View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Debrecen Electronic Archive

On the Computational Completeness of
Context-free Parallel Communicating
Grammar Systems *

Erzsébet Csuhaj-Varju
and
Gyorgy Vaszil

Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende utca 13-17, 1111 Budapest, Hungary

csuhaj/vaszil@luna.aszi.sztaki.hu

Abstract

We prove that all recursively enumerable languages can be generated
by context-free returning parallel communicating grammar systems by
showing how the parallel communicating grammars can simulate two-
counter machines, a class of Turing machine variants which is known to
be computationally complete. Moreover, we prove that systems with a
bounded number of components are sufficient to reach this generative
power.

1 Introduction

Parallel communicating grammar systems (PC grammar systems, in short), in-
troduced in [8], are formal language theoretic models of parallel and distributed
computation. In these systems several grammars derive their own sentential
forms in parallel and their work is organized in a communicating system to
generate a single language. The parallel communicating frame has the follow-
ing basic properties: the work of the components is synchronized by a univer-
sal clock, each component executes one rewriting step in each time unit, and
communication is done by request through special nonterminals, called query
symbols, one different symbol denoting each component of the system. When a

*Research supported by the Hungarian Scientific Research Fund OTKA, Grant no. T
017105.

https://core.ac.uk/display/160980817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

component introduces a query symbol in its sentential form, the rewriting pro-
cess stops and one or more communication steps are performed by replacing all
occuring query symbols with the current sentential forms of the corresponding
component grammars supposing that those strings have no occurrence of any
query symbol. If the sentential form of a component was communicated to an-
other one, this component can continue its own work in two ways: in so-called
returning systems, the component returns to its axiom and starts to generate
a new string. In non-returning systems, the components do not return to their
axiom, but continue processing their current sentential forms.

Parallel communicating grammar systems have been the subject of detailed
study over the last years: see [7] for a summary of results and open problems.

One of the most important questions that has remained open for a long time
is how large generative capacity can be obtained by returning PC grammar
systems with context-free components.

In this paper we show that returning parallel communicating grammar sys-
tems with eleven context-free components can simulate two-counter machines,
a restricted but computationally complete class of variants of Turing machines
([4]). Then, the class of languages generated by context-free returning parallel
communicating grammar systems is equal to the class of recursively enumerable
languages. Moreover, if the recursively enumerable language does not contain
the empty word, then the components of the generating PC grammar system
have no erasing rule.

A recent result indenpendently obtained from our one ([6]) states that the
class of languages generated by the context-free non-returning parallel com-
municating grammar systems is equal to the class of recursively enumerable
languages, and then, by [3], that the statement is valid for the returning case,
too. Our proof technique significantly differs from that one, moreover, our proof
demonstrates that PC grammar systems reach computational completeness with
a bounded number of components.

2 Preliminaries

The reader is assumed to be familiar with the basics of formal language theory;
here we only list the necessary notions. Further details can be found in [1], [2],
[5], [9].

The set of all words over an alphabet ¥ and the empty word are denoted
by ¥* and e, respectively, and the family of recursively enumerable languages
by L(RE). |X| denotes the number of elements of a finite set X, while |w| and
|w|x denotes the length of a word w and the number of occurences of symbols
from set X in w, respectively.

In the following we recall the notion of a two-counter machine, for more
details see [5] and [4]. Note, that our notations slightly differ from the customary.
We chose to leave the conventions in order to avoid confusion with notations we

use for PC grammar systems.

A two-counter machine M = (X U{Z, B}, E, R) is a 3-tape Turing machine,
where X is an alphabet, E is a set of internal states with two distinct elements
Go,qr € E and R is a set of transition rules. The machine has a read-only
input tape and two semi-infinite storage tapes (the counters). The alphabet
of the storage tapes contains only two symbols, Z and B (blank), while the
alphabet of the input tape is XU {B}. R consists of transition rules of the form
(g, m,c1,¢2,q,e1,e2,9), where z € X U {B} is the symbol scanned on the input
tape in state ¢ € E and ¢y, ¢y € {Z, B} are the symbols scanned on the storage
tapes. M enters state ¢' € E, the counters should be modified according to
er,es € {—1,0,+1}, and the input head is moved according to g € {0, +1}. If
g = 0, then the input head does not move, if g = +1, then it moves one cell to
the right.

