
On the Computational Completeness ofContext-free Parallel CommunicatingGrammar Systems �Erzs�ebet Csuhaj-Varj�uandGy�orgy VaszilComputer and Automation Research InstituteHungarian Academy of SciencesKende utca 13-17, 1111 Budapest, Hungarycsuhaj/vaszil@luna.aszi.sztaki.huAbstractWe prove that all recursively enumerable languages can be generatedby context-free returning parallel communicating grammar systems byshowing how the parallel communicating grammars can simulate two-counter machines, a class of Turing machine variants which is known tobe computationally complete. Moreover, we prove that systems with abounded number of components are su�cient to reach this generativepower.1 IntroductionParallel communicating grammar systems (PC grammar systems, in short), in-troduced in [8], are formal language theoretic models of parallel and distributedcomputation. In these systems several grammars derive their own sententialforms in parallel and their work is organized in a communicating system togenerate a single language. The parallel communicating frame has the follow-ing basic properties: the work of the components is synchronized by a univer-sal clock, each component executes one rewriting step in each time unit, andcommunication is done by request through special nonterminals, called querysymbols, one di�erent symbol denoting each component of the system. When a�Research supported by the Hungarian Scienti�c Research Fund OTKA, Grant no. T017105. 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/160980817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


component introduces a query symbol in its sentential form, the rewriting pro-cess stops and one or more communication steps are performed by replacing alloccuring query symbols with the current sentential forms of the correspondingcomponent grammars supposing that those strings have no occurrence of anyquery symbol. If the sentential form of a component was communicated to an-other one, this component can continue its own work in two ways: in so-calledreturning systems, the component returns to its axiom and starts to generatea new string. In non-returning systems, the components do not return to theiraxiom, but continue processing their current sentential forms.Parallel communicating grammar systems have been the subject of detailedstudy over the last years: see [7] for a summary of results and open problems.One of the most important questions that has remained open for a long timeis how large generative capacity can be obtained by returning PC grammarsystems with context-free components.In this paper we show that returning parallel communicating grammar sys-tems with eleven context-free components can simulate two-counter machines,a restricted but computationally complete class of variants of Turing machines([4]). Then, the class of languages generated by context-free returning parallelcommunicating grammar systems is equal to the class of recursively enumerablelanguages. Moreover, if the recursively enumerable language does not containthe empty word, then the components of the generating PC grammar systemhave no erasing rule.A recent result indenpendently obtained from our one ([6]) states that theclass of languages generated by the context-free non-returning parallel com-municating grammar systems is equal to the class of recursively enumerablelanguages, and then, by [3], that the statement is valid for the returning case,too. Our proof technique signi�cantly di�ers from that one, moreover, our proofdemonstrates that PC grammar systems reach computational completeness witha bounded number of components.2 PreliminariesThe reader is assumed to be familiar with the basics of formal language theory;here we only list