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ABSTRACT (250) 

Spinal lamina I is a key area for relaying and integrating information from nociceptive 

primary afferents with various other sources of inputs. While lamina I projection neurons 

have been intensively studied, much less attention has been given to local-circuit neurons 

(LCNs), which form the majority of the lamina I neuronal population. In this work the 

infrared light-emitting diode (IR-LED) oblique illumination technique was used to 

visualize and label LCNs, allowing reconstruction and analysis of their dendritic and 

extensive axonal trees. 

We show that the majority of lamina I neurons with locally branching axons fall into the 

multipolar (with ventrally protruding dendrites) and flattened (dendrites limited to lamina 

I) somatodendritic categories. Analysis of their axons revealed that the initial myelinated 

part gives rise to several unmyelinated small-diameter branches that have a high number 

of densely packed large varicosities and an extensive rostrocaudal (2-3 segments), 

mediolateral and dorsoventral (reaching laminae III-IV) distribution. The extent of the 

axon and the occasional presence of long solitary branches suggest that LCNs may also 

form short and long propriospinal connections. We also found that the distribution of 

axon varicosities and terminal field locations show substantial heterogeneity and that a 

substantial portion of LCNs is inhibitory.  

Our observations indicate that LCNs of lamina I form intersegmental as well as 

interlaminar connections and may govern large numbers of neurons, providing 

anatomical substrate for rostrocaudal "processing units" in the dorsal horn.  
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INTRODUCTION 

Lamina I of the spinal cord is a key area for sensory information processing and pain 

transmission (Cervero and Tattersall, 1987; Christensen and Perl, 1970). It is a major 

target zone for the fine caliber myelinated Adelta- and unmyelinated C-primary afferent 

fibers (Willis and Coggeshall, 1991) as well as for the descending systems that control its 

activity (Millan, 2002). Based on their somatodendritic organization, lamina I neurons in 

the rat have been classified as fusiform (IA and IB), multipolar (IIA and IIB), flattened 

(III) and pyramidal (IV) (Lima and Coimbra, 1986).  However, as for the rest of the 

dorsal horn and in particular of lamina I neurons, little is known about the local axonal 

projections and the lack of such information is a serious obstacle to establishing the roles 

of different neurons and understanding the dorsal horn circuitry (Todd, 2010). It is 

important to note that only 5% of lamina I neurons project supraspinally, while the 

majority of lamina I neurons function as excitatory and inhibitory intrinsic, or so-called 

local-circuit, spinal neurons (Cervero et al., 1979; Dickenson et al., 1997; Hunt et al., 

1981; Bice and Beal, 1997; Grudt and Perl, 2002; Spike et al., 2003). Hence, lamina I 

neurons were shown to issue collaterals in laminae I-IV of the spinal cord in monkey 

(Beal et al., 1981), cat (Bennett et al., 1981; Hylden et al., 1986; Light et al., 1979) and 

rat (Cheunsuang and Morris, 2000; Grudt and Perl, 2002) as well as in the medullary 

dorsal horn of rats (Li et al., 2000). However, a systematic study on the functional 

connectivity of these neurons or the branching pattern and extent of their axons has not 

been performed yet. This is most likely due to the low yield of available techniques for 

labeling and reconstructing intact single neurons in lamina I.  

The use of the IR-LED oblique illumination technique (Safronov et al., 2007; Szucs et al., 

2009) in intact spinal cord preparations, in vitro, was proven to be a way to solve this 

problem. This approach permitted recording, labeling and reconstruction of the complete 

dendritic and axonal trees of lamina I neurons, revealing distinct local axon-collateral 

patterns for projection neurons belonging to the anterolateral tract (ALT) (Szucs et al., 

2010). These experiments also revealed lamina I neurons with extensive local axons (see 

Fig.3. in Szucs et al., 2010) similar to those reported by Li et al. (2000) in the medullary 

dorsal horn. In a recent study we used a computer model of a 3-D reconstructed LCN to 

show that such complex axon architecture may significantly contribute to long 
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transmission delays in local monosynaptic connections (Luz et al., 2010). Thus, our aim 

in the present study was to provide a detailed morphological description of lamina I 

LCNs, with special emphasis on the axon structure, in order to improve our 

understanding of their role in the spinal dorsal horn network. We also aimed to create the 

first detailed 3-D reconstructions of lamina I neurons that besides being a valuable tool 

for computational neuroscience would also allow novel spatially dependent 

morphometric measurements.  
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MATERIALS AND METHODS 

Spinal cord preparation 

Laboratory Wistar rats (P14-P24) were killed in accordance with the national guidelines 

(Direcção Geral de Veterinária, Ministério da Agricultura) after anesthesia with 

intraperitoneal injection of Na
+
-pentobarbital (30 mg/kg) and subsequent check for lack 

of pedal withdrawal reflexes. The vertebral column was quickly cut out and immersed in 

oxygenated artificial cerebrospinal fluid (ACSF) at room temperature. The lumbar spinal 

cord was dissected and the pia mater was locally removed in the region of interest with 

forceps and scissors to provide access for the recording pipettes. The spinal cord was 

glued with cyanoacrylate adhesive to a golden plate with the dorsolateral spinal cord 

surface facing upwards, and transferred to the recording chamber. All recordings were 

performed at 22-24 °C. 

 

Segment length measurements 

Lumbar spinal cords of P14 (n = 3) and P21 (n = 3) rats were excised as described above 

and immersion fixed in 4% paraformaldehyde to achieve a fixation that is comparable 

with that of the spinal cords used in electrophysiological experiments and for cell 

labeling. The rostrocaudal extent of the spread of rootlets from a given dorsal root was 

measured with a vernier caliper for all segments.   

 

Imaging and identification of lamina I neurons 

Lamina I neurons were visualized in the intact lumbar spinal cord using the oblique IR-

LED illumination technique (Safronov et al., 2007; Szucs et al., 2009). Neurons were 

selected in the region between the dorsolateral funiculus (lateral border) and the dorsal 

root entry zone (medial border) (see Fig 1. in Pinto et al., 2010). The white matter 

covering this part of lamina I is thin in young rats, allowing visually-controlled tight-seal 

recordings from the superficial neurons. Neurons with multipolar or rounded somata were 

selected (Fig. 1A) since these somatic morphologies were unlike those of ALT-PNs 

described in our previous studies (Szucs et al., 2010; Luz et al., 2010). Only cells in the 

most superficial cell layer, with an apparent soma diameter above 20 µm were selected 

for recording. 
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Cell recording and filling 

Recordings from lamina I neurons were made in whole-cell mode. The artificial 

cerebrospinal fluid (ACSF) contained (in mM): NaCl 115, KCl 3, CaCl2 2, MgCl2 1, 

NaH2PO4 1, NaHCO3 25, and glucose 11 (pH 7.4 when bubbled with 95%-5% mixture of 

O2-CO2). Pipettes were pulled from thick-walled glass (BioMedical Instruments, 

Germany) and fire-polished (resistance, 3-5 MΩ). The pipette solution contained (in 

mM): KCl 3, K-gluconate 150, MgCl2 1, BAPTA 1, HEPES 10 (pH 7.3 adjusted with 

KOH, final [K
+
] was 160 mM) and 0.5-1% biocytin. In the case of neurons that 

underwent further immunocytochemical analysis the 0.5% biocytin was complemented 

by 0.5% Rhodamine Red. Recordings were made with an EPC10-Double amplifier 

(HEKA, Lambrecht, Germany). The signal was low-pass filtered at 2.9 kHz and sampled 

at 10 kHz. Offset potentials were compensated before seal formation. Liquid junction 

potentials were calculated (15.9 mV) and corrected for in all experiments using the 

compensation circuitry of the amplifier. In some experiments substance P (SP; Sigma, St. 

Louis, MO) was applied in the bath through the perfusion line. Application of SP was 

never repeated in the same preparation.  

 

Visualization of filled neurons and measurements 

After fixation in 4% freshly depolymerized formaldehyde, the spinal cord was embedded 

in agar and 100 µm thick sagittal or transverse serial sections were prepared with a tissue 

slicer (Leica VT 1000S). To reveal biocytin, sections were permeabilized with 50% 

ethanol and treated according to the avidin-biotinylated horseradish peroxidase (HRP) 

method (ExtrAvidin-Peroxidase, diluted 1:1000;Sigma, St. Louis, MO) followed by a 

diaminobenzidine (DAB) chromogen reaction. Sections were either counterstained on 

slides with 1% toluidine blue, dehydrated, cleared and coverslipped with DPX (Fluka, 

Buchs, Switzerland), or treated with 1% OsO4 and embedded in epoxy resin (Durcupan, 

Fluka, Buchs, Switzerland). Photomicrographs were taken using the 10x or 40x dry lens 

of a Primo Star (Zeiss) microscope equipped with a Guppy (Allied Vision Technologies) 

digital camera. In some cases multiple (3-6) photographs were taken from consecutive 

focal planes and overlaid in order to see focused details from different depths. These 
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photographs are referred to as extended focal images in the illustrations. Contrast and 

brightness of the photographic images used in all the figures were adjusted using the 

Adobe Image Ready software.  

The area of filled neuronal somata were measured using the ImageTool software 

(University of Texas Health Science Center at San Antonio) by tracing the outline of the 

cell body with a mouse on digital images taken with a 10x objective lens.  

In the case of 3-D reconstructed and connected cells, the largest extent of the axonal and 

dendritic tree in each direction was measured on the reconstructions. For cells that were 

not reconstructed and connected the measurements were performed on digital 

photographs or by overlaying a dimmed scale bar on the live image of the camera 

connected to the microscope. In sagittal sections the rostrocaudal extent could be directly 

measured and the mediolateral extent could be estimated by multiplying the number of 

sections that had labeled processes by the thickness of the sections. The dorsoventral 

extent in sagittal sections, especially in lateral ones, could not be measured reliably due to 

the curvature of the dorsal horn. In transverse sections, the mediolateral and dorsoventral 

extent could be directly measured while rostrocaudal extent was estimated in the same 

way as mediolateral extent for sagittal sections.  

Due to the difficulty of the exact delineation of laminae in lateral sagittal sections laminar 

borders are not indicated on reconstructions from sagittal sections even when they are 

rotated to show a transverse view (e.g. Fig. 1E and F). Laminar location of axon branches 

was estimated by checking their distance from the dorsal surface (in medial sagittal 

sections where the dorsal horn curvature introduces less error) and from other landmarks, 

such as the notch at the level of the neck of the dorsal horn or the central canal. When 

these landmarks were located in more medial serial sections photographic images of the 

sections were overlaid for alignment.     

