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1 Abstract 

During embryonic development, the skin, the largest organ of the human body, and 

nervous system are both derived from the neuroectoderm. Consequently, several key 

factors and mechanisms that influence and control central or peripheral nervous 

system activities are also present and hence involved in various regulatory 

mechanisms of the skin. Apparently, this is the case for the ion and non-ion selective 

channels as well. Therefore, in this review, we shall focus on delineating the 

regulatory roles of the channels in skin physiology and pathophysiology. First, we 

introduce key cutaneous functions and major characteristics of the channels in 

question. Then, we systematically detail the involvement of a multitude of channels in 

such skin processes (e.g. skin barrier formation, maintenance, and repair, immune 

mechanisms, exocrine secretion) which are mostly defined by cutaneous non-

neuronal cell populations. Finally, we close by summarizing data suggesting that 

selected channels are also involved in skin diseases such as e.g. atopic dermatitis, 

psoriasis, non-melanoma cancers and malignant melanoma, genetic and 

autoimmune diseases, etc., as well as in skin ageing. 
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2 The skin and its key functions 

The skin is the largest barrier of the human body which protects the internal organs 

from various effects of the external environment, such as temperature changes, 

mechanic impacts, UV radiation and harmful pathogens. However, the skin is also 

our largest neuro-immuno-endocrine organ as it actively participates in the regulation 

of the body’s water content, body temperature and possesses a multitude of sensory, 

endocrine, and immune functions. Below, we introduce key aspects of cutaneous 

physiology (for details see Bukowsky 2010; Draelos and Pugliese 2011). 

 

2.1 The functional anatomy of the skin 

The skin is the largest organ of the integumentary system (the organ system that 

protects the body from damage) and is composed of multiple layers and cell types. 

 

Epidermis: The outermost layer of the skin is made of keratinocytes (providing the 

waterproofing and serving as key components of the “active” skin barrier); Merkel 

cells operating as mechanoreceptors; melanocytes which define skin color by the 

complex melanogenesis; and Langerhans cells which are professional antigen-

presenting cells of the skin immune system. In addition, afferent nerve endings for 

the sensation of touch, pressure, temperature as well as pain and itch also reach the 

epidermis. 

 

Dermis: The middle layer of the skin is a dense connective tissue composed of 

extracellular matrix components (collagens and elastic and reticular fibers) produced 

mainly by dermal fibroblasts. It is supplied by blood and lymphatic vessels and is 

densely innervated by both sensory afferent as well as motor efferent (which 

participate e.g. in vasoregulation) nerve fibers establishing a complex neuronal 

network. Of further importance, the pilosebaceous unit (hair follicles and sebaceous 

glands) and other appendages (sweat glands) are also located in this compartment. 

 

Hypodermis (or subcutis): The lowermost layer of the skin is formed by adipocytes, 

fibroblasts, and macrophages. Similar to the dermis, it is also supplied by blood 

vessels and nerves. 

 

2.2 Key functions of the skin 
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The various cell types of the skin layers form complex, multicellular communication 

networks, the proper function of which establishes the physiological skin 

homeostasis. These homeostatic mechanisms can be classified to 3 groups, i.e. 

barrier functions, neuroendocrine functions, and other functions (Figure 1).  

 

2.2.1 Barrier functions 

Possibly the most important function of the skin is the formation of the barrier 

(extensively reviewed in Elias and Feingold 2006). For a long time, it was believed 

that it is a “passive” function that originates from the unique structural features and 

the special anatomical properties of the skin. However, in the last few decades, it 

became increasingly accepted that the different types of cutaneous cells possess 

very important functions in generating a coordinated, “active” protection, thus forming 

a true first line of defense against the harmful impacts of the external environment 

such as e.g. physical environmental challenges (UV, temperature), microbial 

invasions, allergens, chemical irritants, etc. 

 

The barrier exhibits a complex nature; hence, we can distinguish among different 

levels of protection (Figure 2). Yet, the different levels constantly communicate and 

coordinate their actions to be able to act according to the following “needs”: 

 “Keep the barrier intact” 

 “Moisturize: attract and keep the water” 

 “Should the barrier be destroyed, regenerate and repair it” 

 “Let the valuable things penetrating the skin, both upward and downward” 

 “Do not let the bad things invading the skin and the body” 

 “Should the bad things penetrated, fight and destroy them” 

 

2.2.1.1 The physical-chemical barrier 

The key components of the outermost physical/mechanical barrier are the 

keratinocytes of the epidermis. During the course of their life-long, apoptosis-driven, 

physiological differentiation program, as they move “upward” from the deepest basal 

layer through the spinous (str. spinosum) and granular (str. granulosum) layers, their 

permeability to Ca2+ increases and the resulted elevation of intracellular Ca2+ 

concentration ([Ca2+]i) activates peptidases and convert pro-filaggrin into filaggrin. 

Filaggrin then aggregates various cytokeratins and other intermediate filaments in the 
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superficial cells which, after they have become anucleated (corneocytes), generate 

the solid mechanical/physical shield, i.e. the str. corneum, which is considered as the 

“real physical barrier” (Madison 2003; Proksch et al 2008; Jensen and Proksch 2009; 

Rawlings 2010). 

 

In the str. corneum, each terminally differentiated corneocyte is surrounded by a 

protein shell called the cornified envelope. This highly insoluble structure – which is a 

product of (again) Ca2+-dependent processes involving e.g. keratinocyte-specific 

transglutaminases – is composed of mainly loricrin and involucrin which form 

extensive links between each other and other filamentous structures of the cells 

(such as the above filaggrin and cytokeratins). In addition, a further stabilization of 

the corneocyte barrier is provided by corneodesmosomes, gap junctions, and other 

intercellular junctions formed by junctional proteins such as e.g. desmogleins, 

cadherins, envoplakin, etc. Importantly, the produced filaggrin (and possibly other 

proteins) will eventually be degraded in the corneocytes. The resulted amino acids 

will then be used to synthesize natural moisturizing factors (NMFs) which, due to their 

hygroscopic (water-holding) features, provide the proper hydration of the epidermis 

and hence, as a “mechanical shaping factor”, establish another key component of the 

physical barrier (Madison 2003; Proksch et al 2008; Jensen and Proksch 2009; 

Rawlings 2010). 

 

As a “morphological metaphor”, corneocytes can therefore be imaged as “bricks in 

the wall” to form the physical/mechanical barrier. It is common knowledge, however, 

that “bricks cannot be stabilized without a proper mortar”; in the skin, the mortar is 

formed by lipids of the epidermis. Indeed, in the lower spinous and granular layers, 

lipid-containing lamellar bodies are formed in the keratinocytes. During the 

maturation of keratinocytes towards the str. corneum, various (again, Ca2+-

dependent) enzymes degrade the outer envelope of the lamellar bodies thereby 

releasing (via exocytosis) their content to the interstitial space at the border of the str. 

granulosum and corneum. This process results in the establishment of the 

physical/chemical “mortar”, i.e. the continuous intercellular lipid layers of the 

epidermis. It should also be noted that involucrin and other cell-cell junction proteins 

of the corneocytes also serve as substrates for the covalent attachment of ceramide 

derivates resulting in the corneocyte-bound lipid envelope which binds both to the 
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cornified (protein) envelope and also to the intercellular lipid lamellae. Therefore, the 

constantly produced lipids (i.e. cholesterol, ceramides, and free fatty acids) – which 

are further supplemented by the high lipid content of the sebum, produced and 

released (to the skin surface) by the sebaceous glands – not only stabilize the 

“bricks”, but also provide additional waterproofing and physical protection to the skin 

(Elias and Feingold 2006; Proksch et al 2008; Rawlings 2010). 

 

Of great importance, the epidermal lipids also contribute to other “chemical” 

cutaneous homeostatic mechanisms such as e.g. setting the acidic pH. Furthermore, 

epidermal keratinocytes and sebocytes actively secrete additional factors exhibiting 

antimicrobial properties. These include 1) antimicrobial peptides (AMPs) such as e.g. 

the small cationic molecules defensins (which insert to bacterial walls and hence form 

“lethal” pores), LL-37 cathelicidin, cathepsins, etc.; and 2) antimicrobial lipids (AML) 

such as saturated (e.g., lauric acid, C12:0) and unsaturated (e.g., monounsaturated 

MUFA sapienic acid, C16:1Δ6) fatty acids (Gallo and Huttner 1998; Bardan et al 2004; 

Braff and Gallo 2006; Niyonsaba et al 2009). The AMPs and AMLs not only 

strengthen the chemical defense of the skin but, as members of the innate immunity, 

contribute to the complex inflammatory/immune processes organized by the skin 

immune system (see also below) 

 

2.2.1.2 The (micro)biological barrier 

Similar to other barriers seen in various body parts, the skin also has a rich resident, 

commensal bacterial flora including e.g. Propionibacterium acnes and 

Staphylococcus epidermidis (Gallo and Nakatsuji 2011; Kranich et al 2011; Littman 

and Pamer 2011). Traditionally, it was suggested, that these microbes have a 

relatively passive function; they populate their niches and “use up” the available food 

sources hence making it more difficult (if not impossible) for the infection and 

colonization of pathogenic microbes (this process is referred to as competitive 

exclusion) (Rioux and Fedorak 2006). However, the “commensal” relationship (i.e. 

beneficial for the bacteria yet mostly neutral for the skin) has recently been revisited 

and a rather “symbiotic” (i.e. mutually beneficial) association has been suggested. 

Indeed, it was recently shown that bacteria of the normal skin flora (including e.g. 

Propionibacterium acnes) secrete factors (e.g. propionicins, jenseniin G, acneicin, 

lactic acid) that possess bacteriostatic or even antibacterial properties against certain 
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pathogenic strains (e.g. some Gram-negative bacteria, yeasts and molds) (Faye et al 

2000; Miescher et al 2000; Cogen et al 2008). In addition, the skin commensal flora 

also seems to exert a continuous and dynamic action on the skin immune system; 

indeed, resident bacteria were shown to modulate AMP production of keratinocytes 

as well as cytokine production of other cutaneous immunocompetent cells (see also 

below) (Gallo and Nakatsuji 2011). Finally, it should also be noted that the constant 

physiological desquamation of the “dead” corneocytes not only strengthens the 

physical and biological barriers but also makes it difficult for the pathogenic 

microorganisms to establish permanent colonies. 

 

2.2.1.3 The immunological barrier 

Various immunocompetent cells and humoral factors establish the skin immune 

system (reviewed in Bos and Kapsenberg 1993; Kupper and Fuhlbrigge 2004). As 

immune cells, resident and infiltrating phagocytic cells, natural killer cells, mast cells, 

professional antigen-presenting cells (i.e. epidermal Langerhans cell, dermal 

dendritic cell) as well as T and B lymphocytes are localized in various skin 

compartments. In addition, a plethora of cytokines, chemokines, and other 

inflammatory mediators, as well as the aforementioned AMPs and AMLs, are 

synthesized in and hence released from practically all cell types of the skin. 

Therefore, upon infections, allergen exposure or barrier rupture, these innate and 

adaptive immunity components are co-activated to induce an orchestrated 

inflammatory and immune response (reviewed in Girardi 2007; Nestle et al 2009; 

Takeuchi and Akira 2010). 

 

Of further importance, keratinocytes and sebaceous gland-derived sebocytes – 

which, as shown above, play key roles in the establishment of the physical-chemical 

barrier – were introduced as additional sentinels of the skin immune system. This 

immune role is attributed not only to their production of AMPs and AMLs and the 

antimicrobial sebum (see above), but also to their capability to recognize external 

pathogens via the functional expression of all sorts of pathogen recognition 

receptors, including various members of Toll-like receptor family (TLRs), i.e. TLR1-6 

and 9 (Pivarcsi et al 2003; Miller 2008; Terhorst et al 2010). Activation of these 

receptors by various pathogenic microbes, via the release of numerous pro-

inflammatory agents, leads to the initiation of active defense mechanisms, and as a 
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result, adaptive and innate immune events are launched (Pivarcsi et al 2004; 

Kurokawa et al 2009). 

 

2.2.1.4 The barrier regeneration 

As was shown above, the proper formation, maintenance, and function of the 

physical-chemical epidermal barrier depends on the constant proliferation–

differentiation turnover of epidermal keratinocytes (and, via sebum production, of 

sebocytes). Upon disruption of the epidermal barrier – which, experimentally, can be 

performed by e.g. chemical agents (acetone, detergents), UV exposure, or 

mechanical tape stripping, which removes the corneocytes (Pinkus 1951) – the 

aforementioned processes are accelerated due to the active contribution of engaged 

keratinocytes and sebocytes in response to various agents released from the 

damaged cells (Proksch et al 2008; Rawlings 2010). 

 

However, skin injuries very often reach the deeper skin layers resulting in a much 

more complex response which can be exemplified by the wound healing processes 

(Epstein 1999). Indeed, during the multiple phases of wound healing (e.g. 

coagulation, inflammation, proliferation, remodeling) numerous cutaneous cell types 

(including infiltrating macrophages and polymorphonuclear neutrophils, microvascular 

endothelial cells, dermal fibroblasts, epidermal keratinocytes) are activated and their 

cell-specific proliferation–migration–differentiation programs are initiated (Enoch and 

Leaper 2005; Reinke and Sorg 2012). Of further importance, wound healing is not 

possible without the active contribution of intracutaneous stem cells located in 

various cutaneous compartments including e.g. the epidermis, sebaceous and sweat 

glands, and, possibly most importantly, in the hair follicles (Tiede et al 2007; Lau et al 

2009). It should also be noted that cellular regeneration programs and stem cell 

activities are orchestrated by a multitude of locally generated (by the above cell 

types), soluble mediators (e.g. growth and trophic factors, cytokines, chemokines, 

neuropeptides, neurotrophins, hormones) and concomitant changes in the 

expressions of cell surface molecules (e.g. receptors, adhesion molecules, integrins) 

recognizing these agents (Werner and Grose 2003; Gurtner et al 2008; Koh and 

DiPietro 2011). 
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Therefore, the delicate balance of cell/organ proliferation, survival, death, 

differentiation, and mediator production of practically all non-neuronal cell 

populations of the skin collectively establish the “life-long” regeneration and 

rejuvenation of the tissue and hence enables the skin barrier homeostasis (Gurtner et 

al 2008; Reinke and Sorg 2012). 

 

2.2.1.5 Related cutaneous diseases 

In light of the central role of barrier functions in skin biology, it is not surprising at all 

that impairment of the aforementioned balance results in pathological barrier 

formation and maintenance which eventually lead to the development of skin 

diseases. These conditions include e.g. irritant and allergic contact dermatitis, burns, 

ulcers, etc. On the other hand, several skin immune abnormalities may secondarily 

impair the epidermal skin barrier such as seen e.g. in Mycosis fungoides and in the 

autoimmune pemphigus vulgaris. However, the consequences of the very often co-

existing impaired skin barrier and cutaneous inflammatory/immune responses may 

establish positive feed-back loops. These autocatalytic mechanisms, in turn, result in 

the development of such high-prevalence, chronic inflammatory “barrier diseases” as 

the atopic dermatitis (AD) and psoriasis (reviewed in Proksch et al 2008; 

Boguniewicz and Leung 2011). 

 

Finally, skin tumors should also be mentioned. As in many organs, defective 

differentiation and/or uncontrolled proliferation of cutaneous cells may lead to the 

development of tumors. In the skin, non-melanoma skin cancers, i.e. basal cell 

carcinoma (BCC) and squamous cell carcinoma (SCC), and malignant melanomas 

establish the major groups of tumors with increasingly growing incidence 

(Samarasinghe and Madan 2012; Tremante et al 2012). It is also noteworthy that 

stem cells which otherwise play key roles in wound healing are also implicated in skin 

tumor formation. Since wound repair and tumorigenesis both depend on 

intracutaneous communication networks of skin cells, the proper control of the inter- 

and intracellular signaling pathways are of key importance in successfully preventing 

tumor formation (Arwert et al 2012). 

 

2.2.2 Neuroendocrine functions 
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Since this review will mainly focus on the roles of ion and non-ion selective channels 

expressed by non-neuronal cells, below, we only briefly summarize the 

neuroendocrine and other functions of the skin. 