the necessary notions. Further details can be found in [1], [2],[5], [9].The set of all words over an alphabet � and the empty word are denotedby �� and ", respectively, and the family of recursively enumerable languagesby L(RE). jX j denotes the number of elements of a �nite set X , while jwj andjwjX denotes the length of a word w and the number of occurences of symbolsfrom set X in w, respectively.In the following we recall the notion of a two-counter machine, for moredetails see [5] and [4]. Note, that our notations slightly di�er from the customary.We chose to leave the conventions in order to avoid confusion with notations we2



use for PC grammar systems.A two-counter machine M = (�[ fZ;Bg; E;R) is a 3-tape Turing machine,where � is an alphabet, E is a set of internal states with two distinct elementsq0; qF 2 E and R is a set of transition rules. The machine has a read-onlyinput tape and two semi-in�nite storage tapes (the counters). The alphabetof the storage tapes contains only two symbols, Z and B (blank), while thealphabet of the input tape is �[fBg. R consists of transition rules of the form(q; x; c1; c2; q0; e1; e2; g), where x 2 � [ fBg is the symbol scanned on the inputtape in state q 2 E and c1; c2 2 fZ;Bg are the symbols scanned on the storagetapes. M enters state q0 2 E, the counters should be modi�ed according toe1; e2 2 f�1; 0;+1g, and the input head is moved according to g 2 f0;+1g. Ifg = 0, then the input head does not move, if g = +1, then it moves one cell tothe right.The symbol Z appears initially on the cells scanned by the storage tape headsand may never appear on any other cell. An integer i can be stored by movinga tape head i cells to the right of Z. A stored number can be incremented ordecremented by moving the tape head right or left. The machine is capable ofchecking whether a stored value is zero or not, by looking at the symbol scannedby the storage tape heads. If a scanned symbol is Z, then the value stored inthe corresponding counter is zero. A word w 2 � is accepted by the two countermachine if the input head is scanning the last non-blank symbol on the inputtape and the machine is in the accepting state qF . Two-counter machines arecomputationally complete, they are just as powerful as Turing-machines, [4].Now we recall the notion of a parallel communicating grammar system from[8], for more information see [1] and [2].De�nition 2.1 A parallel communicating grammar system with n components,where n � 1; (a PC grammar system, in short), is an (n + 3)-tuple � =(N;K; T;G1; : : : ; Gn); where N is a nonterminal alphabet, T is a terminal al-phabet and K = fQ1; Q2; : : : ; Qng is an alphabet of query symbols. N; T and Kare pairwise disjoint sets, Gi = (N [K;T; Pi; Si); 1 � i � n; called a componentof �; is a usual Chomsky grammar with nonterminal alphabet N [K, terminalalphabet T , a set of productions Pi and an axiom (or startsymbol) Si. G1 issaid to be the master grammar (or master) of �:De�nition 2.2 Let � = (N;K; T;G1; : : : ; Gn); n � 1; be a PC grammar sys-tem. An n-tuple (x1; : : : ; xn), where xi 2 (N [ T [K)�, 1 � i � n, is called acon�guration of �. (S1; : : : ; Sn) is said to be the initial con�guration.PC grammar systems change their con�gurations by performing direct deriva-tion steps.De�nition 2.3 Let � = (N;K; T;G1; : : : ; Gn); n � 1; be a PC grammar systemand let (x1; : : : ; xn) and (y1; : : : ; yn) be two con�gurations of �: We say that3



