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Abstract 

Because of their stringent sequence specificity, the 3C-like proteases from tobacco etch virus 

(TEV3) and human rhinovirus are often used for the removal of affinity tags. The latter enzyme 

is rumored to have greater catalytic activity at 4°C, the temperature at which fusion protein 

substrates are usually digested. Here, we report that experiments with fusion protein and peptide 

substrates confirm this conjecture. Whereas the catalytic efficiency of rhinovirus 3C protease is 

approximately the same at its optimum temperature (30°C) and at 4°C, TEV protease is 10-fold 

less active at the latter temperature, due primarily to a reduction in kcat. 

 

Keywords: 3C protease; affinity tag removal; fusion protein protease; protease; PreScission 

protease; tobacco etch virus (TEV) protease. 
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Genetically engineered tags are frequently added to recombinant proteins to improve 

their yield, help protect them from proteolysis, enhance their solubility, and facilitate their 

purification [1]. Yet all tags, whether large or small, have the potential to interfere with the 

structure and biological activity of proteins. Consequently, reliable methods for removing them 

are needed. Although both chemical and enzymatic approaches have been used to cleave fusion 

proteins at specific sites, only the natural proteolytic enzymes have the requisite specificity to be 

broadly useful for this purpose. In recent years, the 3C-like proteases from certain RNA viruses 

have emerged as the reagents of choice. Two of the most popular are the tobacco etch virus 

(TEV) and human rhinovirus 3C (R3C) proteases [2].  

TEV and R3C proteases recognize and cleave related but distinct sequences [2]. To this 

day, arguments persist about which enzyme is the superior reagent for cleaving fusion proteins. 

A noteworthy advantage of TEV protease is that it tolerates a variety of amino acid residues in 

the P1' and P2' positions of its recognition site [3-5], whereas R3C exhibits a strict requirement 

for glycine and proline residues in these positions, respectively [6]. Consequently, in many cases 

TEV protease (but not R3C protease) can be used to generate a digestion product with no non-

native amino acid residues appended to its N-terminus. Nonetheless, it is common practice to 

digest fusion proteins overnight at 4°C [7,8], and it has been rumored that R3C protease has 

significantly greater catalytic activity at this temperature than does TEV protease [2,9]. 

Remarkably, however, no study has ever been carried out in which the temperature-dependence 

of the two enzymes has been directly compared. 

In the present study, two types of substrates were used to compare the activity of TEV 

and R3C proteases at different temperatures: kinetic parameters Km and kcat were derived from 

data obtained with synthetic peptide substrates, whereas fusion proteins were used to monitor the 
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temperature dependence of protease activity under “typical” reaction conditions. The synthetic 

oligopeptides TENLYFQ SGTRR and SLEVLFQ GPVRR (Genscript, Piscataway, NJ) were 

used as substrates to assay the activity of TEV (S219V) [10] and R3C proteases [11], 

respectively. The arrows indicate the sites of enzyme-mediated hydrolysis. The lyophylized 

peptides were dissolved in distilled water. The enzymes (1 mg/ml stock solutions) were diluted 

at least 50-fold with the 2X reaction buffer (50 mM sodium phosphate pH 7.0, 800 mM NaCl, 5 

mM DTT, 10% glycerol). Assays were initiated by mixing 20  l of the diluted protease (50-200 

nM final concentration) with 20  l of substrate solution (0.02-0.72 mM final concentration). 

Measurements were performed at a minimum of six different substrate concentrations bracketing 

Km. The reactions were incubated at 4°C or 30°C for 30 min and then stopped by the addition of 

160 µl 1% TFA. An aliquot was injected onto a Waters Symmetry 300 C18 reverse-phase 

chromatography column (4.6 x 250 mm) using an automatic injector. The substrates and 

cleavage products were separated with an increasing water-acetonitrile gradient (0-100%) in the 

presence of 0.05% TFA. The kcat values were calculated by assuming 100% activity for the 

enzymes. Kinetic parameters were determined by fitting the data obtained at less than 20% 

substrate hydrolysis to the Michaelis-Menten equation, using the Enzyme Kinetics Module of the 

SigmaPlot program (Systat Software, Inc. Chicago, IL). Standard deviations were calculated 

according to Boross et al. [12]. 