The symbol Z appears initially on the cells scanned by the storage tape heads
and may never appear on any other cell. An integer i can be stored by moving
a tape head i cells to the right of Z. A stored number can be incremented or
decremented by moving the tape head right or left. The machine is capable of
checking whether a stored value is zero or not, by looking at the symbol scanned
by the storage tape heads. If a scanned symbol is Z, then the value stored in
the corresponding counter is zero. A word w € X is accepted by the two counter
machine if the input head is scanning the last non-blank symbol on the input
tape and the machine is in the accepting state ¢r. Two-counter machines are
computationally complete, they are just as powerful as Turing-machines, [4].

Now we recall the notion of a parallel communicating grammar system from
[8], for more information see [1] and [2].

Definition 2.1 A parallel communicating grammar system with n components,
where n > 1, (a PC grammar system, in short), is an (n + 3)-tuple I' =
(N,K,T,G4,...,Gy), where N is a nonterminal alphabet, T is a terminal al-
phabet and K = {Q1,Q2,...,Q,} is an alphabet of query symbols. N, T and K
are pairwise disjoint sets, G; = (NUK, T, P;, S;), 1 <1 < n, called a component
of T, is a usual Chomsky grammar with nonterminal alphabet N U K, terminal
alphabet T, a set of productions P; and an aziom (or startsymbol) S;. Gy is

said to be the master grammar (or master) of I

Definition 2.2 Let I' = (N, K,T,G4,...,G,), n > 1, be a PC grammar sys-
tem. An n-tuple (z1,...,%,), where ; € (NUT UK)*, 1<i<mn,is called a
configuration of T'. (Si,...,S,) is said to be the initial configuration.

PC grammar systems change their configurations by performing direct deriva-
tion steps.

Definition 2.3 LetI' = (N, K,T,Gy,...,G,),n > 1, be a PC grammar system
and let (z1,...,2,) and (y1,...,yn) be two configurations of I'. We say that

(x1,...,%n) directly derives (yi1,...,yn), denoted by (z1,...,2n) = (Y1,---,Yn),
if one of the next two cases hold:

1. There is no z; which contains any query symbol, that is, z; € (N UT)*
for 1 < i < n. In this case y; is obtained from z; by a direct derivation step in
G, that is x; =@, ys; for x; € T* we have z; = y;.

2. There is some z;, 1 < i < n, which contains at least one occurrence
of query symbols. Let z; be of the form z; = 21Qi, 22Qi, . .. 2:Q;, zt+1, Where
z; €E(NUT)*, 1<j<t+1land Q; € K, 1 <1<t Inthis case, if z;, 1 <
I <t does not contain any query symbol, then y; = 2125, 20%;, - . . 24%4, 2¢41, and
vi, = Siy, 1 <1<t If some x;, 1 <1 <t contains at least one occurrence of
query symbols, then y; = x; and also y;, = z;,, 1 <1 <t

For all 4, 1 <14 < n, for which y; is not specified above, y; = ;.

The first case is the description of a rewriting step: If no query symbol is present
in any of the sentential forms, then each component grammar uses one of its
rewriting rules except those which have already produced a terminal string. The
derivation is blocked if a sentential form of some component grammar is not a
terminal string, but no rule can be applied to it.

The second case describes a communication: if some query symbol, say @);,
appears in a sentential form, then rewriting stops and a communication step
must be performed. The symbol @); must be replaced by the current sentential
form of component G;, say x;, supposing that z; does not contain any query
symbol. If this sentential form also contains query symbols, then first these
symbols must be replaced with the requested sentential forms. If this condition
cannot be fulfilled (a circular query appeared), then the derivation is blocked.

Let =,cw and =, denote a rewriting step and a communication step,
respectively.

If the sentential form of a component was communicated to another one, this
component can continue its own work in two ways: in so-called returning systems
defined above, the component returns to its axiom and starts to generate a new
string. In non-returning systems, the components do not return to their axioms,
but continue processing their current strings.