(x1; : : : ; xn) directly derives (y1; : : : ; yn); denoted by (x1; : : : ; xn)) (y1; : : : ; yn),if one of the next two cases hold:1. There is no xi which contains any query symbol, that is, xi 2 (N [ T )�for 1 � i � n: In this case yi is obtained from xi by a direct derivation step inGi, that is xi )Gi yi; for xi 2 T � we have xi = yi.2. There is some xi; 1 � i � n; which contains at least one occurrenceof query symbols. Let xi be of the form xi = z1Qi1z2Qi2 : : : ztQitzt+1, wherezj 2 (N [ T )�; 1 � j � t+ 1 and Qil 2 K; 1 � l � t: In this case, if xil ; 1 �l � t does not contain any query symbol, then yi = z1xi1z2xi2 : : : ztxitzt+1, andyil = Sil ; 1 � l � t. If some xil ; 1 � l � t contains at least one occurrence ofquery symbols, then yi = xi and also yil = xil ; 1 � l � t.For all i; 1 � i � n; for which yi is not speci�ed above, yi = xi.The �rst case is the description of a rewriting step: If no query symbol is presentin any of the sentential forms, then each component grammar uses one of itsrewriting rules except those which have already produced a terminal string. Thederivation is blocked if a sentential form of some component grammar is not aterminal string, but no rule can be applied to it.The second case describes a communication: if some query symbol, say Qi;appears in a sentential form, then rewriting stops and a communication stepmust be performed. The symbol Qi must be replaced by the current sententialform of component Gi; say xi; supposing that xi does not contain any querysymbol. If this sentential form also contains query symbols, then �rst thesesymbols must be replaced with the requested sentential forms. If this conditioncannot be ful�lled (a circular query appeared), then the derivation is blocked.Let )rew and )com denote a rewriting step and a communication step,respectively.If the sentential form of a component was communicated to another one, thiscomponent can continue its own work in two ways: in so-called returning systemsde�ned above, the component returns to its axiom and starts to generate a newstring. In non-returning systems, the components do not return to their axioms,but continue processing their current strings.Let )� denote the reexive and transitive closure of ).De�nition 2.4 Let � = (N;K; T;G1; :::; Gn) be a PC grammar system withmaster grammar G1 and let (S1; :::; Sn) denote the initial con�guration of �.The language generated by the PC grammar system � isL(�) = f�1 2 T � j (S1; : : : ; Sn))� (�1; : : : ; �n)g:Thus, the generated language consists of the terminal strings appearing as sen-tential forms of the master grammar, G1.Let the class of returning PC grammar systems with at most n context-freecomponents and the class of languages generated by these systems be denotedby PCnCF and L(PCnCF ), respectively. When an arbitrary number of com-ponents is considered, we use � in the subscript instead of n.4



3 The power of context-free PC grammar sys-temsIn this section we show that the class of recursively enumerable languages isequal to the class of languages generated by context-free returning PC grammarsystems. Moreover, systems with a bounded number of components are su�cientto reach this generative power. If the language we would like to generate doesnot contain the empty word, then none of the components has erasing rules.Theorem 3.1 L(RE) = L(PC11CF ) = L(PC�CF ):Proof: We only prove the inclusion L(RE) � L(PC11CF ), because by usingstandard techniques it can be shown that L(PC�CF ) � L(RE); and clearly,L(PC11CF ) � L(PC�CF ):Let L 2 �� be an arbitrary language, and let M = (� [ fZ;Bg; E;R) be atwo-counter machine accepting L, with tape alphabet �[fZ;Bg, set of internalstates E and set of transition rules R, with elements (x; q; c1; c2; q0; e1; e2; g) 2R, where x 2 � [ fBg, q; q0 2 E, c1; c2 2 fZ;Bg, e1; e2 2 f�1; 0;+1g andg 2 f0;+1g. The initial and the accepting states of M are denoted by q0 andqF , respectively. We construct a context-free PC grammar system � with elevencomponents which generates L.First, let