
AN ALGORITHM USING WALSH TRANSFORMATION
FOR COMPRESSING TYPESET DOCUMENTS

Attila Fazekas and András Hajdu
fattila@math.klte.hu hajdua@math.klte.hu

Lajos Kossuth University
4010, Debrecen PO Box 12, Hungary

Dedicated to L. Hajdu on the occasion of his 30th birthday.

Abstract. In this paper the authors present an algorithm which can be used for
compressing text documents, principally. The algorithm allows some loss of infor-
mation, but the original digital image is compressed in a rather efficient way, so the
result compressed data structure is suitable to be transmitted through some kind of
telecommunication channel. The original document is assumed not to contain sophis-
ticated typographical details, but text, and some simple graphics. The compression
algorithm tries to recognize the text parts of the document and the result of a char-
acter recognition process is stored, instead of the graphic representation of the text.
This character recognition part is based on Walsh transformation. The algorithm
was tested in several cases, and proved itself to be pretty efficient and reliable for
simple documents.

Keywords. Image data compression, optical character recognition, Walsh transfor-
mation

AMS Subject Classification. 68U10 Image Processing

1. INTRODUCTION

One of the basic problems in digital image processing is to use minimal memory to store
the data structure which represents the digital image. An algorithm is called compressive
if it assigns a data structure P ′ to the original digital image P so that less memory is
required to store P ′ than P .

Several compressive algorithms are known which are based on different methods. Be-
side the ordinal data compressors, when we do not care what sort of information the
data structure represents, there are some algorithms which were developed especially for
compressing digital images (or a special type of digital images).

The efficiency of the compression is usually defined by the value |P |
|P ′| , where | P | is

the size of the data structure P . An algorithm is more efficient if the compressed data
structure reserves less memory than the original image.

In our terminology, the best algorithm is a not necessarily unique one which gives
the most efficient compression for a given digital image. Obviously, it is not sure that the
best algorithm remains the most efficient one if we consider another image. It is extremely
difficult to find out which compressive algorithm is the best for the digital images we are
about to process. The authors in the literature propose several algorithms according to
the characteristics of the digital images. For example, an algorithm for compressing line
drawings can be found in [3], or if you are looking for a survey on compression algorithms,
see [2].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/160981514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A possible way to enhance the efficiency of the compression is to allow information loss.
A good example for this kind of compression is JPEG. We can define some distance function
between the original and the decompressed digital images to measure the information loss
of the compression. For binary images we can obtain a very simple distance function by
summing the pixel-to-pixel differences. In this case the maximal distance value appears
between the digital image and its inverse. This example illustrates well that information
loss should be separated from visual information loss. Intuitively, the latter would reflect
the distortion of the visual information.

In this paper we present an information loss compressive algorithm which can be
applied mainly to text documents. During the compression our main purpose is to preserve
the visual information about the document which is the most important for a human
reviewer.

This algorithm can be used successfully in practice, when the main goal is to transmit
the compressed document through some telecommunication channel. The original digital
images are supposed to contain basically text information, which is recorded in a typo-
graphically fixed form without using sophisticated structures. For example, fax documents
usually have these properties.

The theoretical scheme of the algorithm can be seen in Figure 1.1.

������
���	
�
�����

Figure 1.1. Theoretical scheme of the algorithm

A special segmentation algorithm divides the original binary image into smaller ones, and
these smaller segments are stored in a chained list. These segments are actually rectangles,
and beside the image information, the coordinates of the upper left pixel and the size of the
rectangle are also stored for every segment. The detailed description of this segmentation
algorithm can be found in Chapter 2. If we know the original image size then the original
image can be restored from this data structure with some information loss.

During the processing of the chained list we judge whether a given segment contains
text information (letter, number, etc.), or a graphic part of the document. The analysis
of the stored image sizes helps us to make this decision: if the segment size is close to the
average segment size then we consider it as a character.

2

We apply a standard graphics compressor algorithm to those elements of the list
which contain graphic parts with high probability. The binary images which contain text
information, are recognized by a character recognition program. Our character recognition
method is described in Chapter 3. If the recognition is successful then we replace the binary
image with its character code in the chained list. If the recognition is not successful then
we deal with that segment as if it contained a graphic part of the document (and apply
the above explained compression algorithm to it). You can find more about character
recognition in [4].

This chained list is the actual compressed data structure, and we obviously lose infor-
mation, since the character attributes disappear during the character recognition step.

