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1 Introduction

Set of m positive integers is called a Diophantine m-tuple if the product of its any two
distinct elements increased by 1 is a perfect square. First example of a Diophantine
quadruple is found by Fermat, and it was {1, 3, 8, 120} (see [6, p. 517]). In 1969, Baker
and Davenport [2] proved that if d is a positive integer such that {1, 3, 8, d} is a Diophan-
tine quadruple, then d has to be 120.

Recently, in [9], we generalized this result to all Diophantine triples of the form
{1, 3, c}. The fact that {1, 3, c} is a Diophantine triple implies that c = ck for some
positive integer k, where the sequence (ck) is given by

c0 = 0, c1 = 8, ck+2 = 14ck+1 − ck + 8, k ≥ 0.

Let ck + 1 = s2
k, 3ck + 1 = t2k. It is easy to check that

ck±1ck + 1 = (2ck ± sktk)2.

The main result of [9] is the following theorem.

Theorem 1 Let k be a positive integer. If d is an integer which satisfies the system

d + 1 = x2
1, 3d + 1 = x2

2, ckd + 1 = x2
3, (1)

then d ∈ {0, ck−1, ck+1}.

Eliminating d from the system (1) we obtain the following system of Pellian equations

x2
3 − ckx

2
1 = 1− ck (2)

3x2
3 − ckx

2
2 = 3− ck. (3)
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We used the theory of Pellian equations and some congruence relations to reformulate
the system (2) and (3) to four equations of the form vm = wn, where (vm) and (wn) are
binary recursive sequences. After that, a comparison of the upper bound for solutions
obtained from the theorem of Baker and Wüstholz [3] with the lower bound obtained
from the congruence condition modulo c2

k finishes the proof for k ≥ 76. The statement
for 1 ≤ k ≤ 75 is proved by a version of the reduction procedure due to Baker and
Davenport [2].

Similar results are proved in [7] and [8] for Diophantine triples of the form {k−1, k +
1, 4k} and {F2k, F2k+2, F2k+4}.

It is clear that every solution of the system (1) induce an integer point on the elliptic
curve

Ek : y2 = (x + 1)(3x + 1)(ckx + 1). (4)

The purpose of the present paper is to prove that the converse of this statement is true
provided the rank of Ek(Q) is equal 2. As we will see in Proposition 2, for all k ≥ 2 the
rank of Ek(Q) is always ≥ 2. Our main result is

Theorem 2 Let k be a positive integer. If rank (Ek(Q)) = 2 or k ≤ 40, with possible
exceptions k = 23 and k = 37, then all integer points on Ek are given by

(x, y) ∈ {(−1, 0), (0,±1), (ck−1,±sk−1tk−1(2ck − sktk)), (ck+1,±sk+1tk+1(2ck + sktk)).

2 Torsion group

Under the substitution x ↔ 3ckx, y ↔ 3cky the curve Ek transforms into the following
Weierstraß form

E′
k : y2 = x3 + (4ck + 3)x2 + (3c2

k + 12ck)x + 9c2
k

= (x + 3ck)(x + ck)(x + 3).

There are three rational points on E′
k of order 2, namely

Ak = (−3ck, 0), Bk = (−ck, 0), Ck = (−3, 0),

and also other two, more or less obvious, rational points on E′
k, namely

Pk = (0, 3ck), Rk = (sktk + 2sk + 2tk + 1, (sk + tk)(sk + 2)(tk + 2)).

Note that if k = 1, then R1 = C1 − P1.

Lemma 1 E′
k(Q)tors ' Z/2Z× Z/2Z
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Proof. From [17, Main Theorem 1] it follows immediately that E′
k(Q)tors ' Z/2Z×

Z/2Z or E′
k(Q)tors ' Z/2Z × Z/6Z, and the later is possible iff there exist integers α

and β such that α
β 6∈ {−2,−1,−1

2 , 0, 1} and

ck − 3 = α4 + 2α3β, 3ck − 3 = 2αβ3 + β4.

Now, we have

4ck − 6 = (α2 + αβ + β2)2 − 3α2β2. (5)

Since ck is even, left side of (5) is ≡ 2 (mod 8). If α and β are both even then right
side of (5) is ≡ 0 (mod 8), and if α and β are both odd then right side of (5) is ≡ 6
(mod 8), a contradiction. Hence, E′

k(Q)tors ' Z/2Z× Z/2Z.