 

Sensory functions: Besides establishing the complex cutaneous barrier against 

constant environmental challenges, the skin simultaneously operates as the largest 

sensory organ of the vertebrate body (reviewed in Roosterman et al 2006; Slominski 

et al 2008). Indeed, all skin compartments are densely innervated by sensory afferent 

fibers specialized for the sensation and then neuronal processing of mechanical 

signals (touch, pressure, vibration), osmotic and thermal (heat, cold) challenges, 

chemical agents as well as noxious and pruritogenic stimuli inducing pain and itch, 

respectively (reviewed in Ansel et al 1997; Paus et al 2006a; Roosterman et al 2006; 

Fuchs and Horsley 2008). However, the activation of these sensory neurons not only 

induce the classical, ortho-dromic transmission of the signals (i.e. generation and 

propagation of action potentials) to the central nervous system, but may also result in 

the anti-dromic release of certain neuropeptides (such as substance P [SP] and 

calcitonin gene-related peptide [CGRP]) (Ansel et al 1997; Luger 2002). As the 

“efferent” functions of the sensory afferents, these neuropeptides may act on 

cutaneous non-neuronal cell types and exert local immuno-endocrine, 

vasoregulatory, and trophic actions. In addition, sensory stimuli as well as the 

released neuropeptides may induce the liberation of a plethora of mediators from 

non-neuronal cells which, vice versa, may act on the sensory nerve endings. Of 

further importance, the local, intracutaneous accumulation of these mediators may 

also act on other non-neuronal cell types of the skin and hence may alter their 

proliferation–differentiation status (Ansel et al 1997; Luger 2002; Paus et al 2006a 

and b; Peters et al 2007; Fuchs and Horsley 2008). Therefore, the established multi-

directional, multi-cellular communication networks not only participate in the 

aforementioned formation and maintenance of the complex physical and 

immunological cutaneous barriers but also significantly modulate skin sensation 

processes (“sensory roles” of the non-neuronal cells) (Bíró et al 2007; Denda et al 

2007a; Denda and Tsutsumi 2011; Fernandes et al 2012). 

 

Motor functions: The skin is also supplied by “truly” efferent fibers which belong to the 

somatomotor group. These sympathetic and parasympathetic nerves control e.g. 
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cutaneous vasoregulation (dilation or constriction of blood vessels), piloerection, skin 

metabolic activities, exocrine functions, etc. (see also below) (Hodges and Johnson 

2009). 

 

Endocrine functions: The skin is also our largest endocrine organ (Roosterman et al 

2006; Slominski et al 2008). Indeed, the skin not only responds to the actions of 

circulating hormones but various cutaneous cells and tissues themselves produce a 

wide-array of hormones. Intriguingly, two peripheral equivalents of central 

hypothalamic – pituitary – target organ axes, i.e. Corticotropin Releasing Hormone 

(CRH) – Corticotropin (ACTH) – Cortisol; Thyrotropin Releasing Hornone (TRH) – 

Thyrotropin (TSH) – Thyroxine), are functionally expressed in the skin (Arck et al 

2006; Slominski et al 2008; Bodó et al 2010; Poeggeler et al 2010; Ramot et al 2011; 

Knuever et al 2012). These, mostly locally released and acting hormones, on the one 

hand, provide additional humoral components to the multi-cellular networks 

regulating multiple skin functions. On the other hand, these hormones also act as 

active members of the intracutaneous “stress response system” which, via systemic 

neuro-endocrine mechanisms, keeps continuous contact with its central counterpart, 

thereby establishing the “brain-skin connection” (Arck et al 2006; Paus et al 2006b). 

In addition to the above hormones, certain skin cells express the full enzymatic 

machinery to synthesize e.g. vitamin D, testosterone, and estrogens which mostly 

control local events of growth, differentiation, and metabolism of non-neuronal skin 

cells (Schmuth et al 2007; Zouboulis et al 2007; Slominski et al 2008; Tóth et al 

2011a). 

 

2.2.3 Other functions 

Transport functions: The proper barrier enables the up- and downward transport of 

respiratory gases, nutrients as well as topically applied products (pharmaceuticals, 

cosmeceuticals) between skin layers (Lademann et al 2011). 

 

Thermoregulatory functions: The skin plays multiple roles in thermoregulation. With 

the subcuticular adipose tissue (which is cca. 50% of body fat), the skin is the major 

thermal insulator of the body. In animals, insulation is further supported by neuronal 

piloerection. In addition, the aforementioned neuronal and humoral vasoregulatory 

mechanisms (vasodilation, vasoconstriction) regulate the large cutaneous blood 
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supply and thereby precisely control direct heat losing mechanisms (i.e. radiation, 

convection and conduction). Finally, evaporation (both insensible via skin pores and 

sensible via sweating) and its control by neuronal and humoral actions are also 

related to the skin (Johnson 2010; Nakamura 2011; Pitoni et al 2011). 

 

Exocrine functions: Skin appendages produce and release (to the skin surface) of 

sweat and sebum which exocrine products, as mentioned above, participate e.g. in 

thermoregulation, physical-chemical barrier formation, antimicrobial activity, etc. 
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3 A short introduction of ion and non-ion selective channels 

The channels are pore proteins found in various (surface, intracellular) membranes of 

the cells. They are specialized for the passive transport of certain molecules between 

the cellular compartments separated by the membranes in which they are located. 

 

Below we summarize the major channel groups and shortly introduce their key 

characteristics, with special emphasis on those which have regulatory roles in skin 

physiology. For the functional classification of channel proteins, we used the 

International Union of Basic and Clinical Pharmacology (IUPHAR) database. For 

details and references, please visit the IUPHAR website (http://www.iuphar-db.org) 

and corresponding textbooks of Physiology and Pharmacology. 

 

3.1 Ion channels 

Via these membrane pores, certain ions are transported (selectively or non-

selectively) along their electrochemical gradients. The classification of the ion 

channels is mainly based on their gating characteristics (i.e. the energy form of the 

stimulus that opens or, rarely, closes the given channel) and other properties. Yet, it 

should be emphasized that certain channels exhibit “mixed” gating features; e.g. we 

will mention such channels whose opening could be equally regulated by binding of 

the respective ligands, certain voltages, and other factors. 

 

3.1.1 Voltage-gated ion channels 

Like most of the ion channels, voltage-gated pores – whose gating properties are 

mainly regulated by alterations in the membrane potentials – were originally 

described on excitable cells (i.e. various neurons and muscle types) as key 

molecules involved in the generation of action potentials. However, it also became 

apparent that, besides this electrogenic role, they additionally participate in a 

multitude of other cellular functions not only on excitable but also on non-excitable 

cells. These mechanisms (as will be detailed below) involve, among others, secretion 

of various mediators, regulation of intracellular ionic homeostasis, cellular growth and 

differentiation, immune response, etc. With respect to the skin, voltage-gated Na+ 

channels (Catterall et al 2012a), Ca2+ channels (Catterall et al 2012b), K+ channels 

(Gutman et al 2012a) as well as Ca2+ activated K+ channels (Gutman et al 2012b), 

http://www.iuphar-db.org/
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two-pore domain K+ channels (Plant et al 2012), and cyclic nucleotide-gated (CNG) 

non-selective cationic channels (Biel et al 2012) are of greatest importance. 

 

3.1.2 Ligand-gated ion channels 

The common feature of these channels is that they are gated by binding of (more or 

less) specific and/or selective ligands to the respective binding sites. Actually, they 

function as ionotropic receptors for neurotransmitters, neuromodulators, hormones, 

and other mediators participating in autocrine, paracrine and endocrine intercellular 

communication mechanisms. Similar to other ion channels, these receptors were first 

described on neurons and only lately on non-neuronal cells of the body. These 

channels “signal” mostly via modulating the intracellular ionic homeostasis of their 

host cells which, in turn, initiates various downstream signal transduction pathways 

including alterations of activities of e.g. kinase systems, enzymes and factors 

involved in the regulation of gene expression, cellular metabolic enzymes, etc. 

 

Within this group, below, we review the cutaneous impact of the following ligand-

gated channels: 

 

Ionotropic cholinergic receptors: Nicotinic (nAChR) and muscarinic (mAChR) 

cholinergic receptors are specialized for mediating the cellular actions of 

acetylcholine (ACh), a key neurotransmitter and mediator. Among them nAChRs 

function as ligand-gated channels whereas mAChRs are seven-transmembrane (7-

TM) G-protein-coupled receptors. Human nAChRs are composed of different 

subunits, i.e. α1–α10, β1–β4, γ, δ, and ε which can be combined to 

pharmacologically distinct, homo- or heteropentameric, non-selective cationic 

channels (Millar et al 2012). 

 

Ionotropic glutamate receptors: Glutamate may act on metabotropic 7-TM (mGluR) or 

various ionotropic receptors. Within the latter group, the following non-selective 

cationic channels can be distinguished: N-methyl-D-aspartate receptors (NMDAR) 

exhibiting high permeability for Ca2+; α-amino-3-hydroxy-5-methyl-4-

isoxazoleproprionic acid receptors (AMPAR); and kainate receptors (Peters et al 

2012). 
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Ionotropic purinergic receptors: Extracellular ATP may exert its cellular action by 

binding to P2Y 7-TM metabotropic and P2X ionotropic purinergic receptors. So far, 

seven P2X receptors are identified; all of them function as non-selective, mostly 

Ca2+-permeable cationic channels (Khakh et al 2001; Evans et al 2012). 

 

Ionotropic 5-hydroxytryptamine receptors: Among the multiple 5-hydroxytryptamine 

(5-HT) receptors, only 5-HT3 receptors operate as ligand-gated, cation-selective, 

pentameric ion channels (Lummis et al 2012). 

 

Ionotropic gamma-aminobutyric acid receptors: Gamma-aminobutyric acid (GABA) 

signals via ionotropic GABAA and metabotropic GABAB receptors. GABAA receptors 

are Cl- selective, heteropentameric channels derived from seven main receptor 

subunits (α, β, γ, δ, ɛ, π and θ) (Olsen and Sieghart 2008; Olsen et al 2012). 

 

Glycine receptors: Similar to GABAA receptors, glycine receptors also function as 

pentameric Cl- channels (Lynch 2012). 

 

3.1.3 Transient receptor potential ion channels 

Although the IUPHAR database classifies transient receptor potential (TRP) ion 

channels among the voltage-gated ones (Clapham et al 2012), due to their “mixed” 

gating properties and, moreover, to their key roles in cutaneous physiology (see 

below), we decided to detail their characteristics under a separate subheading. 

 

TRP ion channels exhibit intriguing “mixed” gating properties as they function as 

broadly expressed polymodal “cellular sensors” (Clapham 2003). Indeed, they can be 

equally activated and/or modulated by e.g. alterations in temperature and pH, 

osmolarity, ionic concentrations, endogenous mediators, external chemical irritants, 

membrane potential changes, etc. (Ramsey et al 2006; Damann et al 2008; Vriens et 

al 2008; Vriens et al 2009). In addition, as we will see below, TRP channels not only 

act as “sensors”, but also as key “effectors” of various physiological (and often 

pathophysiological) processes such as e.g. cellular homeostasis of different ions, 

secretory mechanisms, sensory functions of the nervous system, inflammation, 

proliferation, differentiation, cell survival, etc. (Nilius and Owsianik 2010; Denda and 

Tsutsumi 2011; Moran et al 2011; Fernandes et al 2012). 
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Up to date, 28 mammalian members have been identified which can be further 

classified into the subfamilies of the canonical (or classical, TRPC), the vanilloid 

(TRPV), the melastatin (TRPM), the mucolipin (TRPML), the polycystin (TRPP), and 

the ankyrin (TRPA) groups (Clapham et al 2012). As detailed below, multiple TRPs 

participate in the regulation of skin functions. 

 

3.1.4 Other ion channels 

Within this group, we introduce the amiloride-sensitive, epithelial Na+ channels 

(ENaC) which belong to the ENaC/degenerin ion channel family of genetically related 

glycoproteins. ENaC can be formed by different combinations of four homologous 

subunits, named ENaCα, β, δ, and γ (de la Rosa et al 2000; Kellenberger and Schildl 

2002). The key unique feature of ENaC channels that they are mostly (if not 

exclusively) expressed on non-neuronal cells. 

 

3.2 Non-ion selective channels 

These membrane pores (which are, very often, also permeable for ions) enable the 

transport of various other molecules. Several members of the below families are 

involved in cutaneous functions. 

 

3.2.1 Aquaporins 

Aquaporins are a family of integral transmembrane proteins that facilitate osmotic 

fluid transport in numerous human tissues. They are involved in transepithelial and 

transcellular water movement, although more recent results point to their possible 

role in gas transport as well. Thirteen mammalian aquaporins have been identified to 

date, which can be classified into two groups; i) aquaporin molecules that only 

transport water (AQP-1, AQP-2, AQP-4, AQP-5 and AQP-8) and ii) aqua-glyceroporin 

molecules that also transport glycerol and other small molecules such as lactic acid 

(AQP-3, AQP-7, AQP-9 and AQP-10) (Hara-Chikuma and Verkman 2008a). 

 

3.2.2 Connexins 

Connexins (Cx) are transmembrane proteins that homo- or heterosextamerize on the 

plasma membrane to form the hemi-channel connexons. Connexons on adjoining 

cells associate to form gap junctional channels, and allow the direct passage and 

exchange of ions, secondary messenger molecules (cAMP, IP3), energy sources 
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(ATP, GTP), reducing/oxidizing agents (glutathione) and nutrients (glucose, amino 

acids) between cells. Therefore, gap junctions are key molecules of cell–cell 

communications (Proksch et al 2008; Xu and Nickolson 2012). 

 

3.2.3 Pannexins 

Pannexins (Panx) are mammalian orthologs of the invertebrate gap junction proteins 

innexins (Panchin et al 2000). However, pannexins do not take part in the formation 

of gap junctions; rather they form single membrane channels in cellular 

communication with the environment (Sosinky et al 2011). To date, three Panxs have 

been described: Panx1 appears to be ubiquitously expressed whereas Panx2 was 

mostly found in the adult brain. Panx3 expression was identified in osteoblasts, 

synovial fibroblasts, whole joints of mouse paws, and cartilage from the inner ear 

(Baranova et al 2004) as well as in cartilage, the heart, and, of great importance, 

human skin (Penuela et al 2007). Panx1 has been implicated in numerous cellular 

functions such as immune response, tumorigenesis, apoptosis, and ischemic cell 

death. In addition, Panx2 and Panx3 have shown to take part in the differentiation 

and development of tissues which express these channels (reviewed in Penuela et al 

2012a). 
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4 Roles of channels in skin physiology and in certain dermatoses 

In this chapter, we provide an extensive review on the roles of various ion and non-

ion selective channels in the regulation of certain functions of the skin. Since the 

involvement of a multitude of (mostly voltage-gated and TRP) ion channels in 

sensory neuron-coupled functions (such as e.g. thermosensation, pain, itch) are 

extensively detailed in numerous comprehensive reviews, below, we focus on 

defining the roles of the channels on non-neuronal cells (summarized in Table 1). In 

addition, we present data on the potential impact of these molecules in certain skin 

diseases (summarized in Table 2). 

 

4.1 Roles of channels in epidermal physical-chemical barrier functions and barrier 

recovery 

As we introduced above (under 2.2.1.), the formation, maintenance, and recovery of 

the epidermal physical-chemical barrier are mainly determined by the proper, [Ca2+]i-

dependent differentiation program of the epidermal keratinocytes resulting in the lipid-

embedded layers of corneocytes. Therefore, in this chapter, we introduce roles of 

channels (which regulate intracellular ionic homeostasis) in controlling growth, 

differentiation, and survival of keratinocytes. Moreover, we present findings of animal 

experiments aimed at defining rate of recovery after barrier insults. Finally, since 

sebaceous gland-derived sebum production is an additional factor of the chemical 

epidermal barrier, we also detail the related channel physiology of sebocytes. 

 

4.1.1 Voltage-gated channels 

4.1.1.1 Voltage-gated Ca2+-channels 

The main subunit of the L-type voltage-gated Ca2+ channels, Cavα1C, was identified in 

mouse and human epidermis in situ (Denda et al 2006). In addition, functional Cav 

channels were found on cell cultures of normal human epidermal keratinocytes 

(NHEKs) (Denda et al 2003b; Denda et al 2006). Of great importance, in hairless 

mice, topical application of Cav channel antagonists (nifedipine and R-(+)-BAY 

K8644) to mechanically injured skin (tape stripping) accelerated barrier recovery 

whereas treatment with a Cav channel agonist (S-(-)-BAY K8644) delayed barrier 

repair (Denda et al 2006). Likewise, topical application of Ca2+ on the skin after str. 

corneum barrier disruption delayed the recovery of the barrier which effect was 

prevented by the co-administration of the Cav channel antagonists nifedipine and 
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verapamil (Lee et al 1991). In good agreement with these findings, Cav channels 

were shown to mediate the effects of adrenergic β2 receptor agonists to inhibit barrier 

repair (Denda et al 2003b; Denda et al 2006). 

 

Interestingly, in a retrospective case-control study, chronic (>2 years) intake of Cav 

channel blockers (nifedipine, felodipine, and amlodipine) was found to be significantly 

associated with both the exacerbation as well as the precipitation of new-onset 

psoriasis (Cohen et al 2001), a skin diseases with altered keratinocyte functions and 

impaired epidermal skin barrier (reviewed in Proksch et al 2008; Boguniewicz and 

Leung 2011). 