us assume that L is "-free. Let� = (N;K; T;Gm; Gc11 ; Gc12 ; Gc13 ; Gc14 ; Gc21 ; Gc22 ; Gc23 ; Gc24 ; Ga1 ; Ga2);with N = f[x; q; c1; c2; e1; e2]; [e1]0; [e2]0; [I ]; [I ]0; hIi; hx; q; c1; c2; e1; e2i jx 2 �; q 2 E; c1; c2 2 fZ;Bg; e1; e2 2 f�1; 0;+1gg [fS; S1; S2; S3; S4; S(1)4 ; S(2)4 ; S(1); S(2); S(3); S(4)g [fA;Cg;T = � [ fagand rule setsPm = fS ! [I ]; [I ]! C; C ! Qa1g [fhIi ! [x; q; Z; Z; e1; e2] j hx; q0; Z; Z; q; e1; e2; 0i 2 Rg [fhIi ! x[y; q; Z; Z; e1; e2] j hx; q0; Z; Z; q; e1; e2;+1i 2 R; y 2 �g [fhx; q; c01; c02; e01; e02i ! [x; q0; c1; c2; e1; e2] j hx; q; c1; c2; q0; e1; e2; 0i 2 R;c01; c02 2 fZ;Bg; e01; e02 2 f�1; 0;+1gg[fhx; q; c01; c02; e01; e02i ! x[y; q0; c1; c2; e1; e2]; hx; qF ; c01; c02; e01; e02i ! x j5



hx; q; c1; c2; q0; e1; e2;+1i 2 R; c01; c02 2 fZ;Bg;e01; e02 2 f�1; 0;+1g; y 2 �g;P c11 = fS1 ! Qm; S1 ! Qc14 ; C ! Qmg [f[x; q; c1; c2; e1; e2]! [e1]0; [+1]0 ! AAC; [0]0 ! AC; [�1]0 ! C jx 2 �; q 2 E; c1; c2 2 fZ;Bg; e1; e2 2 f�1; 0;+1gg [f[I ]! [I ]0; [I ]0 ! ACg;P c12 = fS2 ! Qm; S2 ! Qc14 ; C ! Qm; A! Ag [f[x; q; Z; c2; e1; e2]! [x; q; Z; c2; e1; e2]; [I ]! [I ] j x 2 �; q 2 E;c2 2 fZ;Bg; e1; e2 2 f�1; 0;+1gg;P c13 = fS3 ! Qm; S3 ! Qc14 ; C ! Qmg [f[x; q; Z; c2; e1; e2]! a; [x; q; B; c2; e1; e2]! [x; q; B; c2; e1; e2];[I ]! [I ] j x 2 �; q 2 E; c2 2 fZ;Bg; e1; e2 2 f�1; 0;+1gg;P c14 = fS4 ! S(1)4 ; S(1)4 ! S(2)4 ; S(2)4 ! Qc11 ; A! ag;P c21 = fS1 ! Qm; S1 ! Qc24 ; C ! Qmg [f[x; q; c1; c2; e1; e2]! [e2]0; [+1]0 ! AAZ; [0]! AC; [�1]! C jx 2 �; q 2 E; c1; c2 2 fZ;Bg; e1; e2 2 f�1; 0;+1gg [f[I ]! [I ]0; [I ]0 ! ACg;P c22 = fS2 ! Qm; S2 ! Qc24 ; C ! Qm; A! Ag [f[x; q; c1; Z; e1; e2]! [x; q; c1; Z; e1; e2]; [I ]! [I ] j x 2 �; q 2 E;c1 2 fZ;Bg; e1; e2 2 f�1; 0;+1gg;P c23 = fS3 ! Qm; S3 ! Qc24 ; C ! Qmg [f[x; q; c1; Z; e1; e2]! a; [x; q; c1; B; e1; e2]! [x; q; c1; B; e1; e2];[I ]! [I ] j x 2 �; q 2 E; c1 2 fZ;Bg; e1; e2 2 f�1; 0;+1gg;P c24 = fS4 ! S(1)4 ; S(1)4 ! S(2)4 ; S(2)4 ! Qc21 ; A! ag;Pa1 = fS ! Qm; [I ]! hIi; [x; q; c1; c2; e1; e2]! hx; q; c1; c2; e1; e2i;hx; q; c1; c2; e1; e2i ! hx; q; c1; c2; e1; e2i; hIi ! hIi; j x 2 �;6



q 2 E; c1; c2 2 fZ;Bg; e1; e2 2 f�1; 0;+1gg;Pa2 = fS ! S(3); S(1) ! S(2); S(2) ! S(3); S(3) ! S(4);S(4) ! Qc12 Qc13 Qc22 Qc23 S(1)g:The work of this system is controlled by component Gm, the master, throughthe nonterminals [x; q; c1; c2; e1; e2], where x 2 �; q 2 E; c1; c2 2 fZ;Bg; e1; e2 2f�1; 0;+1g: The presence of this symbol in the sentential form of Gm indicatesthat the two-counter machineM has entered state q, it is now scanning x on theinput tape and c1; c2 on the two storage tapes, respectively, and the heads ofthe storage tapes must be moved according to e1; e2 before the next transition.The components Gc1i ; Gc2i ; 1 � i � 4, are simulating the change of the contentsof the counters. The number of A-s in their sentential forms corresponds to thevalue stored in the counters of M .The PC grammar system � �rst introduces [I ] in Gm, then a series of stepsfollow, which initialize � by setting the counters to zero. After these steps �is ready to simulate the �rst transition of M . This is done by changing [I ] tou[x0; q; Z; Z; e1; e2] where M has a rule (x; q0; Z; Z; q; e1; e2; g). Here u = x ifg = +1 and u = "; x0 = x, if g = 0. If the input head moves (g = +1), Gmgenerates x and [x0; q; Z; Z; e1; e2] indicates that M is scanning a new symbol, ifthe input head does not move, Gm generates no terminals and [x; q; Z; Z; e1; e2]indicates that M is still scanning the same symbol. Now Gc12 ; Gc13 and Gc22 ; Gc23make sure, that Z is read on the both storage tapes, by checking if the numberof A-s in their sentential form is zero or not, while Gc11 ; Gc14 and Gc21 ; Gc24 modifythe stored values according to e1; e2.This