 

3-D reconstruction 

Complete 3-D reconstructions were performed from serial sections with Neurolucida 

(MBF Bioscience, Williston, VT). Since we found that the largest extent of the axonal 

tree of LCNs is in the rostrocaudal direction we chose cells sectioned in the sagittal plane 
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for reconstruction. This way there were fewer connections to be made between 

neighboring sections.  

First, each section was completely traced into the corresponding section of a serial 

section dataset with a 40x (dry) objective. Caliber of the digitally traced processes was 

continuously adjusted during the tracing to completely cover the video image of the 

labeled process. Fiber caliber units for the selected lens were automatically set by the 

software, based on prior calibration. Whenever necessary, a 100x (oil immersion) lens 

was used to determine the Z difference between crossing structures. Neighboring sections 

were not aligned, nor were continuing processes connected at this point. Next, we aligned 

the sections and connected the pieces working always towards the section containing the 

soma. Due to shrinkage the thickness (Z-dimension) of resin embedded sections was 80-

90% of the original 100 µm. This was comparable with shrinkage of these long sagittal 

spinal cord sections along the X-Y axes. Thus, Z-shrinkage was not corrected in these 

cases. In the case of DPX embedded material the shrinkage along the Z-axis was 

corrected to reach a thickness of 80 µm and to be comparable with the other 

reconstructions. In most cases, tracing and the procedure of alignment followed by 

connecting the corresponding pieces were performed by independent persons, to ensure 

that all difficult branch points and crossings were double checked. Section contours as 

well as gray matter and central canal borders were traced at the bottom level of each 

section. Neuronal processes that could not be connected due to partial filling, distortion 

of the sections or any other technical problems were deleted from the dataset. The 

estimated percentage of these deleted processes was below 5% in all cases.  

 

Calculation and 3-D visualization of varicosity distributions and action potential 

propagation time maps 

A set of specific functions (called Py3DN; https://sourceforge.net/projects/py3dn/) was 

developed in the Python programming language to perform particular, spatially 

dependent morphometric analyses on the axonal trees. The Neurolucida data of the 

reconstructed axon were made available to the Python environment using a custom made 

parser. The morphometric analysis algorithms were integrated into Blender, a well-
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established free open source 3-D content creation suite (www.blender.org), to visualize 

the spatially dependent results.  

For the visual representation of varicosity distribution along the axonal tree of LCNs, a 

virtual boundary box that encompasses the entire axonal tree was calculated. This volume 

was partitioned into voxels (or volume elements) with a predefined size (100 µm x 100 

µm x 100 µm). The number of varicosities in each voxel was then calculated and its 

normalized value was used to color-code the particular voxel. For better visualization of 

the overlapping voxels, the opacity index of every voxel was also set to the normalized 

value of its varicosity content. 

For creating propagation time maps along the LCN axonal trees, the time needed for a 

hypothetical action potential, initiated at the initial segment, to reach each point of the 

axon was calculated. The propagation time contribution of each axon segment (i.e. 

between two points of the reconstruction) was assumed to depend on its length and 

diameter. A diameter threshold based on electron microscopy measurements (see Fig. 7) 

was used to distinguish between myelinated and unmyelinated elements of the axon. The 

equation used for calculating the propagation time δm of myelinated regions was δm = l / 

(km d), where l is length, km is a constant factor and d is the diameter. The constant km was 

10000 m/s·µm
-1

, giving 10 m/s conduction velocity for a uniform 1-µm-thick constant 

diameter axon (Cervero et al., 1979). On the other hand, the equation used for calculating 

the propagation time δn for unmyelinated elements was δn = l / (kn √d), where l is the 

element length, kn is a constant factor and d is the diameter. The constant kn was chosen 

to be 380 m/s·µm
-1/2

, which implies a conduction velocity of 0.38 m/s in a 1-µm-thick 

unmyelinated axon. This value was in good agreement with conduction velocities 

measured at 22-24 °C for unmyelinated C-fibers in isolated dorsal roots (Pinto et al., 

2008). The cumulative propagation time for each axon point was calculated as the sum of 

propagation times of all elements up to the axon initial segment. A color code was used 

to represent the cumulative propagation time at each point of the axon. Due to the lack of 

data on the length of the axon initial segment of lamina I neurons, this part was treated as 

the rest of the axon tree. 

Sholl analysis, path distance calculation and basic quantitative measurements were 

performed by Neuroexplorer (MBF Bioscience, Williston, VT). 
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Immunocytochemistry 

Spinal cords containing neurons filled with a mixture of biocytin and rhodamine for 

immunocytochemistry were fixed in 4% formaldehyde for at least 24 hours at 4 °C. Serial 

sections of 60-100 µm thickness were prepared, in the sagittal or transverse plane, and a 

Zeiss AxioLab.A1 fluorescence microscope was used to identify the section containing 

the cell body. This section and its two immediate neighbors were treated with a cocktail 

of primary antibodies consisting of rabbit anti-vesicular GABA transporter (VGAT; 

1:1000; Synaptic Systems, Goettingen, Germany) and guinea pig anti-vesicular glutamate 

transporter 2 (VGLUT2; 1:5000; Millipore, Watford, UK), as described previously 

(Yasaka et al., 2010). Filled cells were labeled with streptavidin-conjugated fluorochrome 

(avidin-rhodamine; 1:1000; Jackson ImmunoResearch, West Grove, PA) and species-

specific secondary antibodies raised in donkey or goat and labeled with fluorescent dyes 

(Alexa 488, Pacific Blue, 1:500, Invitrogen, Paisley, UK; or DyLight 649, 1:100, Jackson 

ImmunoResearch) were used to perform triple fluorescence staining. Details of the 

antibodies are given in Table 1. The VGLUT2 antibody recognizes a band of 56 kDa 

(corresponding to the VGLUT2 protein) on Western blots of rat brain lysate. Its 

specificity was confirmed by carrying out dual immunofluorescence staining with a well-

characterized rabbit antibody against VGLUT2 (Todd et al., 2003), and identical 

structures were stained by the two antibodies (Yasaka et al., 2010). The VGAT antibody 

stains a band of the appropriate molecular weight on Western blots (Guo et al., 2009). 

Immunofluorescence staining was blocked by pre-incubation with the immunizing 

peptide at 10
-6

M (Polgar et al., 2011). 

Sections were mounted, coverslipped with anti-fade medium and series of optical 

sections were acquired sequentially at 0.5 µm intervals with a Zeiss LSM 710 confocal 

microscope through a 63x oil-immersion lens (NA 1.4). Finally, sections were de-

mounted and processed further with the HRP-DAB method for morphometric 

measurements or 3-D reconstruction (see above). 

 

Electron microscopy 
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Spinal cords processed for electron microscopy analysis were fixed in a mixture of 4% 

formaldehyde and 0.1% glutaraldehyde. Serial sagittal 100-µm-thick sections were cut 

with a tissue slicer (Leica, VT 1000S). Sections were permeabilized by freeze-thaw 

cycles in liquid nitrogen and the biocytin revealed by the HRP-DAB reaction, as 

described above. Sections were postfixed in 1% OsO4, dehydrated and embedded into 

epoxy resin (Durcupan, Fluka) on glass slides. Regions of interest were excised from the 

thin layer of resin on the slide and re-embedded for ultrathin sectioning. The ultrathin 

sections were further contrasted with lead-citrate (1 min) and uranyl-acetate (1 min), and 

scanned with an electron microscope (JEOL JEM 1400 TEM; Tokyo, Japan). Biocytin 

filled axonal profiles were digitally recorded using a Gatan SC 1000 ORIUS CCD 

camera (Warrendale, PA, USA) at 20000x or 50000x magnification. Diameter of axons 

and axon varicosities was measured on the digital images. 

 

Numbers are given as mean ± SEM unless otherwise mentioned.  
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RESULTS 

The following experiments aimed to characterize local-circuit neurons in the most 

superficial layer of the spinal dorsal horn. We have recorded from and filled 98 lamina I 

neurons, in the intact in vitro spinal cord preparation containing at least two- but in most 

cases all six (L1-L6) lumbar segments. In 82 cases the axon of the recorded neuron had 

been recovered to an extent that allowed us to confirm 1) the lack of any axon in the 

contralateral white or gray matter and 2) the presence of numerous ipsilateral, local axon 

collaterals with varicosities. These 82 neurons form the basis of this study. 

The mean input resistance of LCNs was 0.9 ± 0.1 GΩ. With the exception of a few 

neurons, LCNs presented a tonic firing pattern and, in 46% of the cases, neurons were 

rhythmically firing action potentials (at zero injected current) that persisted in the 

presence of a blocker of fast glutamatergic transmission, CNQX (10 µM; Sigma, St. 

Louis, MO) (see Li and Baccei, 2011). About one-third of the LCNs tested (n = 34) 

responded with a characteristic inward current for the bath application of substance P (1 

µM; Sigma, St. Louis, MO), an agonist of functional neurokinin-1 receptors. When 

recorded in current-clamp mode, the substance P-activated current caused depolarization 

that was often suprathreshold and resulted in sustained action potential firing. Analysis of 

the electrophysiological and pharmacological properties of LCNs will be the subject of 

another study.  