 

Collectively, these findings suggest that proper Cav channel activation is a key factor 

in the [Ca2+]i-dependent events of keratinocyte differentiation and hence epidermal 

mechanical barrier formation. However, the above results with the application of Cav 

channel agonists/antagonist and of Ca2+ to mechanically injured skin implies that 

extreme accumulation of Ca2+ in the keratinocytes may lead to impaired keratinocyte 

differentiation and hence barrier recovery (see also under 4.1.5.) 

 

4.1.1.2 Ca2+-activated K+-channels 

Various Ca2+-activated K+-channels (KCa) were implicated in the regulation of growth 

and differentiation of epidermal keratinocytes. Indeed, KCa channels were identified 

on both human and mouse epidermis in situ and also on NHEKs. The activation of 

this 70 pS conductance KCa channel was shown to be indispensible for the effect of 

elevated extracellular Ca2+-concentration ([Ca2+]e) to induce keratinocyte 

differentiation (Mauro et al 1997). In addition, on cultured human immortalized 

HaCaT keratinocytes, a large-conductance (170 pS) KCa channel (BK) (IUPHAR 

nomenclature: KCa1.1) was detected and was implicated in the establishment of 

resting membrane potential; therefore, these channels may also control Ca+-influx 

and differentiation (Nguyen and Markwardt 2002). Furthermore, [Ca2+]e or vitamin D 

induced differentiation of NHEKs were shown to upregulate mRNA levels of the 

intermediate-conductance KCa (IK1) (IUPHAR nomenclature: KCa3.1) channel 

(Manaves et al 2004) which were suggested to play a central role in linking changes 

in membrane potential to the growth and differentiation of HaCaT keratinocytes 

(Koegel and Alzheimer 2001). 
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4.1.2 Ligand-gated channels 

4.1.2.1 nAChRs 

Practically all cell types of the skin express nAChRs which control a plethora of 

cutaneous functions. These were detailed in comprehensive reviews (Kurzen et al 

2004; Grando et al 2006; Curtis and Radek 2012); therefore, below, we only highlight 

the most important nAChR-coupled functions. 

 

Keratinocytes, as one of the major extra-neuronal sources, were shown to produce 

and release ACh (Grando et al 1993), similar to a multitude of cutaneous cells which 

express the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) (Wessler et 

al 2003). In addition, an upward (i.e. towards the str. corneum) concentration gradient 

of free ACh was detected in the epidermis (Nguyen et al 2001), in parallel with the 

also upward epidermal Ca2+ gradient (Hennings et al 1980; Lansdown 2002). Of 

further importance, in situ expressions of multiple nAChR subunits were identified in 

the human epidermis; α3, α5, α9, and β2 subunits were localized mainly to the basal 

layers whereas α7, α10, β1, and β4 subunits were found in the str. spinosum and 

granulosum (Nguyen et al 2001; Kurzen et al 2004). 

 

That the above extra-neuronal nAChR-coupled cholinergic system is indeed 

functional in keratinocytes was shown in numerous studies. In NHEKs, nicotine 

increased Ca2+ influx and increased cellular differentiation (upregulation of 

expression of keratin 10, transglutaminase type I, involucrin, and filaggrin as well as 

induction of cornified envelop formation) (Grando et al 1996). As a possible 

mechanism of action of nicotine, in organotypic keratinocyte cultures, inhibition of α9 

subunit was shown to markedly inhibit epidermal differentiation, suppress 

expressions of proteins involved in epidermal cell-cell contacts, and induce lipid 

accumulation in the basal layers suggesting barrier disruption (Kurzen et al 2005; 

Kurzen et al 2007). In line with these findings, lower levels of cell adhesion molecules 

(cadherins, catenins) were detected in epidermis of α9 (as well as α3) knockout mice 

(Nguyen et al 2004). Consequently, stimulation of nAChRs resulted epidermal 

thickening and higher lipid content of the corneal layer (Kurzen et al 2005; Kurzen et 

al 2007). 

 



Oláh, Szöllősi, Bíró  The Channel Physiology of the Skin 
_________________________________________________________________________________ 

24 
 

Furthermore, as was shown in cultured keratinocytes and knockout animals, 

elimination of α7 receptor activities or levels also inhibited differentiation (suppression 

of levels of filaggrin, loricrin, and cytokeratins). In addition, decreased levels of 

apoptosis markers (caspase-3), but increased expressions of proliferation markers 

(Ki-67, proliferation cell nuclear antigen [PCNA]) were detected in epidermis of α7 

knockout mice (Arredondo et al 2002). It is concluded therefore that cutaneous ACh 

signaling, most probably by inducing Ca2+ influx to keratinocytes via multiple nAChR 

channels, plays a key role in inducing terminal epidermal differentiation and hence 

barrier formation. 

 

However, topical application of the nAChR agonist nicotine to the skin hairless mice 

delayed the barrier repair after tape stripping (Denda et al 2003a). Furthermore, 

topical administration of nicotine to mouse skin also resulted in a marked suppression 

of AMP production (Radek et al 2010; Curtis and Radek 2012) which, in turn, may 

lead to barrier impairment (see also below). The possible explanation(s) for these 

quite “unexpected” findings will be provided under 4.1.5. 

 

4.1.2.2 Ionotropic glutamate receptors 

Among these ion channels, certain NMDARs and AMPARs are expressed in 

epidermal keratinocytes. Indeed, in human skin, the NMDAR1 subunit (IUPHAR 

nomenclature: GluN1) was found in all layers of the epidermis; the greatest 

expression was located to the granular layer (Fischer et al 2004a; Fischer et al 

2004b). NMDAR1 was also identified on cultured NHEKs and HaCaT keratinocytes 

(Morhenn et al 1994; Fischer et al 2004a), especially at the site of cell-cell contacts 

(Nahm et al 2004). NMDAR1 expressed by cultured keratinocytes is functional since 

the application of NMDA resulted in elevation of [Ca2+]i which was suppressed by 

MK-801, an NMDAR inhibitor (Fuziwara et al 2003; Nahm et al 2004). Moreover, it 

appears that the physiological NMDAR-coupled signaling mechanisms are 

indispensible for proper growth and differentiation of keratinocytes. Indeed, treatment 

of NHEKs with MK-801 markedly suppressed the expression of differentiation 

markers cytokeratin 10 and filaggrin (Fischer et al 2004a; Fischer et al 2004b). 

 

Interestingly, in hairless mice, topical application of glutamate (Denda et al 2003a), 

aspartate (non-specific glutamate receptor agonists), and NMDA (Fuziwara et al 
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2003), unlike AMPA, delayed the barrier recovery after disruption with tape stripping 

which effect was effectively abrogated by the co-administration of MK 801 and D-AP5 

(another NMDAR antagonist). Of further importance, topical administration of 

NMDAR antagonists alone accelerated the barrier repair (Fuziwara et al 2003). Since 

epidermal keratinocytes are able to synthesize and release glutamate (Fischer et al 

2009) and, furthermore, barrier injury markedly increased the release glutamate from 

mouse skin (Fuziwara et al 2003), it is proposed that the ionotropic glutamatergic 

signaling of keratinocytes plays a key role in the processes of barrier damage. This 

idea is further strengthened by presenting that NMDAR antagonists specifically 

inhibited the actions of oleic acid to pathologically increase transepidermal water loss 

(indicator of barrier impairment) and to induce keratinocyte hyperproliferation in mice. 

Furthermore, in cultured NHEKs, NMDAR inhibitors likewise inhibited the effects of 

oleic acid to elevate [Ca2+]i and to stimulate production of IL1α (Katsuta et al 2009) 

which cytokine, along with ATP, is regarded as a “mediator” of barrier disruption 

(Wood et al 1996). The complex role of NMDAR-coupled mechanisms in barrier 

formation and repair will be discussed under 4.1.5.). 

 

4.1.2.3 P2X receptors 

Multiple ionotropic P2X receptors were identified in the skin and were implicated in 

various skin functions. Since a recent paper (Burnstock et al 2012) reviewed 

characteristics of the cutaneous purinergic system, we highlight only major 

components of it. 

 

Several P2X receptors were detected in human epidermis and cultured NHEKs. The 

expression of mRNA specific for P2X2, P2X3, P2X5, and P2X7 receptors were 

increased in differentiated cells. Since P2X agonists elevated [Ca2+]i, it is proposed 

that multiple P2X receptors might be involved in the regulation of epidermal 

differentiation (Inoue et al 2005). 

 

Indeed, in normal rat epidermis, P2X5 receptors were found to be highly expressed in 

proliferating and differentiating epidermal keratinocytes in basal and suprabasal 

layers whereas P2X7 receptors were associated with terminally differentiated 

keratinocytes in the str. corneum. In addition, expressions of P2X5 receptors were 

found to be increased in the regenerating epidermis (Greig et al 2003) 
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Of further importance, similar to the above ACh and glutamate induced mechanisms, 

ATP was also shown to delay barrier recovery in hairless mice via the stimulation of 

another purinergic receptor, P2X3, also functionally expressed by epidermal 

keratinocytes. Consequently, inhibitors of P2X3 receptors accelerated skin barrier 

repair and prevented epidermal hyperplasia induced by skin barrier disruption (Denda 

et al 2002a). The significance of these data will be discussed under 4.1.5. 

 

4.1.2.4 5-HT3 receptors 

5-HT3 receptors were localized to basal epidermal keratinocytes in human skin in situ 

(Lundeberg et al 2002; Nordlind et al 2006), yet, as of today, we lack information 

about the functional role of these receptors in epidermal biology. However, as shown 

below (under 4.6.2.2.), altered expression patterns were observed in psoriatic (but 

not in AD) skin. 

 

4.1.2.5 GABAA receptors 

As we detailed above, the modulation of [Ca2+]i homeostasis of epidermal 

keratinocytes via various ion channels is a key factor in regulating the physical 

epidermal barrier. It appears, however, that the control of Cl- influx to keratinocytes 

establishes an additional mechanism. Indeed, GABAA receptors were identified in 

mouse epidermis (Denda et al 2002b). In addition, in the aforementioned hairless 

mouse model, topical application of GABA accelerated barrier repair and prevented 

epidermal hyperplasia via the stimulation of epidermal GABAA receptors (Denda et al 

2002b; Denda et al 2003a). In line with these findings, GABA induced Cl- influx to 

NHEKs which was blocked by the GABAA receptor antagonist bicucullin. Since GABA 

can be synthesized by human keratinocytes and dermal fibroblasts (Canellakis et al 

1983; Ito et al 2007) and hence can be released upon skin barrier injury, it can be 

postulated that cutaneous non-neuronal GABA-ergic signaling acts as a key 

autocrine regulator of epidermal barrier homeostasis – just as described for locally 

produced and released ACh, glutamate, and ATP and their ionotropic receptor-

coupled signal transduction mechanisms (for details, see also 4.1.5.). 

 

4.1.2.6 Glycine receptors 
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Glycine receptors, another group of ligand-gated Cl- channels, are also involved in 

barrier regeneration. In hairless mice, topical application of glycine, similar to the 

effect of GABAA receptor stimulation, accelerated the barrier repair after tape 

stripping which effect was completely prevented by the glycine receptor antagonist 

strychnine (Denda et al 2003a). 

 

4.1.3 TRP channels 

Numerous TRP channels exhibit permeability for Ca2+, hence significantly modulate 

cellular Ca2+ homeostasis (Holzer 1991; Szallasi and Blumberg 1999; Caterina and 

Julius 2001; Clapham 2003; Dhaka et al 2006; Nilius and Mahieu 2006; Ramsey et al 

2006; Nilius et al 2007; Vriens et al 2009). As detailed above, alterations in the [Ca2+]i 

markedly affect proliferation and differentiation programs as well as of survival and 

mediator production of various skin cells (Hennings et al 1980; Lansdown 2002; 

Proksch et al 2008; Tóth et al 2009b). Therefore, besides the well-appreciated 

contribution to sensory neuron-coupled sensory processes (e.g. pain, itch) detailed in 

numerous comprehensive reviews, the functional expression of Ca2+-permeable TRP 

channels on several non-neuronal skin cell types implicate their roles in controlling 

cutaneous growth and differentiation. 

 

4.1.3.1 TRPV1 

TRPV1, the heat-sensitive (>43 oC) “capsaicin receptor”, was originally described on 

nociceptive sensory neurons (Caterina et al 1997, 2000) and was implicated in a 

multitude of sensory-neuron coupled processes including sensation of e.g. pain, itch, 

warm, chemical agents, etc. Moreover, TRPV1 was shown to be involved in 

neurogenic inflammation and inflammation-related thermal hyperalgesia (reviewed in 

Szallasi and Blumberg 1999; Caterina and Julius 2001; Clapham 2003; Dhaka et al 

2006; Vriens et al 2008, 2009). However, besides sensory neurons, an emerging 

body of evidence indicates that TRPV1 is widely expressed on several non-neuronal 

cell-types, including those of the skin. Indeed, expression of TRPV1 was 

demonstrated on epidermal and hair follicle keratinocytes, mast cells, Langerhans 

cells, sebocytes and endothelial cells (Bíró et al 1998a; Bíró et al 1998b; Birder et al 

2001; Denda et al 2001; Inoue et al 2002; Southall et al 2003; Amantini et al 2004; 

Bodó et al 2004; Bodó et al 2005; Stander et al 2004; Basu and Srivastava 2005; 

Tóth et al 2009a; Tóth et al 2009b; Tóth et al 2011a). 
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Functional TRPV1 channels were identified on cultured keratinocytes as well, where 

their stimulation by either capsaicin or heat induced membrane currents and the 

influx of Ca2+ resulting in the concomitant elevation of [Ca2+]i. These cellular actions 

were effectively inhibited by capsazepine, a TRPV1 antagonist suggesting the 

specific involvement of the channel (Inoue et al 2002; Southall et al 2003; Bodó et al 

2004; Bodó et al 2005; Radtke et al 2011). Furthermore, just as has been described 

on numerous extra-cutaneous cell types (Sanchez et al 2006; Prevarskaya et al 

2007), activation of TRPV1 (most probably via the resulting Ca2+-influx) on NHEKs 

decreased proliferation and increased apoptosis (Tóth et al 2011a) suggesting that 

these effects may all contribute to altered barrier functions. Indeed, activation of 

TRPV1 delayed the barrier recovery after tape stripping which effect was blocked by 

the topical application of capsazepine (Denda et al 2007b). Likewise, oral 

administration another TRPV1 antagonist, PAC-14028, also accelerated barrier 

recovery after mechanical and dermatitis-associated barrier injuries (Yun et al 2011). 

 

Currently, we lack information on the possible roles of TRP channels in the 

production of those structural lipids, which constitute the major portion of the 

epidermal chemical barrier. However, TRPV1 channels (and, as suggested by our 

preliminary observations, TRPV3 and TRPV4 as well) (Oláh et al 2009; Oláh et al 

2010; Ambrus et al 2011) are involved in the regulation of lipid-rich sebum production 

of the sebaceous glands. Indeed, TRPV1 was identified in the human sebaceous 

gland in situ (Bodó et al 2004; Stander et al 2004; Roosterman et al 2006; Zouboulis 

et al 2008; Tóth et al 2009b). In addition, stimulation of TRPV1 expressed on human 

sebaceous gland-derived immortalized SZ95 sebocytes (Zouboulis et al 1999) by 

capsaicin inhibited basal and arachidonic acid-induced lipid synthesis and 

suppressed expressions of multiple genes involved in cellular lipid homeostasis (Tóth 

et al 2009b). These data collectively argue for that TRPV1 inhibits the formation and 

the recovery of the physical-chemical skin barrier. 

 

4.1.3.2 TRPV3 and TRPV4 

TRPV3 is most abundantly expressed on epidermal keratinocytes; yet, it was also 

found on sensory neurons in co-expression with TRPV1 (Peier et al 2002b; Smith et 

al 2002; Xu et al 2002; Eid and Cortright 2009). TRPV4 was originally described as 
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an osmoreceptor expressed in various tissues including sensory neurons (Liedtke et 

al 2000; Strotmann et al 2000; Wissenbach et al 2000; Delany et al 2001) and 

keratinocytes (Suzuki et al 2003). Both TRPV3 and TRPV4 are activated by 

physiological, innocuous warm temperature ranges (>33°C for TRPV3 and cca. 

>30 °C for TRPV4) (Guler et al 2002; Peier et al 2002b; Smith et al 2002; Watanabe 

et al 2002; Xu et al 2002; Benham et al 2003; Eid and Cortright 2009) and their 

genetic deletion results in altered sensation of thermal stimuli (Todaka et al 2004; 

Lee et al 2005; Moqrich et al 2005). 

 

TRPV3 and TRPV4 are implicated in the regulation of the physical-chemical 

epidermal barrier. Indeed, TRPV3 was found to form a functional complex with the 

receptor of epidermal growth factor (EGF), which is indispensable for the 

physiological formation of the barrier. Moreover, deletion of TRPV3 resulted in 

impaired epidermal barrier formation (e.g. thinner cornified envelope, decreased 

transglutaminase activity) (Cheng et al 2010). In addition, temperature ranges 

activating TRPV3 and TRPV4 as well as agonists of TRPV4 (but, interestingly, not of 

TRPV3) accelerated barrier recovery after tape striping (Denda et al 2007b). The 

barrier promoting role of TRPV4 was also verified by employing temperature 

challenges and specific agonists on cultured NHEKs and human skin cultures (Kida 

et al 2011).  