way � checks if it is legal to enter state q by looking at the counters andalso updates the counters before simulating the next transition. To simulate thenext transition Gm rewrites [x; q; c1; c2; e1; e2] to u[x0; q0c01; c02; e01; e02]; u 2 fx; "g,ifM has a rule (x; q; c01; c02; q0; e01; e02; g). Here u = x if g = +1, and u = "; x0 = xif g = 0. Now � has to check again if c01 and c02 are scanned on the counter tapesand then modify them according to e01; e02. If the input head moved (g = +1),the symbol x is added to the sentential form of Gm.We now describe the functioning of � in details to prove that each ter-minating derivation of � corresponds to an accepting computation of M , andreversely.� starts with the initial con�guration(S; S1; S2; S3; S4; S1; S2; S3; S4; S; S):After the �rst rewriting step, � enters the con�guration([I ]; u1; u2; u3; S(1)4 ; u01; u02; u03; S(1)4 ; Qm; S(3));where u1; u2; u3 are either Qm or Qc14 and u01; u02; u03 are either Qm or Qc24 . Ifany of these symbols is not Qm, the system is blocked after the communicationso we have 7



([I ]; Qm; Qm; Qm; S(1)4 ; Qm; Qm; Qm; S(1)4 ; Qm; S(3)))com(S; [I ]; [I ]; [I ]; S(1)4 ; [I ]; [I ]; [I ]; S(1)4 ; [I ]; S(3)):The next steps of the system are(S; [I ]; [I ]; [I ]; S(1)4 ; [I ]; [I ]; [I ]; S(1)4 ; [I ]; S(3)))rew([I ]; [I ]0; [I ]; [I ]; S(2)4 ; [I ]0; [I ]; [I ]; S(2)4 ; hIi; S(4)))rew(C;AC; [I ]; [I ]; Qc11 ; AC; [I ]; [I ]; Qc21 ; hIi; Qc12 Qc13 Qc22 Qc23 S(1)))com(C; S1; S2; S3; AC; S1; S2; S3; AC; hIi; [I ][I ][I ][I ]S(1)))rew(Qa1 ; u1; u2; u3; aC; u01; u02; u03; aC; hIi; [I ][I ][I ][I ]S(2));where u1; u2; u3 are either Qm or Qc14 and u01; u02; u03 are either Qm or Qc24 . If anyof these sentential form is Qm, the system is blocked after the communication,so we have(Qa1 ; Qc14 ; Qc14 ; Qc14 ; aC;Qc24 ; Qc24 ; Qc24 ; aC; hIi; [I ][I ][I ][I ]S(2)))com(hIi; aC; aC; aC; S4; aC; aC; aC; S4; S; [I ][I ][I ][I ]S(2)):Now the PC grammar system � starts to simulate the steps of M . The presentcon�guration of � corresponds to M being in the initial state and storingzero in both of the counters. Now Gm choses the next state by introducingu[x0; q; Z; Z; e1; e2; ] if M has a rule (x; q0; Z; Z; q; e1; e2; g), if M can enter stateq from q0 by reading input x and counter symbols Z;Z. If the input head ofM moves after this transition, (g = +1), then u = x and a new symbol x0 isscanned on the input tape, if the input head does not move, (g = 0), then u = ",x0 = x, the symbol x is scanned on the input tape. That is,(u[x0; q; Z; Z; e1; e2];aQm; aQm; aQm; S(1)4 ;aQm; aQm; aQm; S(1)4 ;Qm; [I ][I ][I ][I ]S(3)))com(S;au[x0; q; Z; Z; e1; e2]; au[x0; q; Z; Z; e1; e2]; au[x0; q; Z; Z; e1; e2]; S(1)4 ;au[x0; q; Z; Z; e1; e2]; au[x0; Z; Z; e1; e2]; au[x0; q; Z; Z; e1; e2]; S(1)4 ;u[x0; q; Z; Z; e1; e2]; [I ][I ][I ][I ]S(3)):Now Gc11 ; Gc14 and Gc21 ; Gc24 are going to modify the number of A-s in theirsentential forms (the values stored in the counters) according to e1; e2. Gc11 andGc21 introduce AAC, AC or C if e1 and e2 is +1, 0 or �1, and Gc14 , Gc24 eraseone of the A-s. This way the system either modi�es the counters or, in the caseit needs to decrement zero, it blocks.The components Gc12 ; Gc13 and Gc22 ; Gc23 check whether the number of A-s intheir sentential forms (the values stored in the counters) correspond to Z, or8



