and δi 11

corresponding to the optimal four-point design are given for three different values of α = β . Obviously, in all three cases we 12

have d1 + δ1 ≠ d2 + δ2, so according to Theorem 3.1 these designs cannot be optimal with respect to the entropy criterion. 13

4.2. IMSPE on a monotonic set and on a regular grid 14

In Theorem 2.1, the exact form of IMSPE is derived only for designs satisfying Condition D. However, one might ask what 15

is the relative efficiency of the optimal value of IMSPE on monotonic sets containing n = m2 design points compared to the 16

IMSPE of a regular grid with the same number of points. Table 3 gives the optimal values of IMSPE onmonotonic sets, IMSPE 17

values for regular designs and the relative efficiencies of the optimal IMSPE values on monotonic sets for different sample 18

sizes and combinations of parameters (α, β). Observe, that for four points the optimal monotonic design gives much better 19

IMSPE values than the regular grid and for α = β = 3 the relative efficiency is slightly above 100% even in the case n = 9. 20

5. Conclusion 21

We derive the exact form of the IMSPE for an OU sheet on a monotonic set. We show that the optimal design for the 22

prediction based on IMSPE may differ substantially from the equidistant one. This is in contrast both to the optimal design 23
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Table 3
IMSPE values corresponding to the optimal monotonic and to the regular grid design and relative efficiency of the optimal monotonic design.

n α = 0.5, β = 0.8 α = 1, β = 1 α = 1, β = 10 α = 2.5, β = 1.5 α = 3, β = 3

4
Monotonic 0.2602 0.4008 0.9266 0.6549 0.8487
Regular 0.3580 0.5389 1.1449 0.8370 1.0094
Rel. eff. (%) 137.59 134.46 123.56 127.81 118.93

9
Monotonic 0.1620 0.3300 0.6325 0.4858 0.6997
Regular 0.1527 0.3018 0.5762 0.4850 0.7011
Rel. eff. (%) 94.26 91.45 91.10 99.84 100.20

for estimation on amonotonic set (Baran and Stehlík, submitted for publication) and to the optimal design for the prediction1

of the OU process on a compact interval investigated by Baldi Antognini and Zagoraiou (2010). We also investigate the2

properties of the optimal design with respect to the entropy criterion, where constraining sample points from a rectangle3

to a monotonic set, as expected, decreases the entropy of the Gaussian field. Simulations illustrate selected cases of optimal4

designs for small number of sampling locations. Since the above discussed designs depend on the values of the correlation5

parameters, the optimal designs obtained are only locally optimal. We briefly study the dependence of the designs obtained6

on these parameters, too. Such knowledge may be crucial for an experimenter for increasing the efficiency of a design in a7

practical set-up.8
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Appendix16

A.1. Proof of Theorem 2.117

To shorten our formulae, in what follows instead of ϱ(x, si, ti) we are using simply ϱi, i = 1, 2, . . . , n. Consider first18

MSPE
Y (x)


given by (2.1). Short matrix algebraic calculations show that19 

0 1⊤

n

1n C(n, r)

−1

=


0 0⊤

n

0n C−1(n, r)


−

1⊤

n C
−1(n, r)1n

−1

 1 −

C−1(n, r)1n

⊤
−C−1(n, r)1n C−1(n, r)1n


C−1(n, r)1n

⊤
 ,20

and according to the results of Baran and Stehlík (submitted for publication) we have 1⊤
n C

−1(n, r)1n = 1 +
n−1

i=1
1−qi
1+qi

. We21

remark that 1⊤
n C

−1(n, r)1n is the Fisher information on θ based on Y. In this way, we obtain22

MSPE
Y (x)


= σ 2


1 − Q⊤(x)C−1(n, r)Q(x) +


1⊤

n C
−1(n, r)1n

−1 
1 − Q⊤(x)C−1(n, r)1n

2
23

= σ 2


1 +

ϱ2
1 − 2ϱ1ϱ2q1

q21 − 1
+

ϱ2
n

q2n−1 − 1
−

n−1
i=2


2ϱiϱi+1qi
q2i − 1

+
ϱ2
i (1 − q2i q

2
i−1)

(q2i − 1)(q2i−1 − 1)


24

−


1 +

n−1
i=1

1 − qi
1 + qi

−1

25

×


1 +

ϱ1 − (ϱ1 + ϱ2)q1
q21 − 1

+
ϱn

q2n−1 − 1
−

n−1
i=2


(ϱi + ϱi+1)qi

q2i − 1
+

ϱi(1 − q2i q
2
i−1)

(q2i − 1)(q2i−1 − 1)

2
26

= σ 2

1 − ϱ2
n −

n−1
i=1

(ϱi − ϱi+1qi)2

1 − q2i
+


1 +

n−1
i=1

1 − qi
1 + qi

−1 
1 − ϱn −

n−1
i=1

ϱi − ϱi+1qi
1 + qi

2
 .27

Further, according to the definition of the IMSPE criterion, we can write28

IMSPE
Y = 1 − An +


1 +

n−1
i=1

1 − qi
1 + qi

−1

Bn,29
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where 1

An :=


X

Q⊤(x)C−1(n, r)Q(x)dx = tr

C−1(n, r)R


, 2

Bn := 1 − 2 1⊤

n C
−1(n, r)W + 1⊤

n C
−1(n, r)RC−1(n, r)1n, 3

with 4

W = (ω1, . . . , ωn)
⊤

:=


X

Q(x)dx and R =

Ri,j


:=


X

Q(x)Q⊤(x)dx. 5

Obviously, 6

ωi =
1

αβ


2 − e−αsi − e−α(1−si)