The kinetic measurements are reported in Table 1. They revealed that the Km of the two 

enzymes is similar at 4°C, but at 30°C the Km of R3C is 10-fold higher than that of TEV 

protease. However, the increase in Km for R3C at the higher temperature is accompanied by a 

concomitant 10-fold increase in the kcat. Consequently, the catalytic efficiency (kcat/Km) of R3C is 

about the same at both temperatures. On the other hand, the Km of TEV protease actually 
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decreases (i.e. apparent affinity increases) by 2-fold as the temperature changes from 4°C to 

30°C while the kcat rises by about 6-fold. The net result of these changes is that TEV protease 

exhibits approximately the same catalytic efficiency as R3C at 30°C. At 4°C, although the two 

enzymes have similar Km values, the kcat (and therefore also the kcat/Km) of TEV protease is 10-

fold lower than that of R3C at the same temperature.  

The kinetic data are supplemented by results obtained with fusion protein substrates. Two 

otherwise identical MBP-NusG fusion proteins containing a recognition site for either TEV 

protease (-ENLYFQ S-) or R3C protease (-LEVLFQ GP-) in the linker between the two 

domains were expressed and purified as described [5]. Experiments were performed at a series of 

temperatures ranging between 4°C and 40°C, as indicated in figure 1. The substrate 

concentration was 0.5 mg/ml (7  M), which is typical for the digestion of a fusion protein 

substrate. The enzyme concentration was either 200 nM (TEV) or 50 nM (R3C). Reactions were 

initiated by adding the enzymes to reaction buffer (50mM Tris pH 8.0, 0.5 mM EDTA, 1.0 mM 

DTT) containing the substrates and terminated after various times by the addition of SDS-PAGE 

sample buffer. The reaction products were separated by SDS-PAGE and stained with Coomassie 

Brilliant Blue. The band intensities of the substrates and products were quantified by 

densitometry using an Alpha Imager CCD camera and ImageQuant software (Alpha Innotech, 

San Leandro, CA). Initial velocities were calculated under conditions of less than 20% substrate 

hydrolysis.  

Figure 1 shows a plot of the initial reaction velocity vs. temperature for TEV and R3C 

proteases using fusion protein substrates. The R3C protease appeared to have an approximately 

4-fold higher maximum cleavage rate on the protein substrate as compared to that of TEV 

protease, as against a rather constant value of kcat/Km (table 1), likely due to the different sizes of 
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the substrates (polyprotein versus oligopeptide) as well as ionic strength in the reaction. In 

agreement with the kinetic data obtained from reactions conducted with peptide substrates, the 

turnover rate for the R3C protease exhibits little change between 4°C and 30°C whereas that of 

TEV protease increases steadily over this temperature range, reaching its optimum temperature 

at approximately 30°C. The activity of both enzymes begins to decrease above 30°C. The sharp 

drop in the activity of TEV protease can be attributed to denaturation of the enzyme [10]. It is 

unknown whether this is also the case for R3C and is currently under study. 

In conclusion, the experiments reported here unequivocally confirm, for the first time, 

that R3C is 10-fold more active than TEV protease at 4°C, the temperature at which fusion 

proteins are most often digested. The opposite directional change of the Km values for the 

proteases between 4°C and 30°C suggests that the enthalpic and entropic contributions to their 

substrate binding energy may be entirely different. This could be explained in part by more 

extensive interactions between R3C than TEV protease with their respective substrates, 

particularly in the S1'/P1' and S2'/P2' positions. If so, then it is unlikely that an endoprotease 

could be engineered to embody the most desirable characteristics of both enzymes: that is, R3C-

like kinetics at 4°C along with the relaxed specificity in the “prime” sites that is exhibited by 

TEV protease. 
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Figure legends 

Figure 1. Temperature Dependence of Initial Reaction Velocity. MBP-NusG fusion protein 

substrates were digested by TEV [A] or R3C [B] proteases at the indicated temperatures. In the 

respective insets (right), representative SDS‐PAGE gels are shown for uncleaved (Lane 1) 

and cleaved (Lanes 2‐10; 2, 5, 10, 20, 30, 40, 50, 60, and 120 min, respectively) substrates 

at 4°C. 
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3 Abbreviations used: DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid; MBP, 
maltose-binding protein; NusG, Aquifex aeolicus N-utilization substance G protein; R3C, 
rhinovirus 3C; TEV, tobacco etch virus; TFA, trifluoroacetic acid.  
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Table 1. Kinetic Parameters for Processing of Peptide Substrates by Rhinovirus 3C and 

TEV Proteases. 

Enzyme Temperature (°C) Km (mM) kcat (s-1) kcat/Km 

TEV 4 0.087 0.012 0.036 0.003 0.41 0.06 

TEV 30 0.037 0.011 0.22 0.01 6.95 1.79 

R3C 4 0.099 0.013 0.41 0.02 4.14 0.57 

R3C 30 0.391 0.071 2.38 0.14 6.09 1.16 

 

 

 