3 The independence of Pk and Rk

In this section we will often use the following 2-descent Proposition (see [12, 4.1, p.37]).

Proposition 1 Let P = (x′, y′) be a Q-rational point on E, an elliptic curve over
Q given by

y2 = (x− α)(x− β)(x− γ),

where α, β, γ ∈ Q. Then there exists a Q-rational point Q = (x, y) on E such that
2Q = P iff x′ − α, x′ − β, x′ − γ are all Q-rational squares.

Lemma 2 Pk, Pk + Ak, Pk + Bk, Pk + Ck 6∈ 2E′
k(Q)

Proof. We have:

Pk + Ak = (−ck − 2,−2ck + 2),
Pk + Bk = (−3ck + 6, 6ck − 18),
Pk + Ck = (c2

k − 4ck,−c3
k + 4c2

k − 3ck).

It follows immediately from Proposition 1 that Pk, Pk + Ak, Pk + Bk 6∈ 2E′
k(Q). If

Pk + Ck ∈ 2E′
k(Q), then c2

k − ck = 2, which is impossible.

Lemma 3 Rk, Rk + Ak, Rk + Bk, Rk + Ck 6∈ 2E′
k(Q)

Proof. We have:

Rk = (sktk + 2sk + 2tk + 1, (tk + sk)(sk + 2)(tk + 2)),
Rk + Ak = (2sk − 2tk − sktk + 1, (sk − tk)(sk + 2)(tk − 2)),
Rk + Bk = (2tk − 2sk − sktk + 1, (tk − sk)(sk − 2)(tk + 2)),
Rk + Ck = (sktk − 2sk − 2tk + 1, (tk + sk)(2− sk)(tk − 2)).
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Since 2sk−2tk−sktk+4 = (sk+2)(2−tk) < 0 and 2tk−2sk−sktk+4 = (tk+2)(2−sk) < 0,
we have Rk + Ak, Rk + Bk 6∈ 2E′

k(Q).
If Rk ∈ 2E′

k(Q), then (tk + sk)(tk + 2) = 2 and (tk + sk)(sk + 2) = 2. Let d =
gcd(tk + sk, tk + 2, sk + 2). Then d divides (tk + 2) + (sk + 2)− (tk + sk) = 4, and since
sk and tk are odd, we conclude that d = 1. Hence, we have

tk + sk = 2, tk + 2 = 2, sk + 2 = 2. (6)

Consider the sequence (tk + sk)k∈N. It follows easily by induction that tk + sk = 2ak+1,
where

a0 = 0, a1 = 1, ak+2 = 4ak+1 − ak, k ≥ 0. (7)

Thus, (6) implies ak+1 = 22, and this is impossible by theorem of Mignotte and Pethő
[14] (see also [16]) which says that ak = 2, 22, 32 or 62 implies k ≤ 3.

If Rk + Ck ∈ 2E′
k(Q), then (tk + sk)(tk − 2) = 2 and (tk + sk)(sk − 2) = 2. This

implies tk + sk = 2 and we obtain a contradiction as above.

Lemma 4 If k ≥ 2, then Rk +Pk, Rk +Pk +Ak, Rk +Pk +Bk, Rk +Pk +Ck 6∈ 2E′
k(Q).

Proof. As in the proof of Lemmas 2 and 3, we use Proposition 1.
If Rk + Pk + Ak ∈ 2E′

k(Q) then 0 > ck(sk + 2)(sk − tk) = 2, and if Rk + Pk + Bk ∈
2E′

k(Q) then 0 > ck(sk− 2)(sk− tk) = 2. Hence, Rk +Pk +Ak, Rk +Pk +Bk 6∈ 2E′
k(Q).

If Rk + Pk ∈ 2E′
k(Q) then

3ck(tk + sk)(tk + 2) = 2, ck(tk + sk)(sk + 2) = 2, 3(sk + 2)(tk + 2) = 2. (8)

Substituting 2ck = (tk + sk)(tk − sk) in (8) we obtain

(tk − sk)(tk + 2) = 62, (tk − sk)(sk + 2) = 22, (sk + 2)(tk + 2) = 32.