From the 82 LCNs, 60 have been sectioned in the sagittal, 22 in the transverse plane and 

a total of 13 cells have been reconstructed. Complete 3-D reconstruction and connection 

of the reconstructed pieces was performed for 7 LCNs (cell IDs: L292_E1, L292_E5, 

L387_E3-2, L396_E2, L420_E2, Zs022_E8-1, L571_E20-3). For three more LCNs, 3-D 

reconstruction was performed (cell ID: Zs079_E13 – sagittal plane; cell ID: L315_E4 and 

L316_E6 - transverse plane) but connection of the pieces could not be performed due to 

distortion or damage to some of the sections. Three LCNs have been fully reconstructed 

and aligned in 2-D (cell IDs: L256_E1 and L279_E2 – sagittal plane; cell ID: L317_E1 – 

transverse plane) similarly to the reconstructions in Szucs et al. (2010). In addition, for 

comparison of basic parameters of the axon, a mixed-collateral-type (MCT) ALT-PN 

(cell ID: L292_E4) has also been reconstructed in 3-D.  
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Somatodendritic architecture of lamina I LCNs 

Morphometric analysis of the somatodendritic domain was possible in 72 cases, where 

both soma and dendrites were revealed in detail. The majority of these recovered neurons 

fell into the multipolar (n = 38) and flattened (n = 29) somatodendritic types of Lima and 

Coimbra (1986). We also found 1 fusiform and 1 pyramidal-like soma in our sample 

while 3 neurons could not be classified according to this scheme. In the case of 

multipolar neurons (Fig. 1C, D and F), initial dendrites often originated close to each 

other resulting in a gradual tapering appearance of the soma towards the first dendritic 

branch point. Some of the multipolar dendrites protruded ventrally and reached lamina III 

(Fig. 1D and F and Fig. 2A and B), while dendrites of flattened neurons were mostly 

restricted to lamina I and outer lamina II (Fig. 1B and E). Dendrites of LCNs had few 

spines compared to those of ALT-PNs in our earlier study (see Fig. 1Db and Fig. 5A in 

Szucs et al., 2010). 

LCNs had a mean soma diameter of 22.4 ± 0.6 µm (n = 72) and gave rise to 2-8 major 

dendrites (average: 4.4 ± 0.1). When comparing LCN soma areas and number of their 

initial dendrites with those of ALT-PNs from our previous study (n = 40; Szucs et al., 

2010) we found that the majority of LCNs were smaller (average: 351 ± 17 µm
2
) and 

gave rise to more initial dendrites than ALT-PNs (Fig. 1G). Basic morphometric 

parameters of the somatodendritic domain of LCNs are shown in Table 2. The 

rostrocaudal extent of the dendrites of LCNs was 320 ± 14 µm, while mediolateral and 

dorsoventral spread were 323 ± 15 µm and 159 ± 19 µm, respectively. Morphometric 

parameters of flattened and multipolar LCNs were similar. However, multipolar LCNs 

often gave rise to more dendrites and the dorsoventral extent of their dendrites, in line 

with the original description of lamina I multipolar neurons (Lima and Coimbra, 1986), 

was larger than that of flattened cells. The single fusiform and the pyramidal LCN along 

with the cells that could not be classified had larger dendritic trees. Sholl analysis of the 

branch-points (n = 7; reconstructed in 3-D) revealed that dendrites of LCNs branched 

mostly in the vicinity (50-250 µm) of the soma (Fig. 1H). We found no indication for any 

correlation between the somatodendritic type and investigated axon parameters of LCNs.  

 

Axon of lamina I LCNs 
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The axon of LCNs in all cases formed a denser or sparser local network that spanned at 

least 1-2 segments rostrocaudally. Axon branches occupied the dorsal 100 - 120 

micrometer-thick band of the grey matter (corresponding roughly to laminae I-II at this 

age), frequently protruded deeper, occasionally reaching the level of the notch at the neck 

of the dorsal horn (corresponding to laminae III-IV in most lumbar segments at this age 

and also in adult rats; Paxinos and Watson, 2007). Distribution of axon branches was also 

confirmed in transverse sections (Fig. 2A and C). In two cases a few axon collaterals 

reached below the level of the central canal (laminae VII and VIII). The local axon 

network was either centered on the soma (e.g. green neuron, cell ID: L292_E5, in Fig. 

3A) or shifted along the rostrocaudal axis (e.g. red neuron, cell ID: L292_E1, in Fig. 3A 

or cell ID: L387_E3-2, in Fig. 6D). In most cases the axon overlapped with the dendrites 

and the soma. The mean rostrocaudal extent of the labeled and recovered axon of LCNs 

was 2312 ± 113 µm (Table 2) that corresponds to 2-3 lumbar spinal segments in animals 

at this age (Fig. 3B). Mediolateral and dorsoventral spread of the axon was 636 ± 27 µm 

and 295 ± 41 µm, respectively. While the extent of the axon of flattened and multipolar 

cells was similar in all dimensions, the axons of the other 5 neurons (fusiform, pyramidal 

and 3 not classified) were somewhat smaller (Table 2). The longest rostrocaudal extent 

encountered in this study was 6500 µm (red neuron, cell ID: L292_E1, in Fig. 3A). It has 

to be noted however, that in 51 of the 82 LCNs the axon reached one or both ends of the 

preparation and was therefore cut. 

 

We used the neurons reconstructed in 3-D to compare total axon length, volume and 

branch points between LCNs and ALT-PNs. For the comparison, we used a 

characteristic, simple lateral-collateral type (LCT) ALT-PN from Luz et al. (2010) and 

additionally reconstructed a mixed-collateral type (MCT) ALT-PN that was filled along 

with two LCNs in the same spinal cord and, to date, has the most extensively branching 

ipsilateral collaterals in our ALT-PN sample (blue neuron, cell ID: L292_E4, in Fig. 3A). 

The filling time of the three neurons was almost identical: 28-30 minutes, although 

transport time of biocytin varied. The mean total axon length (i.e. sum of the length of all 

reconstructed axon segments) of LCNs was 32717 ± 4008 µm, which was comparable 

with the axon length of a complex MCT ALT-PN but a lot larger than that of the simple 
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LCT ALT-PN (Fig. 3C). The mean total axon volume (calculated from the length and 

diameter of all reconstructed axon segments) of LCNs was 2180 ± 378 µm
3
, a value that 

falls between that of a complex MCT ALT-PN and the simple LCT ALT-PN (Fig. 3D). 

The mean number of branch points along the LCN axon was 247 ± 71, exceeding the 

value of even the most complex ALT-PN axon (Fig. 3E). 

 

Occasionally, LCNs, situated in the most lateral part of lamina I, had the majority of their 

axon located medially, several tens of micrometers away from the soma (Fig. 4). 

The main axon of LCNs originated from the soma (Fig. 5A) only in 36% of the cases, 

while the majority (46 of 82; 64%) branched from one of the primary dendrites (Fig. 5B) 

at a mean distance of 16.1 ± 1.6 µm from the soma (Table 3). The initial part of the axon 

had a myelinated appearance, similar to the main axon of ALT-PNs (Szucs et al., 2010), 

which persisted up to the first and second order, already thinner branches (Fig. 5C). In 

approximately half of the neurons this initial part of the axon made a ventro-dorsal and/or 

latero-medial loop, giving rise, often in an alternating manner (Fig. 5D), to 3-7 branches 

of smaller diameter that traveled rostrally or caudally and branched extensively. The 

overlapping axons of several branch orders formed the characteristic axon of LCNs (Fig. 

5C). Axon branches started to have varicosities after 2-3 divisions. Initial divisions of the 

branches frequently occurred at acute angles (30-50 degrees), while distal branches, 

particularly the long rostrocaudal branches that run in the dorsolateral funiculus (DLF), 

gave rise to side branches in a perpendicular manner (Fig. 5E). The varicose part of the 

axon (i.e. most of the local axon in the vicinity of the soma) contained a great number of 

varicosities with a diameter between 0.5-1.5 µm (Fig. 5C). Apart from the local varicose 

axon network, 59 out of the 82 LCNs had single or multiple, varicose or myelinated 

looking solitary axon branches (Fig. 5F and G) in the neighboring white matter, including 

the Lissauer tract, dorsal funiculus (DF), DLF and lateral funiculus (LF). Detailed 

description of the locations and numbers of these axon branches is given in Table 3. The 

percentage of LCNs with axon branches in the neighboring white matter was highest 

(86%) among cells with flattened somatodendritic morphology and smallest (54%) in 

case of the 5 LCNs that were neither flattened nor multipolar. Axon branches in the white 

matter run both caudally and rostrally and we could establish neither a preferred direction 
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in our sample, nor any correlation with the location of the branches or any other 

descriptor of the neurons (e.g. somatodendritic type). None of the 82 LCNs in this study 

had detectable axon branches crossing the midline and entering the contralateral white 

matter. 

 

Axon branching pattern 

In order to understand how the intermingled axons of LCNs are organized we color-

coded primary branches from the main axon of the 3-D reconstructed LCNs. In the 

sample of LCNs reconstructed in 3-D (n = 7), the maximum number of primary branches 

from the main axon was 7. We found overlaps between the target areas of the individual 

primary branches in all cases, despite the fact that they often started off in opposite 

directions in an alternating manner from the main axon (Fig. 6A and B). The overlap 

between target areas ranged from very slight (e.g. cell ID: Zs022_E8-1 in Fig. 6D) to 

substantial (Fig. 6C and also cell ID: L395_E2 in Fig. 6D). Some LCN axons had only 3-

4 primary branches and the proximal ones (first or second) dominated the tree (Fig. 6A). 

In other LCNs, the major axon gave rise to up to 7 primary branches where distal ones 

occupied more space (Fig. 6C). In some cases proximal and distal primary branches 

targeted similar dorsal horn areas through separate routes and added further redundancy 

to the tree architecture (Fig. 6C). 

 

Axon varicosity distribution 

The axonal tree of LCNs possessed a large number (up to 6122, cell ID: L387_E3-2) of 

en passant varicosities and terminal boutons, typical for unmyelinated axons. The 

absolute number of detected varicosities in case of individual cells largely depends of the 

extent of labeling and the intactness of the axon, thus it is likely to show substantial 

heterogeneity. Varicosity density and distribution along the axon, however, may show 

characteristic patterns even in cases of incomplete cell labeling. Thus, we performed 3-D 

Sholl analysis and path distance measurements, combined with mapping of varicosity 

distribution along the axon in a spatially dependent manner. For the latter purpose, a 

custom made program was created that counted the varicosities in a predetermined space 

unit (voxel) and represented it visually on top of the 3-D representation of the axon. The 
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maximum varicosity number in the predefined voxels ranged from 79 to 273 among the 

3-D reconstructed LCNs and the distribution along the axon was clearly heterogeneous 

(Fig. 7). As a general feature, all 6 neurons presented the highest number (and density) of 

varicosities in the vicinity (within the first 500 µm) of, but not centered on the soma (Fig. 

7 and 8). The number and density of varicosities gradually decreased further away from 

the soma (e.g. cell IDs: L395_E2 and L387_E3-2, Fig. 7 and Fig. 8A). Path distance to 

the individual varicosities in these cells also showed a definite peak around 1000 µm. 