 

Of further importance, TRPV4 was found to co-localize and interact with junctional 

proteins (β-catenin and E-cadherin) which further suggest its role in the formation of 

the epidermal barrier (Kida et al 2011). In support of this proposal, in TRPV4 KO 

mice, leaky cell-cell junctions and delayed actin rearrangement and stratification were 

observed which were associated with reduced [Ca2+]i levels and suppressed Rho 

activation (Sokabe et al 2010; Sokabe and Tominaga 2010). 

 

4.1.3.3 TRPV6 

The Ca2+-selective TRPV6, a non-thermosensitive member of the TRPV family, was 

also shown to promote epidermal differentiation and, most probably, barrier 

formation. Indeed, silencing of TRPV6 impaired keratinocyte differentiation 

(decreased expression of cytokeratin 10, involucrin and transglutaminase 1; impaired 

formation of intercellular contacts and stratification) induced by the elevation of 



Oláh, Szöllősi, Bíró  The Channel Physiology of the Skin 
_________________________________________________________________________________ 

30 
 

[Ca2+]e (Lehen'kyi et al 2007). Moreover, TRPV6-mediated Ca2+-influx was shown to 

be involved in mediating the differentiation-stimulatory effects of vitamin D3 (Bouillon 

et al 2006; Lehen'kyi et al 2007). Interestingly, treatment of NHEKs with Avène 

Thermal Spring water (TSW), which was shown to be beneficial in various human 

dermatoses, increased TRPV6 channel expression and initiated a TRPV6-mediated 

Ca2+-entry that resulted in differentiation (increased expression of involucrin and 

cytokeratins 1 and 10) (Lehen'kyi et al 2011). In accordance with these findings, the 

skin of TRPV6 KO mice displays fewer and thinner layers of str. corneum, decreased 

total Ca2+-content, and loss of the normal Ca2+-gradient in the skin (Bianco et al 

2007). 

 

4.1.3.4 TRPC channels 

Various TRPC channels (TRPC1, TRPC4-7) were found to be expressed in 

keratinocytes (Bezzerides et al 2004; Cai et al 2005; Fatherazi et al 2007), where 

their expression levels showed marked dependence on differentiation status of the 

cells (Cai et al 2005; Cai et al 2006; Fatherazi et al 2007). Among them, TRPC1 (Cai 

et al 2006; Beck et al 2008), TRPC4 (Beck et al 2008) and TRPC6 (Müller et al 2008) 

were shown to promote the differentiation of epidermal keratinocytes. Indeed, 

silencing of TRPC1 or TRPC4 prevented [Ca2+]e-induced differentiation (Beck et al 

2008). Moreover, TRPC6 activation by hyperforin induced NHEK differentiation and 

inhibition of cell proliferation (Müller et al 2008). Likewise, TRPC6 was shown to 

mediate (at least in part) the epidermal differentiation-promoting effects of triterpenes, 

which inhibit cancer cell growth of various cell types (reviewed in Shanmugam et al 

2012). Triterpenes increased Ca2+-influx and upregulated various differentiation 

markers in a TRPC6-dependent manner, and also elevated the expression of TRPC6 

in keratinocytes and in human skin explants (Woelfle et al 2010). 

 

4.1.3.5 TRPA1 

Like many other TRP channels, TRPA1 was first identified on sensory neurons (Story 

et al 2003; Kobayashi et al 2005). The channel can be activated by noxious cold 

(<17 °C) and other agents (e.g. mustard oil, allyl isothiocyanate, cinnamaldehyde, 

formalin, and nicotine) (Bandell et al 2004; Jordt et al 2004; McNamara et al 2007; 

Karashima et al 2009; Talavera et al 2009). Similar to its closest “functional relative”, 

i.e. TRPV1, TRPA1 was also shown to be involved in numerous sensory neuron-
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coupled processes such as e.g. thermosensation, pain, itch, neurogenic 

inflammation, etc. (Dhaka et al 2006; Nilius and Mahieu 2006; Ramsey et al 2006; 

Nilius et al 2007). 

 

Importantly, TRPA1 expression was also reported on epidermal keratinocytes. 

Exposure of NHEKs to low temperature (13-15 oC) or to TRPA1 agonists (allyl 

isothiocyanate or cinnamaldehyde) induced elevation of [Ca2+]e, which was prevented 

by the co-application of the TRPA1 antagonist HC030031; interestingly, these effects 

were more prominent on undifferentiated cells (Tsutsumi et al 2010). Moreover, 

treatment of NHEKs with icilin (activator of both TRPA1 and TRPM8, another cold-

sensitive channel, see below) caused alterations in the expressions of adhesion and 

extracellular matrix components as well as molecules regulating cell cycle, apoptosis, 

and differentiation (Atoyan et al 2009; Bíró and Kovács 2009). 

 

These data suggest that TRPA1 on keratinocytes may regulate the epidermal barrier. 

Indeed, following tape striping to mice, topical application of the above TRPA1 

agonists accelerated barrier recovery, which effect was prevented by pretreatment 

with HC030031. Interestingly, HC030031 alone delayed the barrier recovery which 

argues for the “constitutive” role of TRPA1 in epidermal barrier homeostasis. Local 

cooling of the skin (10-15 °C for 1 min) evoked similar effects, most probably via 

accelerated secretion of (barrier-forming) lamellar bodies at the interface of stratum 

granulosum and corneum; this action was also inhibited by the TRPA1 antagonist 

(Denda et al 2010b). 

 

4.1.3.6 TRPM channels 

TRPM8 is another cold sensitive (<25 °C) channel, originally found on a specific 

subset of sensory neurons which usually do not express TRPV1. The channel is 

considered as a major sensor of environmental cold stimuli and it can also be 

activated by menthol, eucalyptol or the synthetic “supercooling” agent icilin (McKemy 

et al 2002; Peier et al 2002a; Bautista et al 2007; Colburn et al 2007). 

 

Importantly, topical application of menthol or the TRPM8 agonist WS12 to mice 

potentiated the barrier recovery after tape stripping, which effect was blocked by the 

TRPM8 specific antagonist BTCT (Denda et al 2010a). Since TRPM8 was identified 
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on epidermal keratinocytes (Denda et al 2010a), these results argue for that (similar 

to the other cold receptor, TRPA1) TRPM8 is also involved in skin homeostasis. 

 

4.1.4 Non-ion selective channels 

4.1.4.1 Aquaporins 

Numerous APQs were shown to play key roles in various cutaneous functions. 

AQP3, the key aquaglyceroporin, regulate hydration of the skin, a major determinant 

of the physical properties of the epidermis (see reviewed in Hara-Chikuma and 

Verkman 2008a; Qin et al 2011). APQ3 is abundantly expressed and functionally 

localized in cultured keratinocytes (Sugiyama et al 2001) and to the basal and 

spinous layers (but, importantly, not in the str. corneum) of human and rat epidermis 

in situ (Frigeri et al 1995; Matsuzaki et al 1999; Sougrat et al 2002). In addition, 

AQP3 levels (as well as water and glycerol contents) were higher in proliferating 

mouse keratinocytes but were reduced upon [Ca2+]e or vitamin D3 induced 

differentiation (Zheng and Bollag 2003; Hara-Chikuma et al 2009).  

 

In perfect agreement with these findings, AQP3-deficient mice exhibit a characteristic 

skin phenotype such as dry, rough and aged skin appearance, reduced glycerol 

content and hydration of the epidermis (Ma et al 2002), impaired elasticity, and 

delayed barrier recovery after tape stripping (Hara et al 2002). Interestingly, 

expressions of differentiation markers and the differentiation process of keratinocytes 

as well as epidermal structure and lipid, amino acid, and ionic contents were not 

different from those of the wildtype animals (Hara et al 2002; Hara-Chikuma et al 

2009). Of further importance, the cutaneous malfunctions of AQP3-deficient mice 

could be corrected by oral administration of glycerol which points to an intrinsic defect 

in water-holding capacity of the skin due to the lack of glycerol transport (Hara and 

Verkman 2003). 

 

It is noteworthy that AQP3 was also identified in sebaceous glands (Frigeri et al 

1995). Since epidermal glycerol, mostly located to the str. corneum, is also derived 

from sebaceous glands (Fluhr et al 2003), further studies are invited to determine the 

relative contribution of AQP3 localized to sebaceous glands in the regulation of the 

glycerol homeostasis of the skin. 
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It should also be mentioned that other AQPs (e.g. AQP1, 9, and 10) were also 

identified in human and murine keratinocytes and epidermis (Sugiyama et al 2001; 

Boury-Jamot et al 2006; Rojek et al 2007). Yet, their functional role is not known.  

 

4.1.4.2 Connexins 

In animal models (and in different human skin conditions, see below), the central role 

of certain gap-junction-forming connexins in the establishment of the epidermal 

barrier was suggested (reviewed in Proksch et al 2008). Indeed, mice lacking the C-

terminal region of Cx43, the most abundantly expressed connexin form in the human 

epidermis, show a highly defective epidermal barrier, most probably due to 

suppressed filaggrin expression and hence impaired terminal differentiation of the 

epidermal keratinocytes (Maass et al 2004). On the other hand, downregulation of 

another connexin, Cx26, is required for barrier acquisition during development. 

Indeed, epidermal overexpression of Cx26 (which is hardly detectable in the healthy, 

adult epidermis) resulted in the development of psoriasiform hyperproliferation and 

infiltration of immune cells. Moreover, overexpression of Cx26 induced ATP release 

from keratinocytes which, in turn, delayed epidermal barrier recovery (Djalilian et al 

2006). 

 

4.1.4.3 Pannexins 

Expressions of Panx1 and 3 have been described both in human (Penuela et al 

2007) and murine (Celetti et al 2010) epidermal keratinocytes. Interestingly, the 

expression pattern of Panx1 changed in embryonic and newborn skin, with a higher 

expression found after birth (Panx3 expression showed no such alteration). 

Functionally, when overexpressed in organotypic rat keratinocytes, both Panxs 

decreased cell proliferation, whereas Panx1 also disrupted the architecture of 

organotypic epidermis and dysregulated the expression and cellular localization of 

cytokeratin 14 (Celetti et al 2010). Taken together, these findings suggest that certain 

Panxs (especially Panx1) are important factors in keratinocyte differentiation. 

 

4.1.5 The complex “channel” regulation of the epidermal barrier – Controversies, 

explanations, theories 

As detailed above, the delicate regulation of [Ca2+]i and the coupled Ca2+-dependent 

processes is the key event in controlling the physiological growth and differentiation 
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of keratinocytes. Correspondingly, numerous Ca2+-permeable channels were shown 

to promote the (terminal) differentiation of keratinocytes. These include voltage-gated 

Cav channels; KCa K+-channels; nAChRs subtypes α3, α7, and α9; NMDAR 

glutamate receptors; P2X5 and P2X7 purinergic receptors; and TRPC1, C4, C6 as 

well as TRPV6 (and possibly TRPV3, TRPA1, and TRPM8) TRP channels. 

 

However, although the formation and maintenance of the epidermal physical-

chemical barrier is based on the proper keratinocyte differentiation program, the 

activation of some of these channels (Cav channels, nAChRs, NMDARs, purinergic 

receptors) was shown to delay, whereas stimulation of others (TRPV4, TRPA1, 

TRPM8, and possibly TRPV3 and V6) accelerated the recovery of the barrier after 

mechanical disruption (Figure 3). 

 

As possible explanations for these quite unexpected findings, the followings could be 

listed: 

 As we presented above, keratinocytes are able to synthesize and release 

ACh, ATP, and glutamate. Moreover, an “upward” Ca2+-gradient was 

described in the epidermis. Therefore, these locally produced, 

autocrine/paracrine mediators constitutively promote the differentiation of 

keratinocytes, via the activation of their respective ionotropic, Ca2+-permeable 

receptors/channels and the concomitant increase in [Ca2+]i. 

 However, during mechanical disruption of the epidermis, the release of these 

endogenous agents from keratinocytes is markedly increased and the high-

level activation of their receptors may result in an excessive Ca2+ influx which 

impairs keratinocyte differentiation. It appears, therefore, that the 

intracutaneous “ACh-ATP-glutamate-Ca2+ tone” is indispensible for the 

maintenance of the healthy barrier; however, when this “fine-tuned tone” is 

pathologically augmented, these agents may start functioning as mediators of 

the barrier injury itself. 

 The validity of this theory is supported by experimental data obtained after 

topical administration of these agents as well as their agonists and antagonists 

to mechanically injured barrier (tape stripping) in mice. Indeed, topical agonists 

(by further increasing the already highly augmented “tone”) delayed barrier 
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recovery whereas antagonists (by normalizing the “tone”) accelerated the rate 

of recovery. 

 However, experimental data about the role of TRPV4, TRPA1, and TRPM8 

channels do not really fit to this theory. Namely, as detailed before, the 

activation of these (likewise) Ca2+-permeable channels also stimulated 

epidermal differentiation. Interestingly, topical application of their agonists after 

tape stripping – in contrast to the effects of ionotropic cholinergic, 

glutamatergic, and purinergic stimulations – accelerated barrier repair.  

 With respect to the promoting role of TRPV4 it was suggested that, due to its 

sensitivity to not only to moderate heat but also to osmotic challenges, it may 

act as part of the “keratinocytes sensory system” that recognizes water flux 

(Sokabe and Tominaga 2010). A possible support for this hypothesis could be 

that AQP3 water (and glycerol) channels are actively participating in the 

barrier regeneration processes by increasing water flux and water content 

within the epidermis. Nevertheless, the direct or indirect connection between 

TRPV4 and AQP3 has not yet revealed. 

 Also, further studies are needed to clarify the (most probably distinct) signaling 

pathways which are initiated after induction of TRPA1 or TRPM8 activities by 

agonists or by cooling of the skin surface. 

 

Finally, it should be mentioned that the induction of Cl--influx to keratinocytes by 

topical activation of GABA-ergic and glycinergic signaling mechanisms also 

accelerated barrier regeneration. As possible mechanisms of action, it can be 

postulated that the Cl--influx results in hyperpolarization of the cell membrane which 

(as a pro-proliferating factor) speeds up the turn-over of keratinocytes to “heal” the 

barrier. In addition, the Cl--mediated hyperpolarization may counterbalance the effect 

of the augmented “ACh-ATP-glutamate-Ca2+ tone” thereby preventing the excessive 

Ca2+ influx and its damaging consequences. 

 

Nevertheless, since modulation of the activities of these, rather complex, 

mechanisms may represent novel therapeutic approaches; further studies are 

urgently invited to (i) dissect the exact mechanistic details of their modes of action; 

and ii) explore their impact in such high-prevalence “barrier diseases” as AD or 

psoriasis. 
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4.2 Roles of channels in wound healing 

Like in the formation and regeneration of the epidermal physical-chemical barrier, 

multiple channels participate in the complex multi-cellular events of wound healing. 

 

4.2.1 Voltage-gated channels 

4.2.1.1 Voltage-gated and Ca2+-activated K+-channels 

All three members of the KCa channel family – i.e. large-conductance BK, 

intermediate-conductance IK, and small-conductance KCa – were identified on 

cultured human dermal fibroblasts. Moreover, activation of BK or IK KCa channels 

decreased the proliferation of fibroblasts and induced apoptotic changes by 

mitochondrial membrane potential disruption (but without the involvement of the 

caspase-dependent apoptotic pathways) (Yun et al 2010). In addition, nitric oxide 

(NO), which plays an important promoting role in wound healing (Shi et al 2003), was 

shown to stimulate BK KCa channel activity via the engagement of protein kinase A 

and G coupled signaling pathways in human dermal fibroblast (Lim et al 2005; Roh et 

al 2007) and via increasing cyclic-GMP in human hair follicle-derived dermal papilla 

fibroblasts (Nameda et al 1996). It appears, therefore, that KCa are involved in 

fibroblast-driven cutaneous wound healing. 

 

Other voltage-gated K+-channels (fast-inactivating A-type K+-channels; inward 

rectifier (Kir) K
+-channels; cell-to-cell contact-associated K+-channels) as well as Na+ 

channels (tetrodotoxin-sensitive Na+-channels) were also identified on human dermal 

fibroblasts; yet their functional roles were not revealed (Estacion 1991). 