Let =* denote the reflexive and transitive closure of =.

Definition 2.4 Let I' = (N, K,T,G4,...,G,) be a PC grammar system with
master grammar G and let (Sy,...,S,) denote the initial configuration of T.
The language generated by the PC grammar system T is

L(T) = {a1 € T* | (S1,...,S0) =" (@u,...,an)}.

Thus, the generated language consists of the terminal strings appearing as sen-
tential forms of the master grammar, G;.

Let the class of returning PC grammar systems with at most n context-free
components and the class of languages generated by these systems be denoted
by PC,CF and L(PC,CF), respectively. When an arbitrary number of com-
ponents is considered, we use * in the subscript instead of n.

3 The power of context-free PC grammar sys-
tems

In this section we show that the class of recursively enumerable languages is
equal to the class of languages generated by context-free returning PC grammar
systems. Moreover, systems with a bounded number of components are sufficient
to reach this generative power. If the language we would like to generate does
not contain the empty word, then none of the components has erasing rules.

Theorem 3.1
L(RE) = L(PC\,CF) = L(PC.CF).

Proof: We only prove the inclusion L(RE) C L(PC;;CF), because by using
standard techniques it can be shown that £L(PC.CF) C L(RE), and clearly,
L(PC11CF) C L(PC.CF).

Let L € ¥* be an arbitrary language, and let M = (XU {Z, B}, E, R) be a
two-counter machine accepting L, with tape alphabet ¥ U{Z, B}, set of internal
states E and set of transition rules R, with elements (z,q, ¢1,c2,¢ ,€1,€a,9) €
R, where x € YU {B}, ¢,q' € E, ¢1,¢co € {Z,B}, e1,e2 € {—1,0,+1} and
g € {0,+1}. The initial and the accepting states of M are denoted by go and
qr, respectively. We construct a context-free PC grammar system I' with eleven
components which generates L.

First, let us assume that L is e-free. Let

r=(N,K,T,Gn,,G}",G5' ,GS' , Gy, G2, G, G2, G2, Gay , Gay)

3

with
N = A{[z,qc1,c0.er,e],[en] s [ea], [1], 1], (1), (x, q,c1,co, €1, €2) |
z€X, q€eE, c1,c0 € {Z,B}, e1,e5 € {-1,0,+1}}U
{8,81,82.85,54, 85", 5,81, 52 53 g}y
{A4,C},
T = YU{a}
and rule sets
P, = {S=>[I,I]-C, C—Q,}U

{U) = 2,9, 2, Z,e1,ea] | {x,q0,Z, Z,q,€1,e2,0) € R} U

{{I) = zly,q,Z,Z,er,e3] | {x,q0,Z,Z,q,e1,€2,+1) E R, y € X} U

{(z,q,c),ch, ey, ey) = [T, c1,02,e1,e] | (x,q,¢1,¢2,¢ ,€1,€2,0) € R,
c1,ch €{Z,B}, ej,e5 € {—1,0,+1}}U

{<m7Q7{3I17{3{27€I17e‘I2> - :I:[ynql:Cl:CQ:el:e?]a <:I::QF7{3I]7{3‘I2761176‘I2> - ‘

C1
Pl

c1
P,

c1
Py

c1
Py

C2
Pl

o
P,

o
Py

o
Py

<m7q7017627qI7€17627+1> € R: Cllac‘lz € {Z/B},
er,ey € {—1,0,+1}, y € &},

{81 = Qm, S1 = QF, C—>Qn}U

{[z,q,c1,c2,€1,e2] =[], [+1] = AAC, [0]' = AC, [-1]' = C'|
z€X, q€eE, c1,c0 € {Z,B}, e1,e5 € {-1,0,+1}}U

{1 =7, 1" — Acty,

{82 = Qm, S2 = QF', C = Qn, A— AU
{[w7q,Z7C27€]7€2] - [$=q7 Z102761162]7 [I] — [I] | TE E: qc E:
c2 € {Z,B}, e1,e2 € {~1,0,+1}},