However, in cells that had fewer varicosities within the first 500 µm, we observed further 

local accumulation of varicosities that were sometimes located several hundreds of 

micrometers away from the soma along the rostrocaudal (e.g. cell IDs: Zs022_E8-1 and 

L292_E1, Fig. 7A and Fig. 8B) or mediolateral axes (e.g. L292_E5 in Fig. 7B). In these 

cells path distance histograms showed a more widespread distribution with multiple 

peaks (Fig. 8B).  

One of the cells presented several such accumulations (cell ID: L292_E1, Fig. 7 and Fig. 

8B) on side branches originating from a major projecting branch that run caudally for 

several segments, gradually becoming thinner. Interestingly, accumulations were spaced 

in a way that their position corresponded to different lumbar segments and while 

avoiding the region with dendrites of an MCT ALT-PN (cell ID: L292_E4, blue cell in 

Fig. 3), they overlapped with dendrites of another LCN (cell ID: L292_E5, green cell in 

Fig. 3).  

Long solitary branches that projected out of the main part of the LCN axon usually had a 

constant diameter and were devoid of varicosities (consistent with the appearance of 

myelinated axons) except for occasional side bouquets (e.g. cell ID: L395_E2, Fig. 7). 

 

Fine structure of LCN axons 

Since the axon of LCNs could clearly be divided into varicosity bearing thin parts and 

thicker myelinated looking pieces, we wanted to confirm the absence and presence of 

myelin in these regions. Thus, we selected an LCN with a characteristic axon (Fig. 9A) 

and chose a section where myelinated looking thick pieces were present along with thin 

parts, densely packed with varicosities (Fig. 9B). The section was processed for electron 

microscopy analysis and two regions of interest (Fig. 9C and D - thick, myelinated 
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looking piece; Fig. 9E and F - thin varicose branches) were re-embedded and re-

sectioned. We found that axonal profiles from the region shown in Fig. 9C and D, 

without exception, presented several concentric layers of myelin around them (Fig. 9G 

and H). At the same time, inter-varicosity segments (Fig. 9J) and varicosities (Fig. 9K) of 

axons from the region shown in Fig. 9E and F both lacked myelin.  

We also measured the diameter of the axons on the electron microscopy photographs 

taken from the two regions of interest. Since the axons in the ultrathin sections were cut 

in a random orientation we first established the longitudinal axis of the particular profile 

and then measured the widest diameter perpendicular to it. Diameter histograms of 

myelinated (n = 24) and unmyelinated (n = 157) axon profiles are shown in Fig. 9I and in 

Fig. 9L. The mean diameter of myelinated axon profiles measured with- and without the 

myelin were 760 ± 28 nm and 453 ± 18 nm, respectively. Mean unmyelinated axon 

diameter was 311 ± 10 nm with most diameters in the bin between 200 and 250 nm.  

The ultrastructure of the preparation did not allow identification of further fine structural 

details or postsynaptic targets of the LCN axon. 

 

Action potential propagation time in LCN axons 

In an earlier study we estimated the action potential (AP) propagation times at different 

points of a complex LCN axon by using an anatomically correct neuronal model, where 

the whole axon was considered unmyelinated (see Fig. 8 in Luz et al., 2010; cell ID: L-

395_E2). Our previous results indicated that the fine caliber and large length of LCN 

axons result in significant AP propagation times, up to tens of milliseconds. In the present 

study, however, our fine structural analysis revealed that some parts of the LCN axon are 

myelinated. Thus, we wanted to test to what extent the myelinated regions can reduce AP 

propagation time in the axonal tree. Furthermore, we wanted to calculate the theoretical 

AP propagation time for every point of the axonal tree to establish a temporal map of AP 

propagation in LCN axons. We developed a program in Python programming language to 

visually represent (in form of a color code) the propagation times (from 0 ms - blue, to 

the maximum value - red) for all points of the 3-D reconstructed LCN axons. The 

diameter threshold, above which we considered the axon segment as myelinated, has 

been set at 0.35 µm, based on the histograms and means of myelinated and unmyelinated 
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axon diameters (Fig. 9I and L). Conduction velocity in the unmyelinated part was set to 

0.38 m/s for a uniform 1 µm thick axon in agreement with measurements done at 22-24 

°C for unmyelinated C-fibers in isolated dorsal roots (Pinto et al., 2008). For myelinated 

axons we used a scaling factor giving a value of 10 m/s for a uniform 1 µm thick axon, so 

that the resulting conduction velocities fell in the range of those for the nociceptor-driven 

lamina I projection neuron axons of the small myelinated type (3.8-16.5 m/s; Cervero et 

al., 1979).  

To create the AP propagation time maps we chose two LCNs (cell IDs: Zs022_E8-1 and 

L292_E1) with remotely situated terminal branching areas and also included, as a form of 

validation of the program, the LCN used in our earlier work (cell ID: L395_E2; Luz et 

al., 2010).  

First we calculated conduction velocities for the axons considering them all as 

unmyelinated (Fig. 10A). The propagation times for cell L395_E2 were in the same range 

as those calculated using our former method (Luz et al., 2010). In the case of the LCN 

with the longest solitary branch (cell ID: L292_E1), the maximum propagation time in 

the remote regions was above 40 ms. In all 3 modeled LCNs the propagation time 

gradually increased in a concentric manner from the soma towards peripheral parts of the 

axon.  

When propagation times were re-calculated considering axon segments with a diameter 

above 0.35 µm as myelinated, the maximum propagation times in each neuron dropped 

(Fig. 10B). For the LCN with a compact tree, lacking remote regions attached via thick  

long solitary branches (cell ID: L395_E2), the change in the maximum propagation time 

was negligible (about 2%, 23.9 ms changed to 23.5 ms). The propagation time 

distribution of the axon varicosities was only slightly shifted to the left with no apparent 

change in the shape (Fig. 10C).  

For the other two neurons (cell IDs: Zs022_E8-1 and L292_E1), however, maximum 

propagation time dropped to around 80% of the original value (to 80.4% in case of 

Zs022_E8-1 and 83.7% in L292_E1). Changes in the propagation time map were most 

apparent in case of Zs022_E8-1 (see arrows on Fig. 10B). Propagation time distribution 

histograms of axon varicosities of the latter two LCNs were notably shifted to the left, 

and their temporal dispersion decreased (Fig. 10C).     
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Neurotransmitter content of LCN axon terminals 

A question remaining after the description of the complex axon of LCNs was whether 

these neurons are excitatory or inhibitory. To answer this question, in 18 LCNs we tested 

immunoreactivity of the axon varicosities for antibodies raised against the vesicular 

GABA transporter (VGAT) and vesicular glutamate taransporter-2 (VGLUT-2) (Yasaka 

et al., 2010). In 16 LCNs, axon varicosities showed intensive immunolabeling for VGAT 

(Fig. 11A) and no sign of the presence of VGLUT-2 (not shown). In one LCN neither 

VGAT nor VGLUT-2 was detectable, while in another case the reaction was weak and 

immunopositivity could not be determined. To confirm that both transporters are indeed 

detectable in our preparation we tested their presence in dorsal, lateral and ventral 

collaterals of excitatory ALT-PNs (n = 4). Axon varicosities of the collaterals, as 

expected, proved to be VLGUT-2 immunopositive (images not shown). The mean soma 

area of the inhibitory LCNs, 246 ± 8 µm
2 

(n = 6; somata recovered) was in the range of 

smaller cells in the LCN group (see Fig. 1G). Inhibitory LCNs belonged to the multipolar 

(n = 5) and flattened (n = 3) somatodendritic types (for cells where dendrites were 

recovered sufficiently for classification). The axon of the reconstructed inhibitory LCN 

(along with the rest of the analyzed inhibitory LCN axons) was similar to those of the rest 

of the LCN sample (Fig. 11B-E). This particular cell had an axon that showed 

accumulations of varicosities both on the caudal and rostral part of the tree (Fig. 11C).  
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DISCUSSION 

We used the intact in vitro spinal cord preparation to demonstrate the axon diversity of 

LCNs in lamina I. We provided morphological evidence for their possible involvement in 

segmental interlaminar and propriospinal sensory information processing by showing that 

LCNs frequently possess a number of short and putative long propriospinal branches. To 

the best of our knowledge, for the first time, we provided extensive 3-D reconstructions 

of several lamina I neurons that allowed novel topological analyses. Besides the 

complexity of LCN axons, these analyses also revealed heterogeneity in the overlap 

between major axon branches, distribution of axon varicosities and in the estimated AP 

propagation times for different points of the axon. 

 

Technical considerations 

Our sample in this study is biased in some aspects. First, we used young animals, as the 

viability of the in vitro intact spinal cord preparation in our experiments proved to be best 

at P14-P24. For this reason, one cannot exclude that axons of more mature LCNs may be 

different. This, however, seems unlikely since lamina I neurons with very similar local 

axon branching pattern have been described in adult rats (Li et al., 2000). Second, due to 

the decreased visibility through regions rich in myelinated fibers, the medial part of the 

dorsal horn surface (dorsal root entry zone) was excluded from the search for neurons. 

Thus, conclusions of this study are based on neurons from the lateral two-thirds of lamina 

I. Third, when visualizing the surface of the dorsal horn in our intact spinal cord 

preparation, detection of the laminar border between lamina I and substantia gelatinosa 

relies solely on the appearance of the uniform, densely packed layer of small lamina II 

neurons. For this reason, to ensure that recorded neurons were in lamina I, we selected 

larger neurons in the most superficial (first to appear) cell layer of the dorsal horn. This 

way we unavoidably excluded small lamina I neurons. The description of axons of small 

lamina I and lamina II neurons will be the subject of another study.  

Finally, full analysis of all investigated parameters was possible only in 3-D 

reconstructed neurons. However, the number of such reconstructions is relatively small 

compared to the total of the LCN sample resulting in an additional source of potential 

variance.  
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Somatodendritic architecture of LCNs 

Based on their somatodendritic architecture, lamina I neurons in the rat have been 

classified into four categories: fusiform, pyramidal, flattened and multipolar (Lima and 

Coimbra, 1986). Lamina I LCNs in this study, with few exceptions, fell into the flattened 

and multipolar somatodendritic categories. This is in good agreement with our earlier 

study on local collaterals of lamina I ALT-PNs (Szucs et al., 2010) where none of the 

filled large multipolar neurons had an ascending axon in the contralateral anterolateral 

white matter.  