The binary image is restored (usually with some information loss) from the compressed
data structure in the following way. First we create an empty binary image (in background
color) with the size of the original one. The size of the original image can be stored in the
head of the list, or can be regarded as fixed. The elements of the list are reconstructed by
sequently processing the disjoint parts of the image. If an element is a compressed graphic
detail then according to its coordinates it is restored by decompressing. If the element is
a recognized symbol then according to the coordinates and size of its storing rectangle,
we put a character to the correct position with the given size from a character set. If this
character description corresponds to the most often used font style of the documents then
the quality of the reconstruction can be enhanced.

Chapter 4 contains the result of our experiments, where we tried to use a character
set applied commonly.

2. SEGMENTATION

As we mentioned in the introduction, the first step is to run a segmentation algorithm on
the digital image we would like to compress. Our purpose is to determine minimal storing
rectangles to those subsets of the image foreground which can be separated by horizontal
and vertical lines. The determination of such a rectangle means that we calculate its
size and the coordinates of its upper left pixel. Sometimes we will refer to these storing
rectangles as segments. It is important to note that it is not the connected foreground
components that our segmentation procedure results. The main reason why we choose this
type of segmentation method is that we would like to manage ligature appearances in text
which depend on the applied character set. In these situations the recognition is obviously
unsuccessful, as the picture of the letters change drastically, see Figure 2.2, where a ligature
”fi” appears in the Hungarian word ”figyelő” (observer). Our algorithm is preconditioned
for this phenomenon, and it can be trained to recognize ligatures. In our experiments
beside the ligature-free character sets OCR-A and OCR-B (which were composed for optical
character recognition) we also used a set which allows ligatures.

Our segmentation algorithm can be made parallel easily, and the whole procedure can
be performed as an alternating recursive sequence of horizontal and vertical segmentation
steps. The horizontal segmentation steps are followed by vertical segmentation steps and
vice versa. With these steps each of the existing segments is divided into smaller segments.
The procedure stops if the number of the segments remains the same during a segmentation

3

step. The following description explains briefly in meta language format the operation of
the horizontal segmentation algorithm. The procedure CutPicture defines a new segment
whose first row will be the row under SY and last row will be the row above EY. The current
element of the list will describe this new segment, so its record fields are changed according
to this modification. The new element of the list will store the information about that
part of the image which is not processed yet.

Type SP=^Segment;
Segment=Record Of

X,Y:Word; {*Upper left pixel coordinates*}
LX,LY:Word; {*Size of the segment*}
Code:Byte; {*Code of the recognized character*}

Picture:Pointer; {*The address of the segment*}
Next:SP; {*Next element of the chained list*}

End;
.
.
.

Function HSegmentation(Var Head:SP):Boolean; {*True if a new segment is defined*}
Var NewHead:SP; {*New segment*}
Var SY,EY:Word; {*Beginning and end of the segment*}
Begin
SY:=NextEmptyLine;
EY:=NextEmptyLine;
If (SY=Head^.Y) And (EY=Head^.Y+Head^.LY-1) Then

HSegmentation:=False; {*Image can not be segmented any more*}
Exit

End;
While (EY-SY<>1) Do Begin {*Ignoring pairs of empty lines*}

SY:=EY;
EY:=NextEmptyLine

End;
New(NewHead); {*Creating a new element in the list*}
CutPicture(Head,NewHead,SY,EY); {*Current segment is defined by SY,EY*}
NewHead^.Next:=Head^.Next;
Head^.Next:=NewHead;
Head:=NewHead;
HSegmentation:=HSegmentation(Head) Or True {*Processing the image part remained*}

End;

Figure 2.1. Description of the segmentation algorithm in meta language format

Horizontal segmentation step: We have a pixel running from left to right, starting from
the upper left corner of every segment we already have. If we find an object (foreground)
point in the given row then we go down one pixel and start to run a pixel from the beginning
of this row. We go on with this procedure till the running pixel reaches the right side of
the segment (we find a row which does not contain object points). In this case we obtain a
new segment. The top row of the new segment will be the top row of the original segment
which contains an object point. The bottom row of the new segment will be the bottom
row of the original segment which is already processed and contains an object point. After
defining the new segment, we go on with processing the original segment, starting from
that row which did not contain object points.