 

4.2.2 Ligand-gated channels 

4.2.2.1 nAChRs 

Keratinocyte migration events, such as chemokinesis and chemotaxis, are key 

events of epithelial re-epithelialization during wound healing (Epstein 1999, Enoch 

and Leaper 2005; Reinke and Sorg 2012). Since locally produced ACh, which could 

be released during injury of the skin, may act as both a chemokine and a 

chemoattractant for cell migration (reviewed in Gando et al 2006), involvement of 

non-neuronal nicotinergic signaling in wound healing is also proposed. Indeed, α3β2 

nAChR channels were shown to play central roles in mediating ACh-dependent 
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chemokinesis whereas α7 nAChRs were found to be involved in chemotaxis 

(Chernyavsky et al 2004). In addition, α7 channels (and a complex intracellular 

signaling pathway involving Ras/Raf-1/MEK1/ERK-mediated upregulation of 

integrins) were described to control directional migration of keratinocytes 

(Chernyavsky et al 2005). Finally, α9 nAChRs seem to be indispensable for the initial 

phase of epithelialization as the coupled signaling controls the dynamics and strength 

of cell-cell cohesion as well as the disassembly and reassembly of focal adhesions 

(Chernyavskyet al 2007). 

 

Another key cell type of wound healing is the dermal fibroblasts (see above, 2.2.1.4) 

which also possess a functional cholinergic system. Indeed, α3, α5, α7, β2, and β4 

nAChRs were described in cultured human dermal fibroblast. Among these, as 

reveled by gene silencing, mainly α3 nAChR channels were implicated in mediating 

the effects of nicotine to significantly modulate cell growth, cycling, and survival 

(upregulation of p21, cyclin D1, PCNA, Ki-67, caspase 3 and bcl-2 mRNA transcripts) 

as well as production of extracellular matrix components (upregulation of collagen 

type Iα1, elastin, and matrix metalloproteinase-1, MMP-1). Therefore, the cholinergic 

system may play a key role in controlling proper dermal fibroblast functions involved 

in tissue remodeling and wound healing (Arredondo et al 2003). 

 

4.2.2.2 GABAA receptors 

Of further importance, non-neuronal GABA-ergic mechanisms seem to not only 

stimulate epidermal barrier recovery, but also cutaneous wound healing. In a rat 

excisional open wound model, topical GABA, treatment, most probably via activation 

of GABAA receptors, was shown to effectively accelerate the healing process 

(especially its early phase) by stimulating keratinocyte reepithelialization and 

fibroblast organization as well as by upregulating fibroblast growth factor and platelet-

derived growth factor, implying extracellular matrix synthesis and remodeling of the 

skin (Han et al 2007). Further supporting its promoting role, GABA was shown to 

stimulate the synthesis of hyaluronic acid, a key component of the extracellular 

matrix, and to enhance the survival rate of the human dermal fibroblasts against 

oxidative stress (Ito et al 2007). 

 

4.2.3 TRP channels 
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4.2.3.1 TRPV1 

Although the expression of functional TRPV1 channels was described on human 

dermal fibroblasts (Kim et al 2006), the role of the channels in fibroblast-specific 

functions was not assessed. However, activation of TRPV1 by capsaicin in organ-

cultured human scalp hair follicles (HF) inhibited hair shaft elongation and induced 

premature follicular regression (catagen transformation) (Bodó et al 2005). In line 

with these data, stimulation of TRPV1 in HF-derived cultured outer root sheath (ORS) 

keratinocytes, which showed the greatest TRPV1 expression in the HF (Bodó et al 

2004; Stander et al 2004; Bodó et al 2005), resulted in suppression of proliferation 

and the onset of apoptosis. The growth inhibitory role of TRPV1 was further verified 

in TRPV1 knockout mice; i.e. a remarkable delay in the onset of the apoptosis-driven 

catagen retardation was observed when compared to the HF cycle of wildtype 

animals (Bíró et al 2006). 

 

As mentioned above, the HF (and especially the ORS compartment) is a rich source 

of stem cells activated during wound healing and tissue regeneration in general. 

Therefore, these data collectively suggest that TRPV1-coupled signaling rather 

inhibits wound healing, just as seen for the formation and regeneration of the 

epidermal barrier (see above). 

 

4.2.3.2 TRPV3 

As will be discussed below (see under 4.4.2.1.), activation of TRPV3 on keratinocytes 

by heat or various agonists results in the release of various mediators. Among these, 

NO, released upon TRPV3 stimulation of keratinocytes, was shown to promote 

keratinocyte migration in vitro and, as expected, wound healing in vivo (Miyamoto et 

al 2011). 

 

Furthermore, using the above HF organ-culture and ORS cell culture models, we 

have recently shown that activation of TRPV3, identical to the above action of 

TRPV1, inhibited hair shaft elongation and cellular proliferation and induced 

apoptosis (Borbíró et al 2011). Interestingly, TRPV3 KO mice exhibited only subtle 

and irregular hair abnormalities (wavy hair coat and curly whiskers) (Moqrich et al 

2005). However, a gain-of-function (Gly573Ser) mutation of the trpv3 gene resulted in 

a spontaneous hairless phenotype in DS-Nh mice (Yoshioka et al 2009) as well as in 
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hairless WBN/Kob-Ht rats (Asakawa et al 2006; Imura et al 2007). These results 

collective argue for the negative regulatory role of TRPV3 in the HF. 

 

4.2.4 Non-ion selective channels 

4.2.4.1 Aquaporins 

In addition to impaired epidermal differentiation and barrier functions, a delayed 

wound healing process was also seen in AQP3-deficient mice (Hara et al 2002; Hara-

Chikuma and Verkman 2008a), which suggests the role of AQP3 in promoting 

epidermal cell migration and proliferation. Indeed, by using AQP3-knockdown (small 

interfering RNA) NHEK cultures and AQP3-knockout mouse keratinocyte cultures 

(Hara-Chikuma and Verkman 2008c), it was proposed that the water, transported via 

AQP3, is likely to play a role in epidermal hydration and hence migration controlled 

by changes in the hydrostatic pressure. On the other hand, the transported glycerol 

may equally act as an energy source for ATP production; a precursor for fat and 

phospholipid synthesis (such as phosphatidylglycerol, a phospholipase D product, 

which is known to regulate keratinocyte proliferation and differentiation (Qin et al 

2011); and an osmotically active agent (Hara-Chikuma and Verkman 2008b). 

 

4.2.4.2 Connexins 

As shown above, Cx26 promotes proliferation (and inhibits differentiation) of 

keratinocytes. In line with these data, expression of Cx26 was found to be increased 

during the epidermal regeneration phase of wound healing (Brandner et al 2004), 

with an additional suppression of the level of the pro-differentiating Cx43 (Wang et al 

2007). 

 

4.3 Roles of channels in cutaneous immune functions and in the “formation” of the 

immunological barrier 

The skin possesses its own immune system which involves numerous cellular and 

humoral components of the innate and adaptive immunity. Immuno-competent cells 

express various ion channels which, as shown below, play significant roles in the 

regulation of cutaneous inflammatory and immune responses. 

 

4.3.1 Voltage-gated channels 
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Although expressions of genes encoding various voltage-gated K+-channels (Kir2.1, 

Kir2.4, and BK KCa α and β4 channel subunits), Na+-channels (Nav1.8 and Nav1.9 

channels as well as the auxiliary subunit Navβ1.1), and Ca2+-channels (the auxiliary 

subunit Cavα2δ2) were identified on human skin-derived mast cells (Bradding et al 

2003), their functional role is not known. Likewise, we lack data on whether the 

functional voltage-gated channels expressed by keratinocytes and fibroblasts may 

participate in the immune responses of these cells. 

 

4.3.2 Ligand-gated channels 

4.3.2.1 nAChRs 

Nicotinic AChR-coupled signaling was suggested to be involved in cutaneous 

inflammatory responses. As we mentioned above, topical administration of nicotine to 

mouse skin resulted in a marked suppression of AMP production which affect was 

reversed by the nAChR antagonist α-bungarotoxin (Radek et al 2010). Likewise, 

stimulated production of AMPs (LL-27 cathelicidin, β-defensin) in NHEKs was 

suppressed by ACh which effect was reversed by α-bungarotoxin. Of further 

importance, Chga knockout mice, which exhibit unopposed nAChR activation due to 

genetic deletion of the endogenous nAChR inhibitor, catestatin (Mahapatra et al 

2005), showed increased susceptibility to bacterial infections. These data propose 

that the proper intracutaneous cholinergic ACh-nAChR signaling not only regulates 

skin barrier formation and wound healing (see above, 4.1.2.1. and 4.2.2.1.), but also 

the innate host defense of the skin. Moreover, since activity of the neuronal and the 

non-neuronal, cholinergic systems is markedly increased during chronic stress, the 

pathological augmentation of the above mechanism may contribute to the highly 

elevated susceptibility to infection following prolonged stress (Radek et al 2010; 

Curtis and Radek 2012). 

 

4.3.2.2 P2X receptors 

Certain P2X receptors were also implicated in skin immune functions and 

inflammation. Indeed, in human skin vascular endothelial cells, among the several 

ionotropic purinergic receptors expressed by these cells, P2X4 was described in 

mediating the effect of ATP to increase Ca2+-influx and to induce the release of the 

pro-inflammatory and vasoactive NO and prostaglandin PGI2 (Yamamoto et al 2000). 

In addition, among P2X receptors, the human dermal microvascular endothelial cell-1 
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(HMEC-1) cell line was shown to strongly express P2X4, P2X5, and P2X7 receptors 

and weakly express P2X1 and P2X3 receptors (Seiffert et al 2006). Administration of 

ATPγS, a hydrolysis-resistant purinergic agonist, to HMEC-1 cells increased the 

release of numerous pro-inflammatory mediators (IL-6, IL-8, monocyte 

chemoattractant protein-1, growth-regulated oncogene-α) and upregulated the 

expression of intercellular adhesion molecule-1 (ICAM-1); these events were 

effectively prevented by various purinergic antagonists. 

 

Of further importance, intradermal administration of ATPγS in mice resulted in an 

enhanced contact hypersensitivity response and the induction of delayed-type 

hypersensitivity. Moreover, in cultured mouse Langerhans cells, ATPγS (in the 

presence of bacterial lipopolysaccharide [LPS] and granulocyte-macrophage colony-

stimulating factor) enhanced the antigen-presenting functions of the cells (Granstein 

et al 2005). In perfect line with these data, mice lacking the P2X7 receptor were 

shown to be resistant to contact hypersensitivity. Dendritic cells from P2X7-deficient 

mice failed to induce sensitization to contact allergens and did not release IL-1β, a 

key molecule in the sensitization process, in response to LPS and ATP (Weber et al 

2010). 

 

Expression of functional P2X7 receptors was also demonstrated both on human and 

mouse epidermal Langerhans cells (Georgiou et al 2005; Tran et al 2010). Activation 

of P2X7 on human Langerhans cells induced downstream signaling events, i.e. 

shedding of the low-affinity receptor for IgE (CD23), which effect was impaired in 

Langerhans cells obtained from subjects homozygous for the loss-of-function 

polymorphism in the P2X7 receptor (Georgiou et al 2005). 

 

On cultured NHEKs, extracellular ATP displayed a complex regulation of interferon-γ 

stimulated chemokine expression, with upregulation of chemokine ligand 2 (CCL2), 

CCL5 and CXC chemokine ligand 8 (CXCL8), and suppression of the receptor CXC 

chemokine receptor 3 (CXCR3), CXCL9, CXCL10, and CXCL11. It is suggested that 

P2X7 receptors are involved in this complex process (Pastore et al 2007). Of further 

importance, P2X7 receptors expressed by human keratinocytes were also implicated 

as key components of the signaling pathway (P2X7-SFK-Akt-CREB/ATF1) activated 

by LL-37 cathelicidin, a multifunctional immunomodulatory AMP, to augment the 
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production of immune mediators in response to microbial compounds (Nijnik et al 

2012).  

 

Stimulation of functional P2X7 receptors was also found to induce the release of the 

pro-inflammatory cytokine IL-6 on human skin fibroblasts (Solini et al 1999). In 

addition, augmented ATP release and enhanced P2X7 receptor-mediated cellular 

responses (including microvesiculation, enhanced fibronectin and IL-6 secretion, 

accelerated apoptosis) were demonstrated on dermal fibroblasts of type 2 diabetic 

subjects (Solini et al 2004). 

 

Collectively, it is proposed that ATP, when released after trauma, infection or 

exposure to contact allergens, may act as an endogenous adjuvant to enhance the 

immune response, most probably via P2X7-coupled signaling found on 

immunocompetent keratinocytes, Langerhans cells, microvascular endothelial cells, 

and fibroblasts. Interference with P2X7 receptors may therefore be a promising 

strategy for the prevention of allergic contact dermatitis and possibly other 

inflammatory skin conditions. 

 

4.3.2.3 GABAA receptors 

In NC/Nga mice, a murine model of AD, oral administration GABA reduced the 

development of AD-like skin lesions, most probably by suppressing serum 

immunoglobulin E and splenocyte IL-4 production (Hokazono et al 2010). Although it 

cannot be excluded that the above beneficial effects were due to the aforementioned 

effects of GABA to promote barrier formation and repair (which processes are highly 

impaired in AD), these results also propose the anti-inflammatory functions of the 

non-neuronal GABA-ergic signaling of the skin. 

 

4.3.3 TRP channels 

As mentioned above (2.2.2.), activation of sensory afferents in the skin results in the 

release of various neuropeptides (SP, CGRP) which – via the stimulation of 

immunocompetent cells of the skin (e.g. keratinocytes, sebocytes, mast cells, etc.) 

and the concomitant induction of liberation of various inflammatory mediators 

(cytokines, chemokines, vasoactive agents) from these cells – induces neurogenic 

inflammation (Ansel et al 1997; Luger 2002; Paus et al 2006a and b; Peters et al 
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2007; Fuchs and Horsley 2008). With respect to TRP channels, TRPV1 and TRPA1 

were implicated in this process. However, the identification of various functional 

TRPs on non-neuronal cell types of the skin suggests that these molecules are also 

involved in non-neurogenic skin inflammation.  

 

4.3.3.1 TRPV1 

As we have detailed above (4.1.3.1.), the TRPV1 inhibitor PAC-14028, when applied 

orally, accelerated barrier recovery after tape stripping. However, PAC-14028 seems 

to be beneficial against experimentally induced AD as well (Yun et al 2011). Indeed, 

in a mouse model of AD (induced by Dermatophagoides farina and oxazolone), the 

orally administered TRPV1 antagonist was able to efficiently prevent the dermatitis-

associated barrier damages (by suppressing of trans-epidermal water loss, inducing 

reconstruction of epidermal lipid layers, and normalizing of altered expressions of 

epidermal differentiation markers) and, at the same time, improved the AD-like 

symptoms (clinical severity, skin score, serum IgE levels, mast cell degranulation 

status, etc.). 

 

In good agreement with these in vivo data, TRPV1 activation on cultured human 

keratinocytes by capsaicin resulted in the induction of cyclooxygenase-2 (COX-2) 

and the release of pro-inflammatory IL-8 and PGE2 (Southall et al 2003). Importantly, 

stimulation of TRPV1 by heat on NHEKs not only altered proliferation and cellular 

survival, but also induced MMP-1 production (Li et al 2007; Lee et al 2008). Likewise, 

TRPV1-coupled Ca2+-dependent signaling was shown to be involved in mediating the 

effects of UV irradiation to upregulate MMP-1 in cultured keratinocytes (Lee et al 

2009b). Furthermore, in a mouse model, the TRPV1 inhibitor 5′-iodoresiniferatoxin (I-

RTX), when applied topically, was shown effectively prevent the UV-induced 

reactions (skin thickening, inflammation, upregulation of MMPs, COX-2, and pro-

inflammatory cytokines such as IL-1β, IL-2, IL-4, tumor necrosis factor-α, TNFα) (Lee 

et al 2011). 

 

Finally, it should be mentioned that activation of TRPV1 by capsaicin on cultured HF-

derived ORS keratinocytes (besides inducing cellular arrest and apoptosis, see 

above under 4.2.3.1.) stimulated the synthesis of the pro-inflammatory IL-1β and 
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transforming growth factor-β2 (Bodó et al 2005). These results collectively argue for 

the pro-inflammatory role of TRPV1 in non-neurogenic cutaneous inflammation. 

 

4.3.3.2 TRPV3 

As we have detailed above (4.2.3.2.), the gain-of-function (Gly573Ser) mutation of 

the trpv3 gene resulted in a hairless phenotype in mice and rats. However, of great 

importance, this mutation is also accompanied by a spontaneously developing AD-

like dermatitis (Asakawa et al 2006; Xiao et al 2008). Moreover, keratinocyte-targeted 

transgenic overexpression of the mutant TRPV3Gly573Ser channels in mice also led to 

the development of AD-like cutaneous (dermatitis, hyperkeratosis, itch, infiltration of 

mast cells and CD4+ lymphocytes, increased skin nerve growth factor [NGF] levels) 

and systemic (increased serum levels of IgE and pro-inflammatory cytokines) 

symptoms (Yoshioka et al 2009). As a further support for its pro-inflammatory role, 

TRPV3 stimulation in cultured keratinocytes by agonists (eugenol, 2-

aminoethoxydiphenyl borate) or heat was shown to induce the release of the pro-

inflammatory IL-1 and PGE2 (Xu et al 2006; Huang et al 2008).  