Although lamina I neurons have the bulk of their dendritic arbors confined within 

this lamina (Gobel, 1978), we also showed in this study that multipolar neurons issue 

prominent ventrally protruding dendrites (Lima and Coimbra, 1986) that not only enter 

lamina II, as reported for human lamina I neurons (Schoenen, 1982) but also reach lamina 

III. Therefore, it is reasonable to assume that in addition to the common sources of input 

to lamina I neurons, multipolar cells integrate information from deeper laminae (e.g. from 

local axons and primary afferents terminating in laminae II and III) and should be treated 

as a separate group. Along this line, one cannot exclude the possibility that multipolar 

lamina I LCNs may even be activated monosynaptically by primary afferents that convey 

information to deeper laminae (e.g. A-beta afferents or A-delta hair follicle afferents; 

Todd, 2010). A detailed description of primary afferent input to lamina I LCNs, that may 

answer this question, is the subject of an ongoing study in our laboratory. 

Similar to ALT-PNs (Szucs et al., 2010) a large percentage of LCN axons 

originated from one of the primary dendrites, although the mean distance from the soma 

in case of LCNs was slightly smaller. This, however, may be simply related to the fact 

that dendritic spread of LCNs was generally smaller than that of ALT-PNs reported in 

our previous study (Szucs et al., 2010). The high proportion of the axons with dendritic 

origin among LCNs suggests that this axon initiation type is a common feature of large 

lamina I neurons and is in agreement with earlier reports (Cheunsuang and Morris, 2000; 

Hylden et al., 1986). Dendritic origin of the main axon has also been observed in cat 

preganglionic sympathetic neurons (Morgan, 2001) and in motoneurons (Duflocq et al., 

2011). This anatomical variation seems to be frequent in spinal cord neurons and 
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determining its functional importance will require further in-depth knowledge of the 

ultrastructure and ion-channel composition of the axon initial segment and the dendrites 

giving rise to them (Duflocq et al., 2011).  

 

Overlaps between LCN axons and ipsilateral collaterals of lamina I ALT-PNs 

While LCNs reported in this study all had collaterals located in the superficial dorsal 

laminae (I-II, occasionally entering III and IV), only about one third of ALT-PNs (32.5%; 

lateral and mixed collateral types) have ipsilateral collaterals in the same region (Szucs et 

al., 2010). This suggests that the influence of LCNs in laminae I-II is greater than that of 

the ALT-PNs. In the DLF the contribution to rostrocaudally oriented varicose axon 

collaterals from the two groups is more balanced: 39% of LCNs and 40% of ALT-PNs 

(lateral and mixed collateral types) have collaterals in this region. Thus, both types of 

lamina I neurons may relay local segmental information to neighboring segments and to 

neurons of the lateral spinal nucleus. Finally, information from lamina I to ventral 

laminae (V-VIII) is mostly relayed by collaterals of ventral- and mixed collateral type 

ALT-PNs (30%) as only a few LCNs (n = 2; 2.4%) had axons reaching lamina VII.  

 

Possible roles of the local axon of LCNs 

The extensive branching of LCN axons suggest that besides the anatomical divergence of 

primary afferent fibers, LCNs may provide further divergence of processed primary 

afferent information after integrating it with other sources of input. Furthermore, LCN 

axons occupy most dorsal laminae (I-II and occasionally III-IV) and this feature, 

theoretically, allows relaying of C-fiber information to deeper laminae. Indeed, Braz and 

Basbaum (2009) reported neurons in deep laminae (III-V) receiving polysynaptic input 

from unmyelinated primary afferents. Lamina I LCNs may be direct sources of such 

polysynaptic input or provide it through contacting lamina II islet and stalked neurons, 

that were shown to project to deeper laminae (Eckert et al., 2003). At the same time, 

multipolar LCNs may be monosynaptically activated by primary afferents that terminate 

in deeper laminae. Consequently, neurons in laminae III-V may integrate direct primary 

afferent information with indirect processed form of the same information through lamina 

I LCNs. 
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Due to their extensive local axon, relatively few LCNs could influence the superficial 

dorsal horn along several segments, in a sustained tonic manner based on their firing 

pattern and the frequent occurrence of rhythmic intrinsic firing. 

The large number of varicosities and the highly branched, extensive axon of 

LCNs also imply that these neurons may be involved in volume transmission. In case of 

inhibitory LCNs, rhythmic intrinsic activity may result in continuous GABA release 

leading to metabotropic GABAB receptor activation in neurons of several neighboring 

segments.  

While the majority of the tested LCN axons proved to be VGAT positive, for 

several reasons, it is likely that not all LCNs recorded in this study are inhibitory. Around 

75% of neurons in lamina I of the rat spinal cord are neither GABA- nor glycine-

immunoreactive, and these cells (many of which are LCNs) are thought to be 

glutamatergic (Polgár et al., 2003).  Soma areas of inhibitory LCNs fell in the lower half 

of the total LCN soma area range, thus LCNs with larger somata may be the excitatory 

ones. Besides, in a previous study, we recorded synaptically connected lamina I neuron 

pairs, where the presynaptic neurons were always located in lamina I, and those 

connections were, without exception, excitatory (Luz et al., 2010). Furthermore, about 

one-third of the LCNs in this study expressed functional NK1 receptors (data not shown 

here), which were shown to be expressed in high percentage on lamina I projection 

neurons (Spike et al., 2003; Todd et al., 2000) and in excitatory interneurons (Littlewood 

et al., 1995), although the existence of NK1+/GABAergic neurons has also been 

proposed in the spinal (Ferrini at el., 2007) and in the medullary (Wang et al., 2000) 

dorsal horn of rats. 

We demonstrated that while the general appearance of the complex local axon is 

similar in all LCNs, axon varicosity distribution and branching pattern show certain 

heterogeneity. This may be related to the segmental position or to the location of a 

particular LCN in the somatotopic map. The relatively low number of 3-D reconstructed 

axons that could be used for such topological analyses, however, did not allow us to 

establish such correlations. 
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Functional consequences of the organization of LCN axons - branching, varicosity 

distribution and spike propagation 

The complex axon of LCNs with large numbers of varicosities, a tonic firing pattern,  

together with the observation that some of these neurons are rhythmically active (data not 

shown here), suggest that LCNs could provide tonic regulation and could distribute 

integrated information in a pattern governed by inherent spatial and temporal properties 

of the axon. 

For a complex axon with thousands of varicosities, forming networks in a highly 

somatotopic spinal dorsal horn, temporal dispersion of synaptic output is of crucial 

functional importance. The propagation time of an AP, initiated in the axon initial 

segment, is mostly determined by path length, axon diameter, myelination and branching 

(Debanne et al., 2011). Path distance to a particular point of the axon is strongly 

dependent on branching. The alternating branching of primary collaterals from the main 

axon into the rostral and caudal directions, frequently observed in this study, seems to be 

an efficient solution for maximally filling the target space (laminae I-III) and, at the same 

time, equalizing path distance for the rostral and caudal portions of the axon tree. This set 

up, however, in a system with strong spatial boundaries, such as the spinal dorsal horn, 

results in an overlap between major branches. Target regions supplied by multiple 

overlapping branches may be activated repeatedly, thus it will be important to understand 

conduction properties of LCN axons to evaluate their role in the spinal network.  

A recent paper comparing 3-D reconstructed basket and spiny cell axons used 

uniform conduction velocities to estimate, among other things, temporal dispersion in the 

axonal trees (Budd et al., 2010). The authors pointed out that this approach might 

underestimate temporal economy as, for example, myelinated primary axon collaterals 

could reduce latency to child branches with the same amount of axon for wiring. 

Myelinated long range branches of GABAergic interneurons, running in the stratum 

moleculare between innervation regions have been shown recently in the hippocampus 

(Jinno et al., 2007). In this paper we also demonstrated the presence of myelin around 

thicker initial parts of the axon of LCNs and, indeed, when we used a diameter-threshold 

to distinguish myelinated parts of LCN axons, temporal dispersion of AP propagation in 
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the tree was reduced. This effect seemed to be more prominent in cells with remote 

varicosity fields connected by thicker, probably myelinated, axon pieces.  

Although in our simulation of AP propagation in the complex axon of LCNs we 

considered the presence of myelin, this is still a simplified approach. Unfortunately, 

experimental data on other important factors (e.g. voltage-gated ion channel types and 

densities), with the exception of some parts of substantia gelatinosa neuron axons 

(Safronov et al., 1997; Safronov, 1999), are not available for different parts of the axons 

of spinal neurons. The diameter threshold for myelinated axons (0.35 µm) was chosen 

from measurements in a single neuron but it is in agreement with the diameter reported 

for unmyelinated cortical axons (0.08-0.4 µm, Westrum and Blackstad, 1962; Berbel and 

Innocenti, 1988). It also has to be noted that our simulated AP propagation times in LCN 

axons are probably overestimations, since the constants used for calculating non-

myelinated segment conduction velocities are based on measurements done at room 

temperature. In a living organism the AP propagation times must, therefore, be shorter. 

Our goal, however, was to prove that the adequately positioned myelinated regions of the 

axon significantly alter the AP propagation times in remote parts of the axon tree. 

APs traveling through several sudden diameter irregularities such as axon 

varicosities were suggested to suffer additional delay (Manor et al., 1991), while passing 

through several branch points may even result in a failure of propagation (Debanne et al., 

1997). In the case of LCNs with thousands of varicosities this could mean significant 

further increase in propagation times and may even cut off some parts of the axon tree 

from signal invasion temporarily. 

Subthreshold signal propagation within LCN axons could also lead to robust 

functional differences in different parts of the tree. Recent direct recordings from axonal 

structures in the hippocampus and neocortex suggested that subthreshold graded signals 

propagate down the axon over distances of up to 1 mm. At certain synapses, these analog 

axonal signals were shown to modulate AP-dependent transmitter release (Alle and 

Geiger, 2008). The same mechanism in LCN axons could modulate synaptic output at 

varicosities in the vicinity of the cell body as opposed to remote varicosities. For 

example, the SP-induced depolarization observed in almost half of the LCNs (data not 

shown here) could also propagate down the LCN axon and may boost transmitter release.  
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 Given the complexity of LCN axons and their accessibility due to their superficial 

location, they could be ideal targets for studies on axon conduction by using novel 

imaging techniques, such as high-speed fluorescent sodium imaging with high temporal 

and spatial resolution (Fleidervish et al., 2010; Foust et al., 2010), in vitro or in vivo.  