Vertical segmentation step: The vertical segmentation procedure is analogous to the
horizontal one, but here the pixel runs from top to bottom, starting from the upper left
corner of a segment. We go right one pixel till a column is found which does not contain
object points. In this case a new segment is defined.

In the first step of the segmentation procedure we consider the whole original binary
image as the initial segment, and first a horizontal segmentation is performed. The seg-
mentation procedure stops if during a horizontal or vertical segmentation step we do not

4

find a row or a column which does not contain an object point – in other words, new
segments cannot be defined.

The steps of the above described segmentation algorithm can be seen in the following
figure, where the segments are represented by rectangles. The result of the first (horizontal)
step is a text line if we assume that the original binary image is a text document.

�� ��
Figure 2.2. The result of the segmentation after the second and fourth steps

It is worth noticing that the top of the line is determined by the highest character (”f”), and
the bottom is determined by the lowest character (”g”). The second (vertical) segmentation
procedure divides the text line into characters, but the rectangles that store the characters
contain relatively large background components which can be eliminated with the following
(horizontal) segmentation step. The number of the segmentation steps which are necessary
to segment a graphic part of the document depends on the complexity of the graphics.

The segmentation of the accented characters is an interesting and difficult procedure.
In the case of English text after three segmentation steps (horizontal – vertical – horizon-
tal) the storing rectangles cannot be reduced any more, while in the case of Hungarian
text which contains accented characters, we have the same situation only after the fourth
segmentation step. Figure 2.2 illustrates this case as well, where the segmentation of the
Hungarian accented character ”ő” is performed in four steps. The reconstruction of an
accented character is quite difficult, since the accent is segmented separately. It does not
mean a problem in our algorithm, but it turns to be crucial, when the recognition of the
character is important. The recognition can be performed by analyzing the placement of
the segments with small size. For example, it can be useful to examine if a vowel takes
place under a segment with small size.

The segments which are obtained during a segmentation step are organized into a
chained list according to their creation in the recursive segmentation procedure. An ele-
ment of this list contains the image information of the given segment (as a binary image),
the coordinates of the upper left pixel, and the size of the segment. A pointer is also
included which points to the following element of the list.

3. COMPRESSION AND CHARACTER RECOGNITION

In our algorithm we use two basically different compression methods. The graphic parts of
the document are compressed by an information preserving compression program, while the
text information (letters, numbers, etc.) is recognized and the characters are encoded with
their code from a character map which obviously means a more efficient, but information
loss compression.

Processing an element of the chained list, according to the average size of the stored
binary images it can be decided whether the given element stores text information (charac-
ter) or a graphic part. If it is a character according to its size, but the character recognition
is not successful then we consider this segment as a graphic part and compress it that way.

5

3.1. The Walsh transformation

We use the Walsh transformation in our character recognition process. The Walsh trans-
formation W (u, v) is a separable and symmetric one which has the following form in 2D:

W (u, v) =
N−1∑
x=0

N−1∑
y=0

f(x, y) g(x, y, u, v),

where f(x, y) is the intensity of the pixel with the coordinates (x, y) in the original binary
image. The size of the image f is N ×N, and u, v = 0, . . . , N − 1, thus we compute N2

Walsh transforms altogether that we can organize into an N2 dimensional feature vector:

(W (0, 0), W (0, 1), W (0, 2), . . . , W (0, N − 1), W (1, 0), W (1, 1), . . . , W (N − 1, N − 1)).

Function g is the so called kernel function and has the following form:

g(x, y, u, v) =
1
N

n−1∏

i=0

(−1)bi(x)bn−i−1(u)+bi(y)bn−i−1(v),

where bi(x) is the ith bit in the binary expansion of x (so it is equal to 0 or 1), and
N = 2n. A more detailed description about the Walsh transformation can be found in
[2]. The Walsh transform is unique in the sense that if we consider two different binary
images then the corresponding feature vectors are also different. If we compose a feature
vector which does not contain all the Walsh transform values then this vector can be the
same for two different original binary images, see Section 3.2. The Walsh transformation
is separable, as its kernel function can be separated in the following way:

g(x, y, u, v) = g1(x, u) g2(y, v).

Moreover, we have the property

g(x, y, u, v) = g1(x, u) g1(y, v),

(the factors are functionally equivalent), thus the Walsh transformation is symmetric.
These two properties make the computation of the 2D transforms considerably faster,
since it can be reduced to the computation of two 1D Walsh transformations, and the
symmetric property makes the computation even more faster.