c1; c2 in the general case. Now we describe how � checks the �rst counter; thesecond one is checked in the same way.If c1 = Z, we have a string of the form �[x0; q; Z; c2; e1; e2] in Gc12 ; Gc13 . Nowthe number of A-s in � should be zero. If it is not the case, the system blocksbecause in the next step Gc13 rewrites [x0; q; Z; c2; e1; e2] to a, a terminal symbol,and has no rule to rewrite A.If c1 = B, we have �[x0; q; B; c2; e1; e2], where the number of A-s in the string� should be at least one. If this is not the case, the system blocks, because Gc12has only the rule A! A to rewrite this sentential form.This process we have described is the following:(S;au[x0; q; Z; Z; e1; e2]; au[x0; q; Z; Z; e1; e2]; au[x0; q; Z; Z; e1; e2]; S(1)4 ;au[x0; q; Z; Z; e1; e2]; au[x0; q; Z; Z; e1; e2]; au[x0; q; Z; Z; e1; e2]; S(1)4 ;u[x0; q; Z; Z; e1; e2]; [I ][I ][I ][I ]S(3)))rew([I ];au[e1]0; au[x0; q; Z; Z; e1; e2]; aua; S(2)4 ;au[e2]0; au[x0; q; Z; Z; e1; e2]; aua; S(2)4 ;uhx0; q; Z; Z; e1; e2i; [I ][I ][I ][I ]S(4)))rew(C;�C; au[x0; q; Z; Z; e1; e2]; aua;Qc11 ;�C; au[x0; q; Z; Z; e1; e2]; aua;Qc21 ;uhx0; q; Z; Z; e1; e2i; Qc12 Qc13 Qc22 Qc23 S(1)))com(C; S1; S2; S3; �C; S1; S2; S3; �C; uhx0; q; Z; Z; e1; e2i; 0S(1)))rew(Qa1 ; u1; u2; u3; �0C; u1; u2; u3; �0C; uhx0; q; Z; Z; e1; e2i; 0S(2)):where u1; u2; u3 are either Qm or Qc14 and u01; u02; u03 are either Qm or Qc24 , �is de�ned in the same way as � above, and ; 0 are the corresponding stringsconsisting of [I ]: If any of these sentential form is Qm, the system is blockedafter the communication, so we have(Qa1 ; Qc14 ; Qc14 ; Qc14 ; �0C;Qc24 ; Qc24 ; Qc24 ; �0C; uhx0; q; Z; Z; e1; e2i; 0S(2)))com(uhx0; q; Z; Z; e1; e2i; �0C;�0C;�0C; S4; �0C; �0C; �0C; S4; S; 0S(2));where �0 and �0 contain the same number of A-s as stored in the counters ofM . If q is the accepting state, q = qF , the system can stop here by usinghx0; qF ; Z; Z; e1; e2i ! x0 in Gm, or it can continue by chosing a new transition.If this new transition moves the input head ofM to the right, thenM leaves thesymbol x0 behind. In this case, x0 becomes part of the string generated by � byusing hx0; q; Z; Z; e1; e2i ! x0[y; q0; c01; c02; e01; e02] when chosing a new transition.If the input head does not move, the scanned symbol is the same, Gm choses thenew transition with hx0; q; Z; Z; e1; e2i ! [x0; q0; c01; c02; e01; e02]. The new transitionnow can be simulated in the same way as we have described above.9



From the above explanations and the way of the construction of the com-ponents of � we can see that all successful computations of M correspond toa terminating derivation in �, and conversely, all terminating derivations in �correspond to a successful computation of M .Now, if the recursively enumerable language L contains the empty word," 2 L, we can add S ! " to the rules in Pm. This way the system alsogenerates the empty word, with an erasing rule, of course. Hence, the result. 2References[1] E. Csuhaj-Varj�u, J. Dassow, J. Kelemen, Gh. P�aun, Grammar Systems.A Grammatical Approach to Distribution and Cooperation, Gordon andBreach, London, 1994.[2] J. Dassow, Gh. P�aun, G. Rozenberg, Grammar Systems. Handbook ofFormal Languages, Vol. 2, Chapter 4, ed. by G. Rozenberg and A. Sa-lomaa, Springer-Verlag, Berlin, 1997, 155-213.[3] S. Dumitrescu, Non-returning parallel communicating grammar systemscan be simulated by returning systems, Theoretical Computer Science,165 (1996) 463-474.[4] P. C. Fischer, Turing machines with restricted memory access, Infor-mation and Control, 9 (1966), 364-379.[5] J. E. Hopcroft, J. D. Ullman, Introduction to Automata theory, Lan-guages and Computation, Addison-Wesley, 1979.[6] N. Mandache, On the computational power of context-free PCGS, sub-mitted.[7] Gh. P�aun, Parallel communicating grammar systems: recent results,open problems, Acta Cybernetica 12 (1996), 381-395.[8] Gh. P�aun, L. Santean, Parallel communicating grammar systems: theregular case, Ann. Univ. Bucharest, Ser. Matem.-Inform. 38, 2 (1989),55-63.[9] A. Salomaa, Formal Languages, Academic Press, New York, 1973.
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