 

Long propriospinal connections of lamina I LCNs 

While LCNs clearly do not project through the lateral funiculus on the contralateral side, 

for several reasons, it seems likely that they may also function as short and long 

propriospinal neurons.  

As we report here, a large percentage of LCNs (86% of flattened and 69% of 

multipolar neurons) had long solitary axon branches, often with myelinated appearance, 

in the DF, DLF and in Lissauer's tract. These branches had no preferential direction and 

often run 2-3 segments in the rostral or caudal direction before fading below visibility 

and were similar to those described in earlier anatomical studies (Lenhossek, 1895; Cajal, 

1905; Szentagothai, 1964).  

The presence of such collaterals is also in line with electrophysiological 

observations. About one third of nociceptor driven lamina I neurons could be 

antidromically activated by stimulation of Lissauer's or deeper tracts from up to 3 

segments rostral to their origin (Cervero et al., 1979). The conduction velocity of the 

axons of these neurons suggested that they are small and myelinated (Cervero et al., 

1979). In addition unmyelinated propriospinal axons were also observed in the DLF at 

the sacral level (Chung et al., 1988). These latter fibers, as we showed earlier (Szucs et 

al., 2010) and also in this paper (see blue neuron, cell ID: L292_E4, in Fig. 3), could also 

include lateral collaterals of ALT-PNs. Taking all this together it is reasonable to say that 

a substantial proportion of axons in the DLF are indeed propriospinal fibers and form 

massive intersegmental connections. These connections are not only formed by axons of 

lamina II-III neurons resulting in a closed system (Szentagothai, 1964), but also by 

collaterals of lamina I neurons, some of which serve as major output elements of the 

dorsal horn circuitry. 

Lenhossek (1895), Cajal (1909) and Szentagothai (1964) described lamina II-III 

neurons with several segment-spanning, rostrocaudally oriented axons in Lissauer's tract 
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and intersegmental integration was also proposed recently for dorsal horn cholinergic 

neurons, with similar rostrocaudal axonal organization (Mesnage et al., 2011). However, 

some LCNs in our study possess morphological features that would also allow them to 

establish not only short but also long propriospinal connections. Solitary branches in the 

DF, DLF and Lissauer's tract never crossed the midline and run rostrally until they faded 

or reached the end of the spinal cord block, providing anatomical substrate for such long 

propriospinal projections. Indeed, previous reports suggested that around one quarter of 

lamina I neurons have long ascending propriospinal projections that extend from the 

lumbar to at least mid-thoracic spinal levels, but do not reach the brain (Bice and Beal, 

1997a,b) Thus, the long solitary branches, observed in some of our LCNs, may be long 

propriospinal branches indicating that at least some LCNs may have influence on distal 

spinal cord regions. To test this hypothesis further careful morphometric analysis of LCN 

axons will be needed combined with retrograde labeling from distal spinal cord segments. 

Eventually, understanding of local connections and outputs of lamina I neurons will 

allow designing better strategies for intercepting pain signals at the spinal cord level.    
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FIGURE LEGENDS 

 

Figure 1. Somatodendritic features of LCNs. A: Images of large (left pair) and smaller 

(right pair) LCNs during the process of cell labeling. B: Photomicrograph of the soma, 

dendrites and axon branches of a typical flattened LCN in a sagittal spinal cord section. 

C: Photomicrograph of a typical multipolar LCN in a sagittal section. D: Another 

multipolar LCN in a transverse section. Dashed white line indicates the rough borders of 

lamina II. The section is slightly distorted due to detachment from the supporting agar 

during processing. E: Sagittal (left) and transverse (right) rotated views of a 3-D 

reconstructed flattened LCN (reconstruction from sagittal sections; axon omitted for 

clarity). F: Sagittal (left) and transverse (right) rotated views of a 3-D reconstructed 

multipolar LCN (reconstruction from sagittal sections; axon omitted for clarity). G: 

Histograms of soma area distribution (left) and number of stem dendrites (right) in LCNs 

(gray bars) and ALT-PNs (outlined empty bars). The data for the ALT-PNs are from 

Szucs et al. (2010). H: 3-D Sholl analysis of the number of dendritic branch points in 50-

µm-thick shells. C, caudal; M, medial; D, dorsal; R, rostral (throughout the figures). 

Binsizes in G = 50 µm
2
 in the soma area histogram; 1 in the stem dendrite histogram. 

Scale bars = 20 µm in A; 50 µm in B-D. 

 

Figure 2. A typical multipolar LCN reconstructed from transverse serial sections. A: 

Overlaid image of 15 transverse, 100 µm thick, serial sections. Dendrites (black) and 

axon (dark gray) of the LCN (cell ID: L316_E6) occupy laminae I-II and protrude into 

lamina III. An axon collateral descends ventrally beyond the neck of the dorsal horn, 

while some dendrites are located in the DLF. For clarity, borders of the white and gray 

matter (continuous light gray line; same in B and C) as well as of lamina II (dashed light 

gray line; same in B and C) are only shown for the section containing the cell body.  B: 

Reconstructions showing the location of dendritic pieces (black) in the individual 

transverse serial sections. C: Reconstructions indicating the location of axonal pieces 

(black) in the individual transverse serial sections. soma, section with the cell body; r, 

rostral; c, caudal. Scale bar = 500 µm.  
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Figure 3. Comparison of basic axon parameters of 3-D reconstructed LCNs and ALT-

PNs. A: 3-D reconstruction of two LCNs (cell ID: L292_E1 - in red; cell ID: L292_E5 - 

in green) and a mixed-collateral-type (MCT) ALT-PN (cell ID: L292_E4 - in blue), filled 

in the same spinal cord. Rostrocaudal, mediolateral and dorsoventral dimensions of the 

bounding box (light gray) are indicated along the corresponding axis. B: Length of 

different lumbar spinal cord segments (L1-L6) at postnatal days 14 (P14) and 21 (P21). 

Columns in each case show the average and standard mean error of measurements in 3 

different animals. C-E: Total axon length (i.e. sum of the lengths of all reconstructed 

axon segments), total axon volume (i.e. sum of all reconstructed axon segment volumes, 

calculated from segment length and local diameter) and number of branch points along 

the axon of individual cells (red, green, blue and white outline columns) along with the 

mean value for 3-D reconstructed LCNs (gray column; n = 7). 

 

Figure 4. Sagittal (A), horizontal (B), transverse (C) and perspective (D) view of a 3-D 

reconstructed but not fully connected LCN (cell ID: Zs079_E13). The majority of the 

axon (yellow) in this case is located medially, considerably remote from the lateral cell 

body and dendrites (orange). The neuron has a solitary branch running caudally in the 

dorsolateral funiculus on the ipsilateral side. The medial part of the axonal tree, due to 

distortion of some sections, could not be connected to form a single axon. White and gray 

matter borders are indicated with gray and central canal is shown in green. Scale bar = 1 

mm. 

 

Figure 5. General morphological features of the axon of LCNs. Main axon (asterisk) 

originating from the soma (A) and from a primary dendrite (B) of two LCNs. Arrows 

point at the axon origin. C: Characteristic appearance of LCN axons in the vicinity of the 

cell body. The main axon (asterisk) along with primary and secondary order branches 

(arrowheads) are intermingled with fine terminal branches enriched with varicosities (t). 

D: The main axon (asterisk) of an LCN giving rise to primary branches (arrowheads) in 

an alternating manner. E: Perpendicular side branch from a solitary axon branch running 

in the dorsolateral funiculus. F: Straight thick solitary axon with swellings together with 

a more undulated thin varicose also solitary branch next to the surface of the preparation, 
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most likely in the Lissauer tract. G: Thick, myelinated looking solitary branch of an 

LCN, running in the dorsal funiculus. A-E, G - extended focal images; F - single focal 

plane image. Scale bars = 25 µm. 

 

Figure 6. Organization of the primary axon branches of LCNs. A: Sagittal (top), 

transverse (middle left) and horizontal (bottom) view of the 3-D reconstruction of an 

LCN with 5 primary branches (cell ID: L420_E2) where the first and second branches 

(orange and yellow) dominate the tree showing partial overlap with the rest of the 

branches. The end of the main axon turns caudally and finishes abruptly close to the 

surface; most likely damaged when pia mater was removed during preparation. B: Main 

axon and the origination points of each primary branch. Note the dorsoventral loop of the 

main axon. C: Another LCN (cell ID: L292_E5) with 7 primary branches, from which 

the last two (light blue and dark blue) covers the largest area. Similarly to the previous 

cell, the main axon forms a loop before it finishes abruptly close to the surface with a 

visible swelling at the end, probably caused by truncation. The first primary branch 

(orange) of this axon traverses the dorsal horn medially and target similar regions than 

the last branch (dark blue). D: Sagittal view of 3-D reconstructions of 4 other LCNs. Cell 

IDs are indicated on the left side of the corresponding reconstruction. Colored boxes in 

the bottom of the figure indicate the color codes of the sequence of primary axon 

branches. S/d, soma and dendrites; main, main axon; 1st-7th, the respective order of 

primary branches from the main axon. Scale bars = 500µm in A and C; 1 mm in D. 

 

Figure 7. Varicosity distribution along the axon of LCNs. Spatially dependent visual 

representation of axon varicosity distribution from sagittal (A) and horizontal (B) views, 

as indicated on the schematic drawings above each column. Axon varicosities along the 

3-D reconstructed LCN axons were counted in predetermined space units (voxel). The 

maximum varicosity number in the predefined voxels (100 µm x 100 µm x 100 µm) is 

indicated as the maximum value (red) on the scale bar next to the particular neuron. The 

actual number of varicosities in a voxel is used as a color and opacity value for the cube 

representing that voxel. Cell IDs are indicated on the left side of the figure. 3-D scale bars 

(D, dorsal - green; L, lateral - blue; R, rostral - red) = 250 µm.  
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Figure 8. Physical and path distance of axon varicosities in 3-D reconstructed LCN 

axons. Sholl analysis was performed using 100 µm shells. Binsize in path distance 

histograms is 100 µm. A: Three cells showing a major accumulation of varicosities in the 

vicinity of, but not centered on the soma, with one peak both in the Sholl analysis and in 

the path distance histogram. B: Other LCNs, with lower overall number of varicosities, 

showed additional local accumulations, evidenced by multiple peaks in the Sholl 

analysis, and at the same time wider distribution of the path distance histogram. Notice 

the different scaling of the Y-axis between A and B and also the difference on the X-axis 

in cell ID: L292_E1 in part B. 