{53_)Qm: 53_>Q21: C_)Qm}u
{[ﬂf,q,Z7C27€]7€2] — a, [ﬂf7q,B,CQ,€]7€2] — [$:q7B7CZ:€1762]
[I] - [I] | NS Ea g€ Ea c2 € {ZaB}a e1;es € {71,074—1}}7

{Si— SM, stV 58 8B 5 Qi A al,

{Sl - Qm: Sl - QZQ: C— Qm} U

{[z.q,c1,02,e1,€2] = [ea]', [+1) = AAZ, [0] = AC, [-1] - C'|
z€X, q€E, c1,c0 € {Z,B}, e1,e5 € {-1,0,+1}}U

{1l =11, [1) - ACY,

{82 = Qm, S22 Q2, C = Qn, A— AU
{[ﬂf,q,C],Z7€]7€2]—>[$,q7C],Z7€],€2]7 [I]_>[I]|$€E: qEE:
c¢1 € {Z,B}, ej,e2 € {—1,0,+1}},

{53_)Qm: 53_>Q22: C_)Qm}u
{[ﬂf7q,C],Z7€]7€2]—>a, [ﬂf,q,C],B,eheg]—)[CU,(],C],B,617€2],
[I] - [I] | NS Ea g€ Ea c1 € {ZaB}a e1;es € {71,074—1}}7

{Sy = S, s 5 8B s 92 A al,

{S = Qm., [I] = (I), [x,q,c1,¢c2,e1,e2] = (x,q,¢1,¢2,€1,€3),
(z,q,c1,c2,e1,€2) = (7,q,¢1,c,€1,€2), (I) = (I),| = €X,

g€ E: c1,C2 € {ZaB}a e1;es € {71,074—1}}7

P, = {S— SG g 5 g 5 5 gB) gB) 5 g(4)
5(4) N le gl ;2Q§;25(1)}

The work of this system is controlled by component G,,, the master, through
the nonterminals [z, q, ¢1, ¢2, €1, €2], wherex € £, g € E, ¢1,c2 € {Z, B}, e1,e3 €
{—1,0,+1}. The presence of this symbol in the sentential form of G,, indicates
that the two-counter machine M has entered state ¢, it is now scanning x on the
input tape and c¢1,co on the two storage tapes, respectively, and the heads of
the storage tapes must be moved according to e, es before the next transition.
The components G;',G;>, 1 < i < 4, are simulating the change of the contents
of the counters. The number of A-s in their sentential forms corresponds to the
value stored in the counters of M.

The PC grammar system I first introduces [I] in G,,, then a series of steps
follow, which initialize I' by setting the counters to zero. After these steps T’
is ready to simulate the first transition of M. This is done by changing [I] to
ulz',q,Z, Z,e1,e3] where M has a rule (z,q0,Z,Z,q,e1,e2,9). Here u = z if
g=+land u=¢, ' =z, if g = 0. If the input head moves (g = +1), G,
generates = and [z, q, Z, Z, e1, es] indicates that M is scanning a new symbol, if
the input head does not move, G, generates no terminals and [z,q, Z, Z, e1, €3]
indicates that M is still scanning the same symbol. Now G3',G3' and G5*, G35’
make sure, that Z is read on the both storage tapes, by checking if the number
of A-s in their sentential form is zero or not, while G7*, G3* and G7?, G§* modify
the stored values according to ey, es.

This way I' checks if it is legal to enter state g by looking at the counters and
also updates the counters before simulating the next transition. To simulate the
next transition G,, rewrites [z, ¢, ¢1, ¢2, €1, €] to ulz', ¢'c}, ch, e}, eb], u € {z, e},
if M has arule (z,q,c¢},ch,q',€e},¢e5,9). Horeu=zifg=+1,andu=¢, 2’ =z
if g = 0. Now I has to check again if ¢] and ¢, are scanned on the counter tapes
and then modify them according to €}, e}. If the input head moved (g = +1),
the symbol z is added to the sentential form of G,,.

We now describe the functioning of I' in details to prove that each ter-
minating derivation of I' corresponds to an accepting computation of M, and
reversely.