Let d = gcd(sk + 2, tk + 2). Then the relation t2k − 3s2
k = −2 implies d|6. Since tk + 2 is

odd, we have d ∈ {1, 3}. Hence we obtain

tk − sk = 62 or tk − sk = 22. (9)

But tk−sk = 2ak, where (ak) is defined by (7). Thus (9) implies ak = 2 or 32. According
to [14], this is possible only if k = 2. But (s2, t2) = (11, 19) and (s2 + 2)(t2 + 2) 6= 32.

If Rk + Pk + Ck ∈ 2E′
k(Q) then

3ck(tk + sk)(tk − 2) = 2, ck(tk + sk)(sk − 2) = 2, 3(sk − 2)(tk − 2) = 2.

Arguing as before, we obtain

(tk − sk)(tk − 2) = 62, (tk − sk)(sk − 2) = 22, (sk − 2)(tk − 2) = 32,
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and conclude that

tk − sk = 62 or tk − sk = 22. (10)

As we have already seen, it is possible only for (s2, t2) = (11, 19), but then (s2−2)(t2−2) 6=
32.

Proposition 2 If k ≥ 2, then the points Pk and Rk generate a subgroup of rank 2
in E′

k(Q)/E′
k(Q)tors.

Proof. We have to prove that mPk +nRk ∈ E′
k(Q)tors, m,n ∈ Z, implies m = n = 0.

Assume mPk + nRk = T ∈ E′
k(Q)tors = {O, Ak, Bk, Ck}. If m and n are not both

even, then T ≡ Pk, Rk or Pk + Rk (mod 2E′
k(Q)), which is impossible by Lemmas 2,

3 and 4. Hence, m and n are even, say m = 2m1, n = 2n1, and since by Lemma 1
Ak, Bk, Ck 6∈ 2E′

k(Q),
2m1Pk + 2n1Pk = O.

Thus we obtain m1Pk + n1Rk ∈ E′
k(Q)tors. Arguing as above, we obtain that m1 and n1

are even, and continuing this process we finally conclude that m = n = 0.

4 Proof of Theorem 2 (rank (Ek(Q)) = 2)

Let E′
k(Q)/E′

k(Q)tors =< U, V > and X ∈ E′
k(Q). Then there exist integers m,n

and a torsion point T such that X = mU + nV + T . Also Pk = mP U + nP V + TP ,
Rk = mRU + nRV + TR. Let U = {O, U, V, U + V }. There exist U1, U2 ∈ U , T1, T2 ∈
E′

k(Q)tors such that Pk ≡ U1 + T1 (mod 2E′
k(Q)), Rk ≡ U2 + T2 (mod 2E′

k(Q)). Let
U3 ∈ U such that U3 ≡ U1 + U2 (mod 2E′

k(Q)). Then Pk + Rk ≡ U3 + (T1 + T2)
(mod 2E′

k(Q)). Now Lemmas 2, 3 and 4 imply that U1, U2, U3 6= O and accordingly
{U1, U2, U3} = {U, V, U + V }. Therefore X ≡ X1 (mod 2E′

k(Q)), where

X1 ∈ S = {O, Ak, Bk, Ck, Pk, Pk + Ak, Pk + Bk, Pk + Ck, Rk, Rk + Ak, Rk + Bk,

Rk + Ck, Rk + Pk, Rk + Pk + Ak, Rk + Pk + Bk, Rk + Pk + Ck}.

Let {a, b, c} = {3, ck, 3ck}. By [13, 4.6, p.89], the function ϕ : E′
k(Q) → Q∗/Q∗2

defined by

ϕ(X) =


(x + a)Q∗2 if X = (x, y) 6= O, (−a, 0)
(b− a)(c− a)Q∗2 if X = (−a, 0)
Q∗2 if X = O

is a group homomorphism.
This fact and Theorem 1 imply that it is sufficient to prove that for all X1 ∈ S \ Pk,

X1 = (3cku, 3ckv), the system

x + 1 = α2, 3x + 1 = β2, ckx + 1 = γ2 (11)
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has no integer solution, where 2 denotes a square of a rational number, and α, β, γ are
defined by u + 1 = α, 3u + 1 = β, cku + 1 = γ if all those numbers are 6= 0, and if e.g.
u + 1 = 0 then we choose α = βγ (so that αβγ = 2). Note that for X1 = Pk we obtain
the system x + 1 = 2, 3x + 1 = 2, ckx + 1 = 2, which is completely solved in Theorem
1.