 

Figure 9. Fine structural difference between myelinated and unmyelinated parts of an 

LCN axon. A: 2-D reconstruction of a representative LCN axon (cell ID: L279_E2). B: 

2-D reconstruction of a single section of the same axon. Light gray processes are 

dendrites (d) while axon is in black. Continuous and dotted gray lines indicate the border 

of the section and border between the gray- and white matter, respectively. Boxes 

indicate regions of interest with a single myelinated looking axon branch (C-D) and 

several varicose branches (E-F). C-F: show the reconstruction of the corresponding 

region and a photomicrograph of the same region from the surface of the block used for 

preparing the electron microscopy sections. Black parts of the reconstructions in C and E 

show axon pieces still present on the block surface, while gray indicate parts that were 

already cut. G-H: Electron microscopic images of axon profiles from region C-D with 

several concentric layers of myelin. I: Diameter histogram of axon profiles (n = 24) from 

the same region measured with (outlined hollow bars) and without myelin (gray bars). J: 

Electron microscopic image of an inter-varicosity segment and a varicosity (K) from 

region E-F. L: Diameter histogram of axon profiles (n = 157) from the same region. Bins 

= 50 nm in I and L. Scale bars = 1 mm in A; 50 µm in B; 10 µm in C, D, E and F; 500 

nm in G, H, J and K.  

  

Figure 10. Action potential propagation time maps of LCN axons. A: Sagittal view (see 

schematic figure in upper right) of a cell (ID: L395_E2) with a more compact tree and 

Page 32 of 58

John Wiley & Sons

Journal of Comparative Neurology



For Peer Review

two cells (IDs: Zs022_E8-1 and L292_E1) with distant terminal branching areas. The 

whole axon is considered unmyelinated. B: AP propagation time maps of two cells (IDs: 

Zs022_E8-1 and L292_E1) re-plotted assuming that axon pieces with a diameter above 

0.35 µm are myelinated. The maximum propagation time value in the map is indicated by 

red, while 0 ms is blue on the scale bar next to the particular neuron. Arrows point at 

regions where the propagation time map shows visible differences. C: Propagation time 

histogram of the axon varicosities of the three LCNs shown in A. Bins = 1 ms. Gray bars, 

total axon unmyelinated; red outlined transparent bars, axon pieces with a diameter above 

0.35 µm are myelinated.   

 

Figure 11. Example of an inhibitory LCN. A: Single section of a biocytin filled axon 

(magenta) of an LCN (cell ID: L571_E20-3). Arrows with numbers indicate the VGAT 

immunoreactive axon varicosities (green) shown in detail in the insets on the right side. 

Small arrows in the inset point at the actual varicosity. The main image is projected from 

36 optical sections at 0.5 µm z-spacing, while images in the insets are single optical 

sections. B: Primary branch organization of the same LCN axon shows relatively few 

overlap between the branches. C-D: The number of axon varicosities in this axon is 

moderate and varicosity distribution show more than one, relatively dispersed 

accumulations. E: Temporal dispersion of action potential propagation times in the same 

LCN axon did not show noticeable difference when using the diameter threshold for 

myelinated axons, indicating the lack of long myelinated parts in the axon. Scale bars = 

10 µm in A; 5 µm in insets. Bins = 100 µm in D; 1 ms in E.    

 

Table 1. Details of the Antibodies Used. 

VGLUT2, vesicular glutamate transporter 2; VGAT, vesicular GABA transporter; KLH, 

keyhole limpet haemocyanin. 

 

Table 2. Basic Morphometric Parameters of the Somatodendritic and Axonal Domains of 

LCNs.
1 

1
Data are presented as mean ± SEM and the range (in brackets). 

2
Neurons where the 

soma was not recovered (n = 10) were excluded from the analysis of the dendritic tree. 
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SD type, somatodendritic type determined using criteria of Lima and Coimbra (1986); 

n.c., not classified; n.a., not applicable for neurons where the soma was not recovered; 

stem, number of stem dendrites from the soma; RC, rostrocaudal; ML, mediolateral; DV, 

dorsoventral; cut, the axon of the cell reached one or both ends of the spinal cord 

preparation and, consequently, was severed; plane, sectioning plane; S, sagittal; T, 

transverse. 

 

Table 3. Morphological Description of the Axon of LCNs.
1
 

1
Data are presented as mean ± SEM and the range or percentage (in brackets). 

2
Neurons 

where the soma was not recovered (n = 10) were excluded from the analysis of the 

dendritic origin of the axon. SD type, somatodendritic type determined using criteria of 

Lima and Coimbra (1986); n.c., not classified; n.a., not applicable for neurons whose 

soma was not recovered; distance, distance from soma to the axon origin point along the 

dendrite; GM, gray matter; WM, white matter; DF, dorsal funiculus; DLF, dorsolateral 

funiculus; LF, lateral funiculus; ipsi-, ipsilateral; contra-, contralateral; ALT, anterolateral 

tract.   
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Figure 1. Somatodendritic features of LCNs. A: Images of large (left pair) and smaller (right pair) LCNs 
during the process of cell labeling. B: Photomicrograph of the soma, dendrites and axon branches of a 

typical flattened LCN in a sagittal spinal cord section. C: Photomicrograph of a typical multipolar LCN in a 

sagittal section. D: Another multipolar LCN in a transverse section. Dashed white line indicates the rough 
borders of lamina II. The section is slightly distorted due to detachment from the supporting agar during 
processing. E: Sagittal (left) and transverse (right) rotated views of a 3-D reconstructed flattened LCN 
(reconstruction from sagittal sections; axon omitted for clarity). F: Sagittal (left) and transverse (right) 

rotated views of a 3-D reconstructed multipolar LCN (reconstruction from sagittal sections; axon omitted for 
clarity). G: Histograms of soma area distribution (left) and number of stem dendrites (right) in LCNs (gray 
bars) and ALT-PNs (outlined empty bars). The data for the ALT-PNs are from Szucs et al. (2010). H: 3-D 
Sholl analysis of the number of dendritic branch points in 50-µm-thick shells. C, caudal; M, medial; D, 
dorsal; R, rostral (throughout the figures). Binsizes in G = 50 µm2 in the soma area histogram; 1 in the 

stem dendrite histogram. Scale bars = 20 µm in A; 50 µm in B-D.  

Page 43 of 58

John Wiley & Sons

Journal of Comparative Neurology



For Peer Review

219x279mm (300 x 300 DPI)  

 

 

Page 44 of 58

John Wiley & Sons

Journal of Comparative Neurology



For Peer Review

  

 

 

Figure 2. A typical multipolar LCN reconstructed from transverse serial sections. A: Overlaid image of 15 
transverse, 100 µm thick, serial sections. Dendrites (black) and axon (dark gray) of the LCN (cell ID: 

L316_E6) occupy laminae I-II and protrude into lamina III. An axon collateral descends ventrally beyond the 

neck of the dorsal horn, while some dendrites are located in the DLF. For clarity, borders of the white and 
gray matter (continuous light gray line; same in B and C) as well as of lamina II (dashed light gray line; 
same in B and C) are only shown for the section containing the cell body.  B: Reconstructions showing the 
location of dendritic pieces (black) in the individual transverse serial sections. C: Reconstructions indicating 
the location of axonal pieces (black) in the individual transverse serial sections. soma, section with the cell 

body; r, rostral; c, caudal. Scale bar = 500 µm.  
229x637mm (300 x 300 DPI)  
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Figure 3. Comparison of basic axon parameters of 3-D reconstructed LCNs and ALT-PNs. A: 3-D 
reconstruction of two LCNs (cell ID: L292_E1 - in red; cell ID: L292_E5 - in green) and a mixed-collateral-
type (MCT) ALT-PN (cell ID: L292_E4 - in blue), filled in the same spinal cord. Rostrocaudal, mediolateral 

and dorsoventral dimensions of the bounding box (light gray) are indicated along the corresponding axis. B: 
Length of different lumbar spinal cord segments (L1-L6) at postnatal days 14 (P14) and 21 (P21). Columns 
in each case show the average and standard mean error of measurements in 3 different animals. C-E: Total 
axon length (i.e. sum of the lengths of all reconstructed axon segments), total axon volume (i.e. sum of all 
reconstructed axon segment volumes, calculated from segment length and local diameter) and number of 
branch points along the axon of individual cells (red, green, blue and white outline columns) along with the 

mean value for 3-D reconstructed LCNs (gray column; n = 7).  
140x113mm (300 x 300 DPI)  
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Figure 4. Sagittal (A), horizontal (B), transverse (C) and perspective (D) view of a 3-D reconstructed but 
not fully connected LCN (cell ID: Zs079_E13). The majority of the axon (yellow) in this case is located 

medially, considerably remote from the lateral cell body and dendrites (orange). The neuron has a solitary 

branch running caudally in the dorsolateral funiculus on the ipsilateral side. The medial part of the axonal 
tree, due to distortion of some sections, could not be connected to form a single axon. White and gray 

matter borders are indicated with gray and central canal is shown in green. Scale bar = 1 mm.  
180x187mm (300 x 300 DPI)  
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Figure 5. General morphological features of the axon of LCNs. Main axon (asterisk) originating from the 
soma (A) and from a primary dendrite (B) of two LCNs. Arrows point at the axon origin. C: Characteristic 
appearance of LCN axons in the vicinity of the cell body. The main axon (asterisk) along with primary and 

secondary order branches (arrowheads) are intermingled with fine terminal branches enriched with 
varicosities (t). D: The main axon (asterisk) of an LCN giving rise to primary branches (arrowheads) in an 
alternating manner. E: Perpendicular side branch from a solitary axon branch running in the dorsolateral 
funiculus. F: Straight thick solitary axon with swellings together with a more undulated thin varicose also 

solitary branch next to the surface of the preparation, most likely in the Lissauer tract. G: Thick, myelinated 
looking solitary branch of an LCN, running in the dorsal funiculus. A-E, G - extended focal images; F - single 

focal plane image. Scale bars = 25 µm.  
139x113mm (300 x 300 DPI)  

 

 

Page 48 of 58

John Wiley & Sons

Journal of Comparative Neurology



For Peer Review

  

 

 