I' starts with the initial configuration

(S7 S]-,52753154751152753154757 S)
After the first rewriting step, I' enters the configuration
([I]a Uy, U2, U3, SAE]): “‘,]) 71“’27 “‘I37 Sil): Q’m: S(?)),

where u,u2,us are either @, or Q3" and u},ul,uf are either @Q,,, or Q3>. If
any of these symbols is not),,, the system is blocked after the communication
so we have

(111, Qs Qs Qs S5, Qs Qs Q. S5, Qs SP) = com
(8,111, 147, 111, 88V, 101, [11, 141, S5, 141, S®).
The next steps of the system are
8,100,110, 11, 85, 110, 100, 110, S5V, 111, S®)) = e
10, (1) 110, 120, 8520 (1), (10, 1), 852 (1), S@) = e
C,AC,[1),[11,Q5, AC, 1), 11, Q5 (1), Q5 Q5 Q5 Q57 S™M) = com
C,S5.,8,83, AC, Sl,Sg Ss, AC, (I),[I][I][I][I]S“)) S ew
(Qay w1, uz, us, aC, iy uh, b, aC, (1), [N1[11S),

(
(
(
(

where 1y, us, uz are either Q,, or Q3" and uf, u}, uf are either @, or Q3>. If any

of these sentential form is ()., the system is blocked after the communication,
so we have

(Qur» Q. Q5 Q7. aC, QF, Q5 QP aC., (1), [III|[I][1]S®)) = com
(I),aC,aC,aC, S4,aC,aC,aC, Sq, S, [T|[I][I][T]S?).

Now the PC grammar system I' starts to simulate the steps of M. The present
configuration of T' corresponds to M being in the initial state and storing
zero in both of the counters. Now G, choses the next state by introducing
ult',q,Z,Z ey, ey, it M has arule (x,q0,7Z,7Z,q,€1,€e2,9), if M can enter state
q from gy by reading input z and counter symbols Z, Z. If the input head of
M moves after this transition, (¢ = +1), then u = z and a new symbol z’ is
scanned on the input tape, if the input head does not move, (g = 0), then u = ¢,
x' = x, the symbol z is scanned on the input tape. That is,

(U[QZ’, q, Z7 Z: €1, 62]7
aQm, 0Qm, Qo S5

aQum, AQum, aQm, S5,
Qm, (NIIISD) = com

(S,
aulx',q,Z, Z,e1,es],aulz’ q, Z, Z, ey, es], aulz’,q, Z, Z, eq, es], sih
aulz',q,Z,Z,e1,es),aulz’, Z, Z, e1,es), aulz’, q, Z, Z, €1, 2], 551)7

ulz',q, Z, Z, e, e, [II)[I[T)S™).

Now G7',Gy' and G7?,G§? are going to modify the number of A-s in their
sentential forms (the values stored in the counters) according to e, es. G7' and
G7? introduce AAC, AC or C if e; and ep is +1, 0 or —1, and G7', G§* erase
one of the A-s. This way the system either modifies the counters or, in the case
it needs to decrement zero, it blocks.

The components G5!, G3' and G52, G3? check whether the number of A-s in
their sentential forms (the values stored in the counters) correspond to Z, or

c1, ¢y in the general case. Now we describe how I' checks the first counter; the
second one is checked in the same way.

If ¢y = Z, we have a string of the form a[z',q, Z, ca, e1,es] in G5!, G5'. Now
the number of A-s in a should be zero. If it is not the case, the system blocks
because in the next step G5! rewrites [z, ¢, Z, ¢2, €1, €2] to a, a terminal symbol,
and has no rule to rewrite A.

If ¢; = B, we have a[z’, q, B, ¢, 1, €3], where the number of A-s in the string
«a should be at least one. If this is not the case, the system blocks, because G5’
has only the rule A — A to rewrite this sentential form.