 
2 − e−βti − e−β(1−ti)


7

=
1

αβ


2 − e−α(d1+···+di−1) − e−α(di+···+dn−1)

 
2 − e−β(δ1+···+δi−1) − e−β(δi+···+δn−1)


, 8

Ri,j =


1
2α


2e−α|si−sj| − e−α(si+sj) − e−α(2−si−sj)


+ |si − sj|e−α|si−sj|


9

×


1
2β


2e−β|ti−tj| − e−β(ti+tj) − e−β(2−ti−tj)


+ |ti − tj|e−β|ti−tj|


10

=


1
2α


2e−α(di∧j+···+di∨j−1) − e−α(2d1+···+2di∧j−1+di∧j+···+di∨j−1) − e−α(di∧j+···+di∨j−1+2di∨j+···+2dn−1)


11

+ (di∧j + · · · + di∨j−1)e−α(di∧j+···+di∨j−1)


12

×


1
2β


2e−β(δi∧j+···+δi∨j−1) − e−β(2δ1+···+2δi∧j−1+δi∧j+···+δi∨j−1) − e−β(δi∧j+···+δi∨j−1+2δi∨j+···+2δn−1)


13

+ (δi∧j + · · · + δi∨j−1)e−β(δi∧j+···+δi∨j−1)


, 14

where i ∧ j := min{i, j}, i ∨ j := max{i, j}, i, j ∈ N, and the empty sum is defined to be zero. In this way, we obtain 15

An = Rn,n +

n−1
i=1

Ri,i − 2Ri+1,iqi + Ri+1,i+1q2i
1 − q2i

= R1,1 +

n−1
i=1

Ri,iq2i − 2Ri+1,iqi + Ri+1,i+1

1 − q2i
, 16

Bn = 1 − 2ωn − 2
n−1
i=1

ωi − ωi+1qi
1 + qi

+ Rn,n

+ 2
n−1
i=1

Rn,i − Rn,i+1qi
1 + qi

+

n−1
i=1

n−1
j=1

Ri,j − Ri+1,jqi − Ri,j+1qj + Ri+1,j+1qiqj
(1 + qi)(1 + qj)

= 1 − 2ωn + Rn,n +

n−1
i=1


Ri,i − 2Ri+1,iqi + Ri+1,i+1q2i

(1 + qi)2
+ 2

(Rn,i − ωi) − (Rn,i+1 − ωi+1)qi
1 + qi


+ 2

n−1
i=2

i−1
j=1

Ri,j − Ri+1,jqi − Ri,j+1qj + Ri+1,j+1qiqj
(1 + qi)(1 + qj)

. � 17

A.2. Proof of Theorem 2.3 18

Letdi := dn−i,δi := δn−i,qi := exp

−αdi − βδi , i = 1, 2, . . . , n − 1, and denote byωk andRk,ℓ the values calculated 19

from (2.5) and (2.6), respectively, using distances (di,δi), i = 1, 2, . . . , n − 1. Further, let qi, ωk and Rk,ℓ denote the 20

corresponding quantities calculated from the original distances (di, δi), i = 1, 2, . . . , n − 1. It is easy to see that 21

qi = qn−i, i = 1, 2, . . . , n − 1, and ωk = ωn−k+1, Rk,ℓ = Rn−k+1,n−ℓ+1, k, ℓ = 1, 2, . . . , n, (A.1) 22

and in this way we obtain 23

n−1
i=1

1 −qi
1 +qi =

n−1
i=1

1 − qi
1 + qi

. 24
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Now, denote byAn andBn the values calculated from (2.3) and (2.4), respectively, using distances (di,δi), i = 1, 2, . . . , n−1.1

Then with the help of (A.1), after straightforward but tedious calculations one can show thatAn = An andBn = Bn, which2

completes the proof. �3

A.3. Proof of Theorem 3.14

According to the results of Baran and Stehlík (submitted for publication),5

C(n, r) =



1 q1 q1q2 q1q2q3 · · · · · ·

n−1
i=1

qi

q1 1 q2 q2q3 · · · · · ·

n−1
i=2

qi

q1q2 q2 1 q3 · · · · · ·

n−1
i=3

qi

q1q2q3 q2q3 q3 1 · · · · · ·
...

...
...

...
...

. . .
...

...
...

...
...

. . . qn−1
n−1
i=1

qi
n−1
i=2

qi
n−1
i=3

qi · · · · · · qn−1 1



.6

Hence, one can use the same type of decomposition as Baldi Antognini and Zagoraiou (2010, Lemma 3.1), that is7

C(n, r) = LDL⊤,8

where L is a lower triangular matrix with entries 1 in its main diagonal and D is a diagonal matrix where in the diagonal we9

have

1, 1 − q21, 1 − q22, . . . , 1 − q2n−1


. In this way10

det C(n, r) = detD =

n−1
i=1

(1 − q2i ),11

which proves (3.1).12

In order to find the optimal design one has to find the constrained maximum of13

F (q1, q2, . . . , qn−1) :=

n−1
i=1

ln

1 − q2i


under condition

n−1
i=1

ln qi = −α − β.14

By analysing the first partial derivatives and the Hessian of the Lagrange function15

Λ (q1, q2, . . . , qn−1; λ) :=

n−1
i=1

ln

1 − q2i


+ λ


n−1
i=1

ln qi + α + β


16

one can easily see that the maximum is reached when q1 = q2 = · · · = qn−1, which completes the proof. �17
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