Figure 6. Organization of the primary axon branches of LCNs. A: Sagittal (top), transverse (middle left) and 
horizontal (bottom) view of the 3-D reconstruction of an LCN with 5 primary branches (cell ID: L420_E2) 

where the first and second branches (orange and yellow) dominate the tree showing partial overlap with the 

rest of the branches. The end of the main axon turns caudally and finishes abruptly close to the surface; 
most likely damaged when pia mater was removed during preparation. B: Main axon and the origination 
points of each primary branch. Note the dorsoventral loop of the main axon. C: Another LCN (cell ID: 
L292_E5) with 7 primary branches, from which the last two (light blue and dark blue) covers the largest 
area. Similarly to the previous cell, the main axon forms a loop before it finishes abruptly close to the 

surface with a visible swelling at the end, probably caused by truncation. The first primary branch (orange) 
of this axon traverses the dorsal horn medially and target similar regions than the last branch (dark blue). 
D: Sagittal view of 3-D reconstructions of 4 other LCNs. Cell IDs are indicated on the left side of the 
corresponding reconstruction. Colored boxes in the bottom of the figure indicate the color codes of the 
sequence of primary axon branches. S/d, soma and dendrites; main, main axon; 1st-7th, the respective 
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Figure 7. Varicosity distribution along the axon of LCNs. Spatially dependent visual representation of axon 
varicosity distribution from sagittal (A) and horizontal (B) views, as indicated on the schematic drawings 

above each column. Axon varicosities along the 3-D reconstructed LCN axons were counted in 
predetermined space units (voxel). The maximum varicosity number in the predefined voxels (100 µm x 100 
µm x 100 µm) is indicated as the maximum value (red) on the scale bar next to the particular neuron. The 
actual number of varicosities in a voxel is used as a color and opacity value for the cube representing that 
voxel. Cell IDs are indicated on the left side of the figure. 3-D scale bars (D, dorsal - green; L, lateral - blue; 

R, rostral - red) = 250 µm.  

200x233mm (300 x 300 DPI)  
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Figure 8. Physical and path distance of axon varicosities in 3-D reconstructed LCN axons. Sholl analysis was 
performed using 100 µm shells. Binsize in path distance histograms is 100 µm. A: Three cells showing a 

major accumulation of varicosities in the vicinity of, but not centered on the soma, with one peak both in the 

Sholl analysis and in the path distance histogram. B: Other LCNs, with lower overall number of varicosities, 
showed additional local accumulations, evidenced by multiple peaks in the Sholl analysis, and at the same 
time wider distribution of the path distance histogram. Notice the different scaling of the Y-axis between A 

and B and also the difference on the X-axis in cell ID: L292_E1 in part B.  
119x83mm (300 x 300 DPI)  
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Figure 9. Fine structural difference between myelinated and unmyelinated parts of an LCN axon. A: 2-D 
reconstruction of a representative LCN axon (cell ID: L279_E2). B: 2-D reconstruction of a single section of 
the same axon. Light gray processes are dendrites (d) while axon is in black. Continuous and dotted gray 

lines indicate the border of the section and border between the gray- and white matter, respectively. Boxes 
indicate regions of interest with a single myelinated looking axon branch (C-D) and several varicose 

branches (E-F). C-F: show the reconstruction of the corresponding region and a photomicrograph of the 
same region from the surface of the block used for preparing the electron microscopy sections. Black parts 
of the reconstructions in C and E show axon pieces still present on the block surface, while gray indicate 

parts that were already cut. G-H: Electron microscopic images of axon profiles from region C-D with several 
concentric layers of myelin. I: Diameter histogram of axon profiles (n = 24) from the same region measured 

with (outlined hollow bars) and without myelin (gray bars). J: Electron microscopic image of an inter-
varicosity segment and a varicosity (K) from region E-F. L: Diameter histogram of axon profiles (n = 157) 
from the same region. Bins = 50 nm in I and L. Scale bars = 1 mm in A; 50 µm in B; 10 µm in C, D, E and 

F; 500 nm in G, H, J and K.  

170x167mm (300 x 300 DPI)  
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Figure 10. Action potential propagation time maps of LCN axons. A: Sagittal view (see schematic figure in 
upper right) of a cell (ID: L395_E2) with a more compact tree and two cells (IDs: Zs022_E8-1 and L292_E1) 
with distant terminal branching areas. The whole axon is considered unmyelinated. B: AP propagation time 

maps of two cells (IDs: Zs022_E8-1 and L292_E1) re-plotted assuming that axon pieces with a diameter 
above 0.35 µm are myelinated. The maximum propagation time value in the map is indicated by red, while 
0 ms is blue on the scale bar next to the particular neuron. Arrows point at regions where the propagation 
time map shows visible differences. C: Propagation time histogram of the axon varicosities of the three LCNs 
shown in A. Bins = 1 ms. Gray bars, total axon unmyelinated; red outlined transparent bars, axon pieces 

with a diameter above 0.35 µm are myelinated.  
229x305mm (300 x 300 DPI)  
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Figure 11. Example of an inhibitory LCN. A: Single section of a biocytin filled axon (magenta) of an LCN 
(cell ID: L571_E20-3). Arrows with numbers indicate the VGAT immunoreactive axon varicosities (green) 
shown in detail in the insets on the right side. Small arrows in the inset point at the actual varicosity. The 

main image is projected from 36 optical sections at 0.5 µm z-spacing, while images in the insets are single 
optical sections. B: Primary branch organization of the same LCN axon shows relatively few overlap between 
the branches. C-D: The number of axon varicosities in this axon is moderate and varicosity distribution show 
more than one, relatively dispersed accumulations. E: Temporal dispersion of action potential propagation 
times in the same LCN axon did not show noticeable difference when using the diameter threshold for 

myelinated axons, indicating the lack of long myelinated parts in the axon. Scale bars = 10 µm in A; 5 µm in 
insets. Bins = 100 µm in D; 1 ms in E.  

229x305mm (300 x 300 DPI)  
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TABLE 1. 

Details of the Antibodies Used 

 

Antibody Host Antigen Amino acid sequence Supplier Catalogue number Dilution 

VGLUT2 Guinea pig 

18 amino acids at 

C-terminal end of 

rat VGLUT2 

VQESAQDAYSYKDRDDYS Millipore AB2251 1:5.000 

VGAT 
Rabbit 

polyclonal 

amino acids 75-87 

of rat VGAT 

coupled to KLH 

AEPPVEGDIHYQR 
Synaptic 

Systems 
131 002 1:1.000 
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TABLE 2. 

Basic Morphometric Parameters of the Somatodendritic and Axonal Domain of LCNs
1
 

 

  soma dendritic tree dimensions axonal tree dimensions plane 

SD type n 
area 

(µm2) 
stem 

RC 

(µm) 

ML 

(µm) 

DV 

(µm) 

RC 

(µm) 

ML 

(µm) 

DV 

(µm) 
cut S T 

flattened 29 
357 ± 30 
(93 - 679) 

4.2 ± 0.2 
(3 - 6) 

301 ± 21 
(150 - 500) 

304 ± 19 
(200 - 620) 

65 ± 25 
(25 - 110) 

2429 ± 205 
(800 - 5200) 

656 ± 43 
(400 - 1100) 

288 ± 40 
(124 - 479) 

18 23 6 

multipolar 38 
357 ± 23 
(110 - 839) 

4.8 ± 0.2 
(2 - 8) 

323 ± 17 
(140 - 500) 

327 ± 21 
(197 - 634) 

178 ± 16 
(107 - 250) 

2401 ± 173 
(1100 - 6500) 

691 ± 41 
(312 - 1300) 

331 ± 84 
(133 - 1050) 

22 30 8 

other + n.c. 5 
261 ± 30 
(172 - 304) 

3.0 ± 0.4 
(2 - 4) 

437 ± 134 
(260 - 700) 

405 ± 105 
(300 - 720) 

260 

1868 ± 145 
(700 - 2700) 

459 ± 38 
(240 - 800) 

248 ± 67 
(120 - 680) 

11 7 8 

no soma 

recovered 
10 n.a. n.a. n.a. n.a. n.a. 

all LCNs 2 82 
351 ± 17 
(93 - 839) 

4.4 ± 0.1 
(2 - 8) 

320 ± 14 
(140 - 700) 

323 ± 15 
(197 - 720) 

159 ± 19 
(25 - 260) 

2312 ± 113 
(700 - 6500) 

636 ± 27 
(240 - 1300) 

295 ± 41 
(120 - 1050) 

51 60 22 
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TABLE 3. 

Morphological Description of the Axon of LCNs
1
 

 

  axon origin location of axon branches 

SD type n dendrite 
distance 

(µm) 

only local 

within GM 

neighboring WM 

(thin with varicosities) 

Lissauer / DF 

(thick, no varicosities) 

DLF / LF 

(thick, no varicosities) 

ipsi- or 
contra-  

ALT 

flattened 29 
17 

(59 %) 

22 ± 3 
(3 - 60) 

4 
(14 %) 

12 
(41 %) 

9 
(31 %) 

4 
(14 %) 

0 
(0 %) 

multipolar 38 
26 

(68 %) 
12 ± 1 
(4 - 26) 

12 
(31 %) 

14 
(37 %) 

9 
(24 %) 

3 
(8 %) 

0 
(0 %) 

other + n.c. 5 
3 

(60 %) 
16 ± 5 
(8 - 28) 

7 
(46 %) 

6 
(40 %) 

1 
(7 %) 

1 
(7 %) 

0 
(0 %) 

no soma 

recovered 
10 n.a. n.a. 

all LCNs2 82 
46 

(64 %) 

16 ± 2 
(3 - 60) 

23 
(28%) 

32 
(39 %) 

19 
(23 %) 

8 
(10 %) 

0 
(0 %) 

 

Page 58 of 58

John Wiley & Sons

Journal of Comparative Neurology



For Peer Review

  

 

 

Using an intact spinal cord preparation the authors describe axon architecture of lamina I local circuit 
neurons (red and green). Extensive local- and long rostrocaudal axon branches suggest information feed 
towards deeper laminae as well as neighboring segments, providing anatomical substrate for interlaminar 

and intersegmental processing in the dorsal horn.  
141x141mm (72 x 72 DPI)  
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Using an intact spinal cord preparation the authors describe axon architecture of lamina I 

local circuit neurons (red and green). Extensive local- and long rostrocaudal axon 

branches suggest information feed towards deeper laminae as well as neighboring 

segments, providing anatomical substrate for interlaminar and intersegmental processing 

in the dorsal horn.  
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