This process we have described is the following;:

(S,
aulx',q,Z, Z,e1,es],aulz’ q, Z, Z, ey, es], aulz’,q, Z, Z, eq, €3], SAE]),
aulz',q,Z,Z,e1,es),aulz’,q, Z, Z, ey, es],aulz’,q, Z, Z, eq, €3], Sil),
ulz' 4,2, Z,ex, e), [T[T)[T]S™)) =

({1},

auler]’

aules]', aulz', q, Z, Z,eheQ],aua,Sf)7

u(z',q, 2, Z, e, ea), [NININITIS™Y) = e

(C,

aC,aulr' q, Z, Z, e1, es], aua, Q5"
BC,aulz',q,Z, Z, ey, es], aua, Q7?,
U<$’7q,Z7Z,€]7€2),’yQ;1 fC«;l SQQ‘CiQS(])) = com

(C: Sl H 52753,040, Sl H 52753,6C,U<$’,q7 Z: Z761:€2>77’S(])) =rew
(Qal,Ul,Ug,’ll/};,alC, “‘17“‘27“‘37ﬂl07 u‘('TI:(L Z: Z7€1762>7’}/S(2))'

2
aulz',q, Z, Z, e1, 3], aua, Si),
!

where w1, u2,ug are either @y, or QF' and w),ub,u} are either @, or Qg?, B

is defined in the same way as a above, and v, +' are the corresponding strings
consisting of [I]. If any of these sentential form is @,,, the system is blocked
after the communication, so we have

(Qfl17 461]7 5117@21705’07@227 46127 22,5/C,7l,<.’lfl,q,Z,Z,€1762>,’yls’(2)) = com
(7/,(.7:’,(1,Z,Z,el,eg>,a’C’,a’C,a’C,S4,ﬂ’C,ﬂ’C,ﬂ’C,54,5,7'5(2)),

where o' and ' contain the same number of A-s as stored in the counters of
M. 1If g is the accepting state, ¢ = ¢, the system can stop here by using
(2',qr,Z, 7 e1,e3) = 2' in G, or it can continue by chosing a new transition.
If this new transition moves the input head of M to the right, then M leaves the
symbol z' behind. In this case, ' becomes part of the string generated by I" by
using (z',q, Z,Z,e1,e2) = x'[y,q', ¢}, ch, e}, ey] when chosing a new transition.
If the input head does not move, the scanned symbol is the same, GG,,, choses the
new transition with (z',q, Z, Z,e1,e2) — [2',q', ¢}, ¢4, €}, €5]. The new transition
now can be simulated in the same way as we have described above.

From the above explanations and the way of the construction of the com-
ponents of I' we can see that all successful computations of M correspond to
a terminating derivation in I', and conversely, all terminating derivations in I’
correspond to a successful computation of M.

Now, if the recursively enumerable language L contains the empty word,

e € L,

we can add S — £ to the rules in P,,. This way the system also

generates the empty word, with an erasing rule, of course. Hence, the result. O

References

(1]

[9]

E. Csuhaj-Varju, J. Dassow, J. Kelemen, Gh. Paun, Grammar Systems.
A Grammatical Approach to Distribution and Cooperation, Gordon and
Breach, London, 1994.

J. Dassow, Gh. Paun, G. Rozenberg, Grammar Systems. Handbook of
Formal Languages, Vol. 2, Chapter 4, ed. by G. Rozenberg and A. Sa-
lomaa, Springer-Verlag, Berlin, 1997, 155-213.

S. Dumitrescu, Non-returning parallel communicating grammar systems
can be simulated by returning systems, Theoretical Computer Science,
165 (1996) 463-474.

P. C. Fischer, Turing machines with restricted memory access, Infor-
mation and Control, 9 (1966), 364-379.

J. E. Hopcroft, J. D. Ullman, Introduction to Automata theory, Lan-
guages and Computation, Addison-Wesley, 1979.

N. Mandache, On the computational power of context-free PCGS, sub-
mitted.

Gh. Paun, Parallel communicating grammar systems: recent results,
open problems, Acta Cybernetica 12 (1996), 381-395.

Gh. Paun, L. Santean, Parallel communicating grammar systems: the
regular case, Ann. Univ. Bucharest, Ser. Matem.-Inform. 38, 2 (1989)
55-63.

A. Salomaa, Formal Languages, Academic Press, New York, 1973.

10