3.2. Application of the Walsh transformation

To perform the Walsh transformation, first we have to magnify the original image to the
size of 2n × 2n for some n which does not mean a considerable modification, since the
Walsh transformation is invariant under magnification. We used the image size 32 × 32.

6

However, in our algorithm we compute only the following 64 Walsh transforms instead of
the 32× 32 = 1024 ones:

(W (0, 0), W (0, 1), W (0, 2), . . . , W (0, 7), W (1, 0), W (1, 1), . . . , W (7, 7)).

There are two reasons for restricting the number of the Walsh transforms:
• These 64 values describe well the global features, and symmetric relations of the binary

image;
• We have the opportunity to filter out some noise from the image, since the computation

of less Walsh transforms results a blurring effect.
An example for the latter property can be seen in Figure 3.1, where the Walsh transforms
W (0, 0), W (0, 1), W (0, 2), W (0, 3), W (1, 0), W (1, 1), . . . , W (3, 3) are equal for the two
original 8× 8 binary images.

����
Figure 3.1. Different images with the same feature vector

Magnifying the segments to the same size (32× 32) can cause a problem in character
recognition. Namely, the characters whose lower and upper cases are similar (e.g. ”w” and
”W”) become identical. In our algorithm it does not mean a problem, and in that case,
when the recognition of the character is important, the proper case can be reconstructed
by comparing the side lengths of the original storing rectangle.

In the previous section we mentioned that the 2D Walsh transformation can be per-
formed as two 1D transformations. In our algorithm we prescind from this consideration
and compute the transforms directly from tables, as this is the fastest way. The value

n−1∏

i=0

(−1)bi(x)bn−i−1(u)+bi(y)bn−i−1(v) (∗)

in the kernel function can be ±1. For example, let us consider the case n = 1, N = 21 = 2.
The corresponding table traditionally has the form

Table 3.1. Values of the Walsh transformation kernel function in the case of N = 2

� (0,0) (0,1) (1,0) (1,1)
(0,0) + + + +
(0,1) + − + −
(1,0) + + − −
(1,1) + − − +

where the cells of the table contain + or − signs according to the value of (∗).

7

3.3. Character recognition − feature and etalon vectors

As it is described in the previous section, we obtain a 64 dimensional feature vector by
computing some of the Walsh transforms for an element of the chained list. We compare
this feature vector with etalon vectors which contain the same 64 Walsh transforms of
etalon characters. The etalon characters are composed as the average of sample characters.
For a given feature vector we find the closest etalon vector by using a suitable distance
function (for example the Cartesian one). If the minimum distance between a feature vector
and the etalon vectors is larger than a threshold value then the correspondent segment is
considered as a graphic part of the original image, and not as a character. The algorithm
can be trained to be able to recognize ligatures, too. A detailed description how the Walsh
transformation is applied to character recognition can be found in [1].

4. CONCLUSION – EXPERIMENTAL RESULTS

We emphasized in the previous chapters that the algorithm gives the best result in the
case of text documents. Moreover, if we use well-chosen documents and character set we
can achieve very good results. For example, if the same character set is used for composing
the document and for restoring it then the restored document perfectly fit (bit by bit) to
the original one without any loss of information.

The segmentation procedure also means an efficient compression, since it eliminates
(at least when the original image is not affected by noise corruption) the large background
components from the compressed data structure.

Our experimental results are summarized in the following table. We used an LZW

based compression program to compare our algorithm with the general compression pro-
grams. We tested our algorithm for a document which contains only text information and
for a document with graphic parts. The entries of the table are given in kilobytes.

Table 4.1. Experimental results – the entries are given in kilobytes

LZW Our Our compression
Original size compression compression together with LZW

Text document 966.8 39.3 76.8 9.1
Graphic document 24 1.2 2 0.7

REFERENCES

[1] A. Fazekas, T. Herendi, Methods and applications of digital image processing, Bulletins for Applied
Mathematics, 778/91 (1991), pp. 641–662.
[2] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Addison-Wesley, Reading, MA, 1992.
[3] L. Huang, A. Bijaoni, An efficient image compression algorithm without distortion, Pattern Recognition
Letters, 12 (1991), pp. 69–72.
[4] O.D. Trier, A.K. Jain, T. Taxt, Feature extraction methods for character recognition - A survey, Pattern
Recognition Letters, 29 (1996), pp. 641–662.

8