 

4.3.3.3 TRPA1 

TRPA1, similar to TRPV1 and TRPV3, also seems to act as a pro-inflammatory 

channel. Stimulation of TRPA1 on NHEKs induced the synthesis of the pro-

inflammatory IL-1α and IL-1β (Atoyan et al 2009). Moreover, as expected, topical 

application of the TRPA1 agonist cinnamaldehyde induced skin inflammation. 

Interestingly, however, whereas the edema component was prevented by aprepitant, 

an antagonist of the tachykinin NK1 receptor recognizing SP released from sensory 

afferent upon TRPA1 stimulation, it was not affected by HC030031, a TRPA1 

antagonist. On the contrary, the cinnamaldehyde-induced leukocyte infiltration was 

effectively suppressed by the TRPA1 inhibitor whilst the NK1 antagonist was 

ineffective (Silva et al 2011). 

 

These intriguing data suggest that the TRPA1-coupled signaling on sensory neurons 

and non-neuronal skin cells, when co-activated e.g. by topical or intracutaneous 

administrations of agonists, act in concert to equally induce neurogenic and non-

neurogenic skin inflammation. We propose that this is the case for TRPV1 and 

possibly for TRPV3 as well. 
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4.3.4 Non-ion selective channels 

4.3.4.1 Aquaporins 

The aquaglyceroporin AQP7 was identified on mouse dermal and epidermal dendritic 

cells. In dendritic cells isolated from AQP7 deficient mice, significantly decreased 

antigen uptake and reduced chemokine-dependent cell migration were identified in 

comparison to wild-type cells. Moreover, AQP7-deficient mice exhibited a suppressed 

accumulation of antigen-retaining dendritic cells in the lymph node after antigen 

application to the skin. These results suggest that AQP7 in skin dendritic cells is 

primarily involved in antigen uptake and in the subsequent migration of the cells 

which suggest their role in the initiation of the concomitant immune responses (Hara-

Chikuma et al 2012). AQP3 and AQP9 were also found in monocyte-derived 

Langerhans cells but their role is still unclear (Boury-Jamot et al 2006).  

 

In addition, TNFα coupled signaling (involving p38 and Erk kinase cascades) was 

shown to suppress AQP3 expression in cultured keratinocytes which effect may 

contribute to the pro-inflammatory effects of this cytokine (Horie et al 2009). 

 

4.4 “Sensory roles” of epidermal keratinocytes 

As we detailed above (2.2.2.), various stimuli that reach the skin may not only 

activate sensory afferent fibers, but also non-neuronal skin-derived cells. Among 

these cells, direct activation of epidermal keratinocytes, which establish the very first 

line of defense, results in the release of various mediators. These agents, in turn, act 

on the sensory afferents and induce their excitation. Therefore, keratinocytes and, via 

the established multi-cellular neuronal – non-neuronal cell networks, possibly other 

skin-derived cells significantly contribute to skin sensory physiology. 

 

4.4.1 Voltage-gated ion channels 

4.4.1.1 Voltage-gated Na+-channels 

Various voltage-gated Na+-channels were identified on epidermal keratinocytes. 

Nav1.1, Nav1.6, and Nav1.8, expressed on rat cultured keratinocytes, were shown to 

contribute to the release of ATP from these cells (Zhao et al 2008). It was suggested 

that the release ATP, in turn, may stimulate nociceptive sensory afferents (located in 

a close vicinity of epidermal keratinocytes in the epidermis) (Ansel et al, 1997) and 
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hence may initiate pain. In addition, in situ epidermal expressions of Nav1.5, Nav1.6, 

and Nav1.7 were identified on histological skin sections from healthy human subjects. 

Interestingly, levels of these channels were shown to be markedly increased in skin 

samples obtained from patients with various pain syndromes (complex regional pain 

syndrome type 1 and post-herpetic neuralgia), with additional appearances of Nav1.1, 

Nav1.2, and Nav1.8. Although it is not known whether or not these channels 

contribute to the regulation of keratinocyte growth control, the “sensory roles” of the 

increased Na+-channel expression in the pathogenesis of the above pain syndromes 

is suggested (Zhao et al 2008). 

 

4.4.1.2 Two-pore K+ channels (K2P) 

Six two-pore K+ channels (TASK-1, TASK-2, TASK-3, TREK-1, TREK-2 and TRAAK) 

were described in human epidermal HaCaT keratinocytes as well as in rat skin. Since 

K+ currents were induced by different activators of these channels (arachidonic acid 

and heat), these results suggest that K2P channels could act as thermosensors in 

human keratinocytes (Kang et al 2007). 

 

4.4.2 TRP channels 

4.4.2.1 TRPV3 

Similar to the above, TRPV3 (and most probably of TRPV4) expressed by 

keratinocytes may also provide thermo-sensory functions these cells. Namely, 

moderate heat-activation of TRPV3 expressed by keratinocytes resulted in the 

release of ATP which, in turn, may stimulate sensory neurons (Chung et al 2003; 

Chung et al 2004; Lee et al 2005; Mandadi et al 2009). Likewise, overexpression of 

TRPV3 in keratinocytes was shown to modulate sensory processes by the TRPV3-

mediated release of PGE2 (Huang et al 2008). Finally, NO, which is released from 

keratinocytes upon TRPV3 stimulation, not only promotes keratinocyte migration and 

wound healing (see above, 4.2.3.2.), but also regulates thermosensory behavior, 

most probably by acting on and hence stimulating thermosensitive sensory afferents 

(Miyamoto et al 2011). 

 

4.4.3 Other ion channels 

4.4.3.1 Amiloride-sensitive Na+ channels 



Oláh, Szöllősi, Bíró  The Channel Physiology of the Skin 
_________________________________________________________________________________ 

47 
 

Amiloride-sensitive epithelial Na+ channels (ENaCδ) were also found in human 

epidermis. In cultured NHEKs, acidic stress, activator of these channels, evoked ATP 

release which was inhibited by amiloride. Interestingly, ENaCβ and γ were also 

identified in human keratinocytes; yet, their physiological functions are not known. 

These data suggest that ENaCδ expressed by keratinocytes may be involved in pH 

sensing of the skin (Yamamura et al 2008b). 

 

4.5 Other skin functions 

Here, we mostly detail the roles of various channels in the control of sweat production 

and skin metabolism. 

 

4.5.1 Voltage-gated channels 

4.5.1.1 Ca2+-activated K+-channels 

KCa channels also play key roles in regulating exocrine gland functions of the skin. 

Indeed, BK KCa channels were identified on primary cultures of human (Henderson 

and Cuthbert 1991a) and equine (Huang et al 1999) eccrine sweat gland cells as well 

as on exocrine gland cells in frog skin (Andersen et al 1995; Sørensen et al 2001). In 

human cell cultures (especially in the younger, dividing ones), these BK KCa 

channels, located on the basolateral membrane of the cell, were implicated in the 

Ca2+-dependent secretory and absorptive events seen in the intact sweat gland. 

 

In cultured human eccrine sweat gland cells, intermediate-conductance IK KCa 

channels were also identified. Interestingly, estradiol rapidly activated these channels 

in an estrogen receptor-independent manner. In addition, estradiol was shown to 

induce the translocation of IK KCa both to the apical and basolateral cell membranes 

in a calmodulin-dependent manner. This mechanism was suggested as a new mode 

of estrogen action in human sweat gland epithelial cells (Muchekehu and Harvey 

2009). 

 

4.5.2 Ligand-gated channels 

4.5.2.1 nAChRs 

It is a common knowledge in physiology that sweating can be induced by efferent 

neuronal cholinergic stimulation, mediated by the binding of the released ACh to 

muscarinic mAChRs expressed by the sweat glands. Likewise, sweating can be 
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induced by intradermal injection of cholinomimetic compounds, which can be 

efficiently prevented by the mAChR antagonist atropine (Longmore et al 1985; Smith 

et al 1992). However, application of ACh to primary human sweat gland-derived 

epithelial cells was shown to also induce Ca2+ influx which may argue for the 

existence of functional nAChR channels (Lei et al 2008). Indeed, various nAChR 

channels (including α3 and α7) were described in the ductal and acinar 

compartments of sweat glands. Moreover, the enzymatic apparatus for the synthesis 

and degradation of ACh is also expressed by sweat glands (Kurzen et al 2004; 

Hagforsen 2007). Therefore, further studies are invited to define the relative 

contribution of nAChRs and mAChRs to sweating induced by neuronal and non-

neuronal ACh. 

 

4.5.3 Non-ion selective channels 

4.5.3.1 Aquaporins 

AQP5 was found to be expressed in secretory cells and ductal parts of sweat glands 

in humans, rat, and mice (Nejsum et al 2002; Song et al 2002). Using various 

methods, Song et al concluded that AQP5 deletion in mice did not affect intensity and 

composition of sweat secretion (Song et al 2002). However, others have shown that 

genetic depletion of AQP5 in mice greatly decreased the response of sweat glands to 

pilocarpine, a known inducer a sweat production (Nejsum et al 2002). In light of these 

data, further studies are needed to unambiguously define the role is AQP5 in human 

sweat secretion. 

 

AQP7 is also expressed by subcutaneous adipocytes and seems to be involved in 

cutaneous fat metabolism. Indeed, in AQP7 knockout mice, a progressive adipocyte 

hypertrophy was observed which effect was most probably due to the reduced AQP7-

facilitated plasma membrane glycerol exit from adipocytes (Hara-Chikuma et al 2005; 

Hibuse et al 2005). 

 

4.6 Skin diseases 

So far, we have presented a plethora of evidence about the active contribution of 

numerous channels in various skin functions. Therefore, it is not surprising at all that 

multiple channels are reportedly associated with multiple skin conditions 

(summarized in Table 2). However, it should be mentioned that most of the below 
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data only indirectly link the given channel to the given disease, and that only very few 

“real”, pathogenetic correlations could be identified. Therefore, further studies are 

invited to explore the causative roles of the identified alterations in the 

expressions/functions of the channels. 

 

Below, we start by listing the available literature data in relation to the most prevalent 

“barrier diseases”, AD and psoriasis. Then we continue with describing the roles of 

the channels in various skin tumors and in other dermatoses. Finally, although skin 

ageing per se cannot be considered as a disease, the related, quite exciting findings 

prompted us to close this section with mentioning the possible involvement of certain 

channels in the ageing process. 

 

4.6.1 AD 

4.6.1.1 Ligand-gated channels 

The expression level of ChAT (which is a key enzyme of ACh biosynthesis) was 

found to be highly elevated in the epidermis (14-fold) and in the upper dermis (3-fold) 

of AD patients when compared to healthy skin compartments (Wessler et al 2003). 

Moreover, irregular nAChR subtype expression patterns were described in AD 

lesions (Curtis and Radek 2012). Likewise, in lesional skin of AD (and psoriasis) 

patients, intense P2X7 reactivity was confined to the cell membrane of the basal 

layer, with an additional, diffuse P2Y1 metabotropic purinergic receptor 

immunostaining throughout the epidermis (Pastore et al 2007). Unfortunately, the 

pathogenetic roles of these phenomena are not clarified. Also, the human clinical 

relevance of those intriguing findings (detailed under 4.3.2.3.) that orally administered 

GABA was beneficial against experimentally induced AD in mice should also be 

carefully investigated. 

 

4.6.1.2 TRP channels 

As we have shown (4.3.3.1. and 4.3.3.2.), TRPV1 and TRPV3 activities promoted the 

development of AD-like dermatitis in mice. However, further studies are required to 

define the roles of these (and possibly other) TRP channels in the pathogenesis of 

human AD. 

 

4.6.1.3 Non-ion selective channels 
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Elevated AQP3 expression was found in AD skin (Olsson et al 2006; Nakahigashi et 

al 2011). In addition, CCL17, which is highly expressed in AD, was found to be a 

strong inducer of AQP3 expression and enhanced keratinocyte proliferation. In a 

mouse model of AD, the induced epidermal hyperplasia, a characteristic symptom of 

the disease, was reduced in AQP3-deficient mice, with a decreased number of 

proliferating keratinocytes (Nakahigashi et al 2011). These results suggest the 

possible involvement of AQP3 in the development of AD. 

 

It should be mentioned that although altered levels of AQP3 were also described in 

the closely related epidermal spongiosis associated with eczema (Boury-Jamot et al 

2006) and erythema toxicum neonatorum (Marchini et al 2003), the functional role of 

AQP3 in these diseases is not yet known. 

 

4.6.2 Psoriasis vulgaris 

4.6.2.1 Voltage-gated channels 

Keratinocytes and skin from psoriatic individuals were found to express higher levels 

of mRNA encoding the non-functional splice-variant of cyclic guanosine 

monophosphate-gated (CNG), Ca2+-permeable, non-selective cationic channels. 

Since overexpression of the splice variant by transfection of HEK293 in culture leads 

to loss of protein expression for the functional CNG channels (McKenzie et al 2003); 

and, furthermore, since Ca2+ influx to human keratinocytes may occur, among others, 

via CNG channels, these data may suggest the potential role of this CNG isoform 

shift in psoriasis. 

 

4.6.2.2 Ligand-gated channels 

As was shown above, NMDAR-coupled signaling was implicated in the proper growth 

and differentiation of keratinocytes. In support of this proposal, in parakeratotic skin 

lesions of psoriasis patients, a significant reduction in the expression of NMDAR1 in 

the upper epidermis was identified (Fischer et al 2004b). This alteration was 

suggested to result in a suppressed Ca2+ influx to the diseased keratinocytes leading 

to impaired differentiation and barrier formation, hallmarks of the disease. 

 

As mentioned above, 5-HT3 receptor was localized to basal epidermal keratinocytes 

in human skin in situ. This expression pattern was not altered in skin samples of AD 
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patients or in non-involved psoriatic skin; however, 5-HT3 receptor was identified in 

the acrosyringium, but not in basal keratinocytes, in involved psoriatic skin 

(Lundeberg et al 2002; Nordlind et al 2006). Therefore, it can be hypothesized (and 

to be investigated in future trials) that epidermal 5-HT3 receptors may contribute to 

the development of psoriasis. 

 

Expressions of GABA ligand and GABAA receptor were found to be increased in 

inflammatory cells located in lesional psoriatic skin when compared to non-lesional 

skin parts. GABA ligand was mostly expressed in macrophages whereas GABAA 

receptor was localized in macrophages, neutrophils and lymphocytes. Moreover, a 

positive correlation was identified between the inflammatory cell GABA release and 

GABAA receptor expression, and the severity of pruritus, a characteristic symptom of 

the disease (Nigam et al 2010). 

 

4.6.2.3 TRP channels 

Decreased expressions of the pro-differentiating TRPC1/4/5/6/7 were reported in the 

epidermis and isolated keratinocytes of psoriatic patients. In addition, cultured 

psoriatic keratinocytes exhibited substantial defects in Ca2+ influx in response to high 

extracellular Ca2+ levels (Leuner et al 2011), which may be explained by the 

suppressed TRPC channel expressions. 

 

4.6.2.4 Non-ion selective channels 

Elevated levels of AQP9 were described in lesional skin of psoriatic patients (Suárez-

Fariñas et al 2011). Likewise, highly upregulated levels of Cx26, which was shown to 

inhibit epidermal keratinocyte differentiation and hence barrier formation, were 

identified in human psoriatic plaques and in hyperplastic warts (Lucke et al 1999). Of 

clinical importance, the highly elevated Cx26 levels in psoriatic lesions were 

significantly suppressed after treatment of psoriasis with methotrexate and PUVA 

(Shaker and Abdel-Halim 2012) which suggest the role of Cx26 in the pathogenesis 

of the disease. 

 

4.6.3 Non-melanoma skin cancers 

4.6.3.1 Voltage-gated channels 
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Expression of mRNA of Kv3.4 K+ channel was found to be increased in SCC. In 

addition, inhibition of Kv3.4 suppressed growth of oral SCC cells (Chang et al 2003) 

which argues for that K+ channel activities support malignant cell growth. 

 

4.6.3.2 Ligand-gated channels 

Expression of NMDAR1 in cutaneous SCC was found to inversely correlate with the 

degree of malignancy. Namely, very low (if any) expression was identified in un-

differentiated SCC samples (Kang et al 2009) whereas the reactive (non-neoplastic) 

epithelium surrounding the SCC showed strong NMDAR1 levels (Nahm et al 2004). 

These data, on the one hand, further support the pro-differentiating role of NMDAR1-

coupled signaling in keratinocytes; on the other hand, they also argue for that 

NMDAR1 may be a prognostic indicator for cutaneous SCC. 

 

Human papillomaviruses are recognized as important human tumor promoters in the 

development of non-melanoma skin cancers (Biliris et al 2000; Greig et al 2006). 

Interestingly, in human skin warts as well as in raft cultures of CIN 612 cells, a model 

of keratinocytes infected with human papillomavirus type 31 (Ozbun 2002), up-

regulation of the expression of P2X5 receptors was detected. In addition, P2X5 and 

P2X7 receptors were found in the nuclei of koilocytes, the abnormal keratinocytes 

characteristic of human papillomavirus infection (Greig et al 2006). Based on these 

findings, as well as on the expression pattern of P2X receptor in the epidermis, it is 

therefore proposed that P2X5 receptors are likely to be involved in keratinocyte 

differentiation and P2X7 receptors are likely to be part of the machinery of end stage 

terminal differentiation/apoptosis of keratinocytes (Burnstock 2006; Gorodeskin 2009; 

Burnstock et al 2012). As an additional factor, the promoting role of these receptors 

in the anti-viral immune response may also be involved (see under 4.3.1.2.). 

 

Indeed, the pro-apoptotic role of P2X7 was also demonstrated in a two-stage 

(DMBA/TPA) mouse model of skin papilloma and SCC. In this model, the P2X7 

specific agonist BzATP inhibited formation of tumors. Moreover, in cultured mouse 

keratinocytes BzATP induced prolonged Ca2+ influx and caspase-9 coupled 

apoptosis. Importantly, apoptosis was much less efficient in SCC keratinocytes which 

exhibited 4-5 fold lower levels of P2X7 in cancer tissues. Therefore, activation of 

P2X7-dependent apoptosis (and possibly of the pro-differentiating P2X5 receptors) in 
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skin papillomas and cancers as well as in melanomas may represent novel 

therapeutic tools. 

 

4.6.3.3 TRP channels 

In BCC samples, the lack of epidermal expression of the pro-differentiating 

TRPC1/TRPC4 was observed (Beck et al 2008) which was correlated with the 

impaired differentiation and enhanced proliferation of tumor cells. In addition, topical 

treatment with triterpenes of actinic keratosis, an in situ form of SCC, promoted 

cellular differentiation, most probably via the stimulation of TRPC6-mediated Ca2+-

influx to the cells (Woelfle et al 2010). 

 

In addition, TRPV1 knockout mice were shown to exhibit a highly increased 

susceptibility to induction of skin carcinogenesis (Bode et al 2009). Since TRPV1 was 

described to inhibit proliferation and induce apoptosis in keratinocytes (see above 

under 4.1.3.1.), it is proposed that TRPV1 (just as the above TRPCs) may be 

protective against skin tumor formation. 

 

4.6.3.4 Non-ion selective channels 

Further supporting the promoting role of AQP3 in epidermal proliferation, highly 

increased levels of AQP3 were identified in human SCC when compared to control 

skin (Hara-Chikuma and Verkman 2008c). In addition, in a multistage murine 

carcinogenesis model, AQP3 knockouts were found to be resistant to induction of 

tumorigenesis, also arguing for the pro-mitogenic role of AQP3 (Hara-Chikuma and 

Verkman 2008c). As tumor cells generally exhibit an aggressive energy metabolic 

profile (Gatenby and Gillies 2007), the glycerol transport mediated by AQP3 and the 

concomitant accumulation of cellular ATP may act as an important determinant of 

skin tumorigenesis. Hence, inhibition of AQP3 activity may provide a rational basis for 

the therapy of skin (and possibly other) cancers associated with overexpression of 

aquaglyceroporins. 

 

4.6.4 Malignant melanoma 

4.6.4.1 Voltage-gated channels 

The tumor-promoting roles of various K+ channels are suggested in malignant 

melanoma. Indeed, on cell cultures of the human melanoma cell line SK MEL 28, 
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inhibition of the expressed inwardly rectifying (Kir) K+ channels or KCa channels 

inhibited cell-cycle progression (Lepple-Wienhues et al 1996). Likewise, in metastatic 

human melanoma cell lines, activation of KCa3.1 channels was shown to promote the 

secretion of melanoma inhibitory activity, a soluble melanoma-derived factor which, 

by interacting with cell adhesion molecules and hence facilitating cell detachment, 

stimulates the formation of metastases (Schmidt et al 2010). 

 

Based on these results, it is proposed that membrane depolarization following the 

inhibition of these voltage-gated K+ channels most probably reduces the driving force 

for the influx of Ca2+, a key messenger in the mitogenic signal cascade of human 

malignant cells, which eventually results in cell cycle arrest. Therefore, voltage-gated 

K+ channel inhibitors may represent novel therapeutic tools in the treatment of 

malignant melanoma. 

 

Finally, it should be mentioned that silencing of the two-pore K+ channel TASK-3, 

which is predominantly localized in the mitochondria in malignant melanoma cells 

(Rusznák et al 2008), impaired cellular integrity and viability as well as proliferation of 

these cells (Kosztka et al 2011). 

 

4.6.4.2 Ligand-gated channels 

Cultured melanocytes were shown to express the AMPARs GluA2 and 4 and the 

NMDAR2A and 2C whose activation by AMPA and NMDA resulted in elevation of 

intracellular Ca2+ concentration (Hoogduijn et al 2006). Melanocytes also express 

specific glutamate transporters and decarboxylases; yet, glutamate production or 

release was not found. Glutamate treatment of human melanocytes did not affect 

melanin production and cell survival. However, application of AMPARs and NMDARs 

inhibitors induced disorganization of actin and tubulin microfilaments. In addition, the 

AMPA receptor inhibitor CFM-2 markedly suppressed the expression of 

microphthalmia-associated transcription factor, a key regulator of melanocyte 

differentiation and proliferation. Therefore, further studies are invited to define the 

potential role of ionotropic glutamatergic signaling in malignant melanoma. 

 

In addition, increased expression of P2X7 receptors were identified in malignant 

melanomas (Slater et al 2003) whose stimulation resulted in a Ca2+ influx-dependent 
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induction of apoptosis (Deli et al 2007). Therefore, just as described under 4.6.3.2., 

P2X7-targeted approaches may be beneficial not only in non-melanoma skin 

cancers, but also in malignant melanomas. 

 

4.6.4.3 TRP channels 

Human epidermal melanocytes also express TRPM1 whose level was shown to 

correlate with melanin content of the cells indicating that functional TRPM1 channels 

are critical for normal melanocyte pigmentation (Devi et al 2009; Oancea et al 2009). 

Indeed, decreased expression of the trpm1 gene was found to be associated with the 

coat spotting patterns of the Appaloosa horse (Equus caballus) (Bellone et al 2008). 

In part similar to these findings, two mutations in the gene encoding TRPML3 were 

found to be correlated with the diluted coat color of the varitint-waddler mouse (Di 

Palma et al 2002; Cuajungco and Samie 2008). 

 

Certain TRPM channels also seem to be involved in the development of cutaneous 

melanoma. Namely, expression of the trpm1 gene, which encodes the pro-apoptotic 

TRPM1, was found to exhibit an inverse correlation of with the in vivo metastatic 

potential of skin melanoma (Deeds et al 2000; Duncan et al 2001; Miller et al 2004; 

Zhiqi et al 2004; Lu et al 2010). Therefore, down-regulation of TRPM1 in the tumor 

was proposed as a prognostic marker for metastasis (Deeds et al 2000; Duncan et al 

2001; Miller et al 2001; Zhiqi et al 2004). Likewise, upregulation of antisense, tumor-

enriched (TE) transcripts of TRPM2 (another growth-inhibitory TRPM channel) was 

identified in human cutaneous melanoma (Orfanelli et al 2008). Accordingly, 

functional knockout of TRPM2-TE or overexpression of wild-type TRPM2 in 

melanoma-derived cells augmented susceptibility to apoptosis (Orfanelli et al 2008). 

Interestingly, an increased (and not decreased) level of TRPM8-specific transcripts, 

were also demonstrated in malignant melanoma (Tsavaler et al 2001). Since 

activation of TRPM8 in human cultured melanoma cells induced Ca2+-dependent cell 

death (Slominski 2008; Yamamura et al 2008a), the functional significance of these 

findings are not currently understood. 

 

4.6.4.4 Non-ion selective channels 

Panx1 expression, which was found to be low in normal mouse melanocytes, 

increased in tandem with tumor cell aggressiveness in mouse malignant melanoma 
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cell lines (Penuela et al 2012b). In addition, gene silencing of Panx1 in BL6 mouse 

melanoma cell lines resulted in a marked suppression of in vitro cellular growth and 

migration and the down-regulation of the malignant melanoma markers vimentin and 

β-catenin. Likewise, the growth rate and metastasis-forming capacity of Panx1 

knock-down cells also significantly decreased in a xenograft model (Penuela et al 

2012b). Although we lack human data, these findings collectively argue for the 

putative pathogenetic role of Panx1 (at least in murine) melanoma. In addition, these 

results also raise the possibility of a future management of the malignancy by 

inhibiting and/or down-regulating Panx1. 

 

AQP1 channels are also expressed on human cultured melanocytes; however, their 

role in melanogenesis and melanocyte/melanoma growth is not known (Boury-Jamot 

et al 2006). In addition, the elevated expressions of pro-proliferating Cx26 and Cx30 

(but not of the pro-differentiating Cx43) were identified in the epidermal tumor 

microenvironment of malignant melanoma which correlated to the degree of 

malignancy (Haass et al 2010). 

 

4.6.5 Other skin diseases 

4.6.5.1 Olmsted syndrome 

As we have shown above (under 4.2.3.2. and 4.3.3.2.), a gain-of-function 

(Gly573Ser) mutation of the trpv3 gene resulted in a spontaneous hairless phenotype 

and the development of AD-like itchy dermatitis in mice. Of greatest importance, most 

recently, similar gain-of-function mutations of trpv3 were identified in Olmsted 

syndrome, a rare congenital disorder characterized by palmoplantar and periorificial 

keratoderma, alopecia, and severe itching (Lin et al 2012). In heterologous systems, 

mutant TRPV3 channels conveyed increased membrane currents and mediated 

augmented apoptosis which was also detected in the epidermis of the diseased 

patients. Therefore, Olmsted syndrome can be regarded as the first “truly cutaneous 

TRPpathy”. 

 

4.6.5.2 Smith–Lemli–Opitz syndrome 

Smith–Lemli–Opitz syndrome (SLOS) is an inherited disorder of cholesterol synthesis 

caused by mutations of the dhcr7 gene which encodes the final enzyme in the 

cholesterol synthesis pathway (Tint et al 1994). In this disease, 7-dehydrocholesterol 
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accumulates in various cells and impairs key cells functions including those of skin 

fibroblasts (Honda et al 1997; Wassif et al 2002). In membrane caveolae of dermal 

fibroblasts of SLOS patients, impaired activity and markedly suppressed protein 

levels of BK KCa channel were observed (Ren et al 2011). Since BK KCa channels 

were shown to co-migrate with caveolin-1, a key component of lipid rafts and hence 

regulator of a multitude of cell membrane-localized proteins (channels, receptors, 

transporters, etc.) and their signaling (Rothberg et al 1992; Simons and Ikonen 1997; 

Ren et al 2011), alterations in BK KCa channel functions may contribute to the 

pathophysiology of SLOS. 

 

4.6.5.3 Pemphigus vulgaris 

Pemphigus vulgaris (PV) is a severe autoimmune blistering disease. In the 

pathogenesis of the dermatosis, the role of autoantibodies targeting (and then 

destroying) desmoglein-3, a key cell adhesion molecule of the epidermis, are 

suggested (Amagai and Stanley 2012). Intriguingly, α9 nAChRs were also found to 

be targeted by PV. Of further importance, inhibition of α9 nAChRs activity in 

keratinocyte cultures resulted in the development of PV-like morphology 

(acantholysis) which findings, besides further supporting the role of the ion channel in 

keratinocytes adhesion processes (see above under 4.1.2.1), argue for a potential 

pathogenetic role of α9 nAChRs in PV (Nguyen et al 2000). 

 

4.6.5.4 Mal de Meleda 

Mal de Meleda is an autosomal recessive inflammatory and keratotic palmoplantar 

skin disorder due to mutations in the gene encoding SLURP-1 (secreted mammalian 

Ly-6/uPAR-related protein 1) (Fischer et al 2001). Interestingly, SLURP-1 was shown 

to potentiate the effect of ACh on α7 nAChR channels (Chimienti et al 2003; 

Chernyavsky et al 2012). Since, as was detailed above, α7 nAChR receptors play 

multiple roles in skin function, the authors hypothesized that the lack of this 

potentiation by SLURP-1 downregulation may contribute to the development of the 

characteristic skin symptoms of the disease. 

 

4.6.5.5 Darier's disease 

TRPC1 is overexpressed in keratinocytes of patients with Darier's disease (DD) (or 

keratosis follicularis), a genetic disorder with loss-of-function mutations in the 
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SERCA2b gene encoding endoplasmic reticulum Ca2+-pumps, which is characterized 

by abnormal keratinization of the epidermis (Barfield et al 2002; Pani et al 2006). 

Importantly, cultured DD keratinocytes exhibited a greatly enhanced TRPC1-

mediated (store-operated) Ca2+ influx, proliferation, and apoptosis resistance 

suggesting that TRPC1 may be involved in the pathological differentiation program 

(Pani et al 2006). 

 

4.6.5.6 Prurigo nodularis 

Markedly elevated TRPV1 levels were detected in the highly hyperkeratotic lesions of 

skin samples of prurigo nodularis patients (Stander et al 2004). Furthermore, chronic 

(for several months) topical capsaicin treatment of the prurigo lesions (and hence the 

prolonged activation of the apoptosis-promoting TRPV1 expressed on keratinocytes) 

not only mitigated the intense pruritus, but also markedly reduced the epidermal 

hyperplasia and the hyper-orthokeratosis of the skin (Stander et al 2001). 

 

4.6.5.7 Diseases of the adnexal structures 

KCa channels on normal sweat gland-derived cells exhibited similar functional 

properties to those expressed by cells from patients with cystic fibrosis (Henderson 

and Cuthbert 1991a), a common genetic disease characterized by, among others, 

defective sweat gland functions (Quinton 2007). However, eccrine sweat gland cells 

from these patients additionally expressed Ca2+-independent, small-conductance, 

outwardly rectifying K+ channels which were practically absent on cells from healthy 

donors (Henderson and Cuthbert 1991b). The impact of these findings is not yet 

known. 

 

Although expressions of a huge variety of nAChR subunits were described in various 

compartments of the HF and sebaceous glands (summarized in Kurzen 2004; Kurzen 

et al 2004; Kurzen and Schallreuter 2004; Grando et al 2006; Kurzen et al 2007), the 

functional role of these channels in pilosebaceous unit biology is not revealed. 

Likewise, it is also unknown whether ACh and the cutaneous cholinergic system is 

involved in mediating the effect of smoking to significantly increase the prevalence 

and disease severity of acne vulgaris (Schäfer et al 2001). 
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However, with respect to the pathology of the pilosebaceous unit and the relationship 

with smoking, intriguing observations were made during the assessment of skin 

samples of hidradenitis suppurativa (HS) patients. Clinically, HS (a.k.a. acne inversa) 

is a chronic inflammatory skin disease emerging from the pilosebaceous units of the 

intertriginous areas (e.g. underarms, thighs, groin). Importantly, HS is considered as 

a nicotine-dependent dermatosis as more than 80% of patients are active smokers 

(Jansen et al 2001). In organotypic epidermal culture system, chronic nicotine 

exposure (12 days) resulted in epidermal thickening which was very similar to the 

hyperplastic epidermis seen in HS. In addition, highly elevated α7 nAChR levels were 

identified in HS epidermis, especially in the follicular infundibulum. These results 

propose that the cutaneous cholinergic system, most probably by promoting 

infundibular epithelial hyperplasia and thus follicular occlusion, may have a 

pathogenetic role in HS (Hana et al 2007). 

 

Another smoking-associated inflammatory skin disease, which is related to adnexal 

skin structures, is palmoplantar pustulosis (PPP) characterized by pustules, erythema 

and scaling on the soles and palms. Apparently, sweat glands are involved in the 

pathogenesis of PPP (impaired structure of the acrosyringium, outward migration of 

granulocytes from the acrosyringium to the str. corneum to form pustules). 

Importantly, in involved PPP skin, significant expressions of ChAT and α3 nAChRs 

were observed in the infiltrating granulocytes indicating a role for ACh in 

inflammation. Moreover, irregular expression patterns of α3 and α7 nAChRs were 

found throughout the epidermis. Currently, the exact mechanisms for the effect of 

nicotine/smoking in PPP is still unknown; yet, it is noteworthy that cessation of 

smoking improved all skin symptoms characteristics for PPP (Hangforsen 2007). 

 

Finally, it might be of clinical importance that decreased AQP5 levels were detected 

in the secretory part of eccrine sweat glands of patients with Sjögren's syndrome, but 

not in skin affected by idiopathic segmental anhidrosis or idiopathic pure sudomotor 

failure (Iizuka et al 2012). 

 

4.6.5.8 Chronic venous insufficiency 

The expression patterns of P2X5 and P2X7 receptors were found to be altered in the 

epidermis of patients with chronic venous insufficiency (CVI). In CVI, elevated P2X5 



Oláh, Szöllősi, Bíró  The Channel Physiology of the Skin 
_________________________________________________________________________________ 

60 
 

receptor levels were found mainly in the spinosal layer and extending further into the 

str. granulosum whereas expressions of P2X7 receptors were reduced in the str. 

corneum. It is proposed that the above alterations may contribute to the appearance 

of the thinner epidermis seen in CVI (Metcalfe et al 2006). 

 

4.6.5.9 “Connexin diseases” 

Further supporting its potential role in epidermal biology, Cx26 mutations were found 

to be associated with numerous hyperkeratotic skin disorders (palmoplantar 

keratoderma, keratitis-ichthyosis deafness syndrome, Vohwinkel syndrome, hystrix-

ichthyosis deafness syndrome, and Bart-Pumphrey syndrome) which are 

characterized by pathologically altered epidermal growth and differentiation (reviewed 

in Lee and White 2009). 

 

4.6.6 Skin ageing 

As we have presented above (4.3.3.1), TRPV1 was shown to mediate the effect of 

UV exposure and heat to induce skin inflammation and to upregulate MMP-1. Since 

chronic UV exposure is suggested to promote skin ageing, the role of TRPV1 in 

these processes is suggested. Indeed, applications of both heat and UV elevated 

expression of TRPV1 proteins in human skin in vivo. Moreover, as further support for 

its pro-ageing role, increased TRPV1 levels were found both in photoaged and 

intrinsically aged skin samples when compared to the expressions of the channel 

found in skins obtained from sunprotected areas and from young individuals, 

respectively (Lee et al 2009a ; Lee et al 2012). 

 

Interestingly, AQP3 expression was lower in aged than in young skin (Li et al 2010), 

which is one of the key factors resulting in lower epidermal/skin water content and dry 

skin conditions seen in the elderly. Furthermore, UVB irradiation of NHEKs 

upregulated the expression of the pro-apoptotic P2X7 receptors (Inoue et al 2005), 

which may lead to premature cell death. 

 

Of further importance, comparison of dermal fibroblasts obtained from young, elderly 

and centenarian donors revealed age-dependent changes in K+ channel expression 

and function. K+ current amplitude was significantly smaller in fibroblasts from elderly 

than from young donors. In addition, expression of voltage-gated (Kv) shaker Kv1.1 



Oláh, Szöllősi, Bíró  The Channel Physiology of the Skin 
_________________________________________________________________________________ 

61 
 

channels was found to be higher in fibroblasts of elderly and centenarians whereas 

the BK KCa channel β1 subunit showed lower expression levels in fibroblasts of 

centenarians. It is possible, therefore, that the age-related remodeling of dermal 

fibroblast K+ channel subtypes in centenarians might be associated with “successful” 

aging and hence provide a “predictive marker of longevity” (Zironi et al 2010). 

 

Finally, it should be noted that chronic nicotine exposure of cultured human dermal 

fibroblasts markedly altered the expression patterns of α3, α5, α7, β2, and β4 nAChR 

subunits (Arredondo et al 2003). Therefore, it can also be postulated that premature 

ageing of the skin and impaired wound healing seen in chronic smokers may be 

related to pathological alterations of the fibroblast cholinergic system. 
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5 Concluding remarks 

In this paper, we have attempted to review the roles of ion and non-ion selective 

channels on non-neuronal cell types of the skin. Moreover, we have detailed recent 

evidence suggesting the involvement of certain channels in various skin diseases. 

 

The major messages of this review are the followings: 

 A plethora of ion and non-ion selective channels are expressed by various 

non-neuronal cell populations of the skin. 

 On these cells, numerous channels, their endogenous activators/inhibitors, 

and their related signaling mechanisms were shown to play central roles in 

such key cutaneous processes as e.g. cellular growth, differentiation, and 

survival; formation, maintenance, and regeneration of the epidermal physical-

chemical barrier; wound healing; inflammatory and immune responses, 

exocrine functions, etc. 

 In addition, certain channels expressed by epidermal keratinocytes also 

contribute to the sensory functions of the skin (e.g. thermo-, osmo-, and pH 

sensation), via the release of soluble intercellular mediators which stimulate 

cutaneous sensory afferents. 

 It is important to note, that the involved channels may exert both synergistic as 

well as antagonistic effects in the regulation of the above processes. This is 

especially remarkable during the recovery of the epidermal barrier following its 

disruption. 

 Finally, pathological alterations in the homeostatic channel-coupled 

mechanisms are implicated in various dermatoses (e.g. AD, psoriasis, skin 

cancers, autoimmune and genetic diseases, etc.) and in skin ageing. 

 

Evidently, more extensive in vitro and in vivo studies are urgently needed to reveal 

the exact molecular roles of these channels in skin physiology and pathophysiology. 

Yet, we strongly believe that the presented intriguing findings will encourage future, 

highly sophisticated pre-clinical and clinical trials to explore the seemingly rich 

potential of channel-targeted management of various skin diseases. 
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7 Figures and legends 

 

Figure 1. Key functions of the skin 

The multiple homeostatic functions of the skin can be classified into the groups of 

barrier, neuroendocrine, and other functions. For further details, see text under 2.2. 

 

Figure 2. Key components of the complex skin barrier 

The highly complex skin barrier provides multiple levels of protection for the 

organism. These include the physical-chemical barrier, the (micro)biological barrier, 

and the immunological barrier as well as the life-long regeneration of these 

components. For further details, see text under 2.2.1. 

 

Figure 3. The complex “channel” regulation of the epidermal barrier recovery 

Numerous channels play central, yet partly antagonistic, roles in the regulation of the 

recovery processes following the mechanical disruption of the epidermal barrier. 

Therefore, targeted modulations of channel activities represent exciting novel future 

therapeutic possibilities. For further details, see text under 4.1. 

  



Oláh, Szöllősi, Bíró  The Channel Physiology of the Skin 
_________________________________________________________________________________ 

65 
 

8 Tables 

 

Table 1. Highly selected skin-related functions of certain designated channels 

Channels Putative function(s) Reference(s) 

Cav channels 
Promotion of keratinocyte 

differentiation; delay of barrier 
recovery 

Denda et al 2003b; Denda et al 
2006 

nAChRs 

Promotion of keratinocyte 
differentiation and wound 
healing; delay of barrier 

recovery 

Grando et al 1996; Arredondo et al 
2003; Denda et al 2003a; Kurzen et 

al 2005; Chernyavskyet al 2007; 
Kurzen et al 2007; Radek et al 
2010; Curtis and Radek 2012 

P2X7 
Promotion of keratinocyte 

differentiation and antitumor 
effects 

Slater et al 2003; Inoue et al 2005; 
Deli et al 2007 

NMDAR 
Promotion of keratinocyte 

differentiation, delay of barrier 
recovery 

Denda et al 2003a; Fuziwara et al 
2003; Fischer et al 2004a; Fischer 

et al 2004b 

GABAA 
Promotion of barrier recovery 

and wound healing 

Denda et al 2002b; Denda et al 
2003a; Han et al 2007; Ito et al 

2007 

Glycine receptor Promotion of barrier recovery  Denda et al 2003a 

TRPV1 

Delay of barrier recovery and 
wound healing 

Bodó et al 2005; Bíró et al 2006; 
Denda et al 2007b; Tóth et al 

2011a; Yun et al 2011 

Antitumor effects Bode et al 2009 

TRPV3 
Promotion of barrier recovery 

and wound healing 
Denda et al 2007b; Cheng et al 

2010; Miyamoto et al 2011 

TRPV4 Promotion of barrier recovery 
Denda et al 2007b; Kida et al 2011; 

Sokabe et al 2010; Sokabe and 
Tominaga 2010 

TRPA1 Promotion of barrier recovery Denda et al 2010b 

TRPC1, 4, 5, 6, and 
7 

Promotion of keratinocyte 
differentiation and possible 

antitumor effects 

Cai et al 2006; Beck et al 2008; 
Muller et al 2008; Woelfle et al 
2010; Shanmugam et al 2012 

TRPM1, 2 and 8 Antitumor effects 

Deeds et al 2000; Duncan et al 
2001; Miller et al 2004; Zhiqi et al 

2004; Orfanelli et al 2008; 
Slominski 2008; Yamamura et al 

2008a; Lu et al 2010 

AQP3 Promotion of barrier recovery 
Hara et al 2002; Hara and Verkman 

2003 
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Table 2. Putative roles of key channels in the pathogenesis of selected human skin 

diseases and skin-related processes 

 

Diseases or skin-
related conditions 

Putative pathomechanism(s) and 
Related channel(s) 

Reference(s) 

Psoriasis 

Chronic use of Cav channels is 
associated with the disease 

Cohen et al 2001 

Upregulation of non-functional CNG 
channels 

McKenzie et al 2003 

Altered expression profile of 5-HT3 
Lundeberg et al 2002; 

Nordlind et al 2006 

Downregulation of NMDAR1 Fischer et al 2004b 

Upregulation of GABA ligand and GABAA 
receptor 

Nigam et al 2010 

Downregulation of TRPC1, 4, 5, 6, and 7 
and the coupled Ca2+-influx 

Leuner et al 2011 

Upregulation of AQP9 
Suárez-Fariñas et al 

2011 

Upregulation of Cx26 which can be 
suppressed by anti-psoriasis therapy 

Lucke et al 1999; Shaker 
and Abdel-Halim 2012 

Irregular nAChR expression pattern Curtis and Radek 2012 

Atopic dermatitis 

Altered P2X7 expression profile Pastore et al 2007 

Irregular nAChR subtype expression 
pattern 

Curtis and Radek 2012 

Downregulation of NMDAR1 Kang et al 2009 

Decreased GABA-ergic signaling Hokazono et al 2010 

Activation of TRPV1 and 3 results in AD-
like syndromes in mice 

Asakawa et al 2006; Xiao 
et al 2008; Yun et al 2011 

Upregulation of AQP3 
Olsson et al 2006; 

Nakahigashi et al 2011 

Non-melanoma skin 
cancers 

Upregulation of Kv3.4; inhibition of Kv3.4 
suppressed tumor cell growth 

Chang et al 2003 

NMDAR1 expression inversely correlates 
with the degree of malignancy 

Nahm et al 2004; Kang et 
al 2009 

Downregulation of P2X7-coupled 
signaling; altered P2X receptor 

expression pattern 

Burnstock 2006;Greig et 
al 2006; Gorodeskin 
2009; Burnstock et al 

2012 

Decreased TRPV1 and TRPC6-coupled 
signaling; TRPV1-KO mice exhibit 

increased tumorigenesis 

Bode et al 2009; Woelfle 
et al 2010 

Downregulation of TRPC1 and 4 Beck et al 2008 

Upregulation of AQP3; AQP3-KO mice 
exhibit decreased tumorigenesis 

Hara-Chikuma and 
Verkman 2008c 

Malignant 
melanoma 

Increased activity of KCa3.1, Kir and 
TASK-3 

Lepple-Wienhues et al 
1996; Schmidt et al 2010; 

Kosztka et al 2011 

Upregulation of P2X7 Slater et al 2003 

TRPM1 expression inversely correlates 
with the degree of metastatic potential; 

Upregulation of antisense TRPM2; 
Downregulation of TRPM8; Activation of 

TRPM8 inhibit tumor cell growth 

Deeds et al 2000; 
Duncan et al 2001; 
Tsavaler et al 2001; 

Miller et al 2004; Zhiqi et 
al 2004; Orfanelli et al 

2008; Lu et al 2010 
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Upregulation of Panx1 in mouse 
melanoma; Silencing of Panx1 inhibits 

tumor growth 
Penuela et al 2012 

Olmsted syndrome 
The main pathogenetic cause is the gain-

of-function mutation of TRPV3 
Lin et al 2012 

Skin ageing 

Altered K+-channel expression profile 
(fibroblasts) 

Zironi et al 2010 

Altered nAChR expression profile 
(fibroblasts) 

Arredondo et al 2003 

Upregulation of P2X7 (keratinocytes) Inoue et al 2005 

Upregulation of TRPV1 and the coupled 
signaling (keratinocytes) 

Lee et al 2009a ; Lee et 
al 2012 

Downregulation of AQP3 (keratinocytes) Li et al 2010 
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10 List of abbreviations 

 

5-HT: 5-hydroxytryptamine 

ACh: acethylcholine 

ACTH: corticotropin 

AD: atopic dermatitis 

AML: antimicrobial lipid 

AMP: antimicrobial peptide 

AMPA(R): α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (receptor) 

ATP: adenosine-5’- triphosphate 

AQP: aquaporin 

BCC: basal cell carcinoma 

BK: large conductance Ca2+-activated K+-channel 

[Ca2+]e: extracellular Ca2+-concentration 

[Ca2+]i: intracellular Ca2+-concentration 

Cav: L-type voltage-gated Ca2+-channels 

CCL: chemokine ligand 

ChAT: choline-acetyltransferase 

CNG: cyclic guanosine monophosphate-gated channels 

COX: cyclooxygenase 

CXCL: CXC chemokine ligand 

CXCR: CXC chemokine ligand receptor 

CGRP: calcitonin gene-related peptide 

CNG channels: cyclic nucleotide-gated channels 

CVI: chronic venous insufficiency 

Cx: connexin 

CRH: corticotrophin releasing hormone 

DD: Darier's disease (keratosis follicularis) 
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DMBA: dimethylbenz[a]anthracene 

EGF: epidermal growth factor 

ENaC: amiloride-sensitive Na+ channels 

GABA: gamma-aminobutyric acid 

HS: hidradenitis suppurativa (acne inversa) 

ICAM-1: intercellular adhesion molecule-1 

IK1: intermediate conductance KCa 

IL: interleukin 

I-RTX: 5′-iodoresiniferatoxin 

K2P: two-pore K+-channels 

KCa: Ca2+-activated K+-channels 

Kir: inward rectifier K+-channels 

LPS: bacterial lipopolysaccharide 

mAChR: muscarinic acethylcholine receptor 

mGluR: metabotropic glutamate receptor 

MMP-1: matrix metalloproteinase-1 

MUFA: monounsaturated fatty acid 

nAChR: nicotinic acethylcholine receptor 

Nav: voltage-gated Na+-channels 

NHEK: normal human epidermal keratincyte 

NGF: nerve growth factor 

NK-1 (receptor): neurokinin-1 (receptor) 

NMDA(R): N-methyl-D-aspartate (receptor) 

NMF(s): natural moisturizing factor(s) 

NO: nitric oxide 

PCNA: proliferation cell nuclear antigen 

PG: prostaglandin 
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PPP: palmoplantar pustulosis 

SCC: squamous cell carcinoma 

SLURP-1: secreted mammalian Ly-6/uPAR-related protein 1 

SP: substance P 

str.: stratum (layer) 

TLR: Toll-like receptor 

TM: transmembrane (domain) 

TPA: 12-O-tetradecanoylphorbol-13-acetate 

TRH: thyreotropin releasing hormone 

TRP: transient receptor potential 

TRPA: “ankyrin” subfamily of the TRP channels 

TRPC: “canonical” or “classical” subfamily of the TRP channels 

TRPM: “melastatin” subfamily of the TRP channels 

TRPML: “mucolipin” subfamily of the TRP channels 

TRPP: “polycystin” subfamily of the TRP channels 

TRPV: “vanilloid” subfamily of the TRP channels 

TSH: thyreotropin 

TSW: Avène Thermal Spring water 
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Homeostatic Functions of the Skin
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Figure 2.

Key Components of the Skin Barrier

Physical-Chemical Barrier (Micro)biological Barrier

Immunological Barrier Barrier Regeneration

 ”Bricks”: fine-tuned differentiation program of 

keratinocytes; corneocytes; cornified 

envelope; intercellular junctions

 ”Mortar”: epidermal and sebaceous lipids; 

lamellar bodies

 Additional factors: NMFs; acidic pH; Ca2+-

gradient

 Resident bacterial flora: ”passive” and 

”active” antimicrobial activities

 ”Passive” activity: competitive exclusion and 

colonization resistance

 ”Active” activity: production of antimicrobial

factors (e.g. propionicins, jerseniin G, lactic

acid, acneicin)

 Innate immunity: immunocompetent skin-

derived cells; receptors (e.g. TLRs); 

production of AMPs (e.g. LL-37), AMLs (e.g. 

lauric acid), cytokines (e.g. ILs),  and 

chemokines

 Adaptive immunity: ”professional” immune

cells (e.g. Langerhans cells); production of 

cytokines /chemokines

 Cell types: keratinocytes, fibroblasts, 

macrophages, mast cells, neutrophils

 Stem cells: multiple sources (e.g. epidermis, 

dermis, hair follicle, other adnexes)

 Soluble factors: growth factors, cytokines, 

chemokines, neuropeptides, neurotrophins, 

skin hormones
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