For X1 ∈ {Ak, Bk, Pk + Ak, Pk + Bk, Rk + Ak, Rk + Bk, Rk + Pk + Ak, Rk + Pk + Bk}
exactly two of the numbers α, β, γ are negative and thus the system (11) has no integer
solution.

The rest of the proof falls naturally into 7 parts. By a′ we will denote the square free
part of an integer a.

1) X1 = O
We have

x + 1 = 3ck2, 3x + 1 = ck2, ckx + 1 = 32. (12)

From second equation in (12) we see that 3 6 |c′k and thus first and second equations imply
that c′k divides 3x+1 and x+1. Accordingly, c′k|3(x+1)− (3x+1) = 2 and we conclude
that c′k = 1 or 2. Hence,

ck = 2, or ck = 22.

However, ck = s2
k − 1 = 2 is obviously impossible, while ck = 2w2 leads to the system of

Pell equations
s2
k − 2w2 = 1, t2k − 6w2 = 1.

This system is solved by Anglin [1], and the only positive solution is (sk, tk, w) = (3, 5, 2)
which corresponds to ck = c1 = 8, contradicting our assumption that k ≥ 2. (Note that
for c1 = 8 there is also no solution because in this case first and third equations in (12)
imply 3|7.)

2) X1 = Ck

We have

x + 1 = ck(ck − 1)2, 3x + 1 = ck(ck − 3)2, ckx + 1 = (ck − 1)(ck − 3)2.

If 3 6 |ck then, as in 1), we obtain c′k = 1 or 2, and ck = 2 or 22, which is impossible.
If ck = 3ek then e′k divides 3x + 1 and 3x + 3 and thus e′k = 1 or 2. Hence,

ck = 32, or ck = 62.

Relation ck = 32 is impossible since it implies t2k − 1 = 92, while ck = 6w2 leads to the
system of Pell equations

s2
k − 6w2 = 1, t2k − 18w2 = 1

which has no positive solution according to [1].
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3) X1 = Pk + Ck

We have

x + 1 = 3(ck − 1)2, 3x + 1 = (ck − 3)2, ckx + 1 = 3(ck − 1)(ck − 3)2.

Since ck = s2
k − 1, we see that ck 6≡ 1 (mod 3), and thus x ≡ −1 (mod 3). From the

second equation we have that (ck − 3)′ is not divisible by 3, and then the third equation
gives ckx + 1 ≡ 0 (mod 3). This implies ck ≡ 1 (mod 3), a contradiction.

4) X1 = Rk

We have

x + 1 = 6(tk − sk)(tk + 2)2, 3x + 1 = 2(tk − sk)(sk + 2)2,

ckx + 1 = 3(sk + 2)(tk + 2)2.

From the relation t2k−3s2
k = −2 it follows that gcd(tk−sk, sk+2) = gcd(tk−sk, tk+2) = 1

or 3.
If 3 6 |tk − sk then [2(tk − sk)]′ divides x + 1 and 3x + 1, and thus [2(tk − sk)]′ = 1 or

2. Accordingly,
tk − sk = 22 or tk − sk = 2.

As we have already seen in the proof of Lemma 4, this implies

ak = 2 or ak = 22,

and [14] implies again that k = 2. Now we obtain 120x + 1 = 912, which is impossible
modulo 4.

If tk − sk = 3zk then (2zk)′ divides x + 1 and 9x + 3. Hence (2zk)′ divides 6, which
implies ak = 2, 22, 32 or 62, and this is possible only if k = 2. But for k = 2,
tk − sk = 8 6≡ 0 (mod 3).

5) X1 = Rk + Ck

We have

x + 1 = 6(tk − sk)(tk − 2)2, 3x + 1 = 2(tk − sk)(sk − 2)2,

ckx + 1 = 3(sk − 2)(tk − 2)2.

This case is completely analogous to the case 4).

6) X1 = Rk + Pk

We have
x + 1 = (tk + sk)(tk + 2)2, 3x + 1 = (tk + sk)(sk + 2)2,

ckx + 1 = (sk + 2)(tk + 2)2.

As in 4), we obtain that if 3 6 |tk + sk then (tk + sk)′ divides 2, and if tk + sk = 3zk then
z′k divides 6. Hence, we have ak+1 = 2, 22, 32 or 62, which is impossible for k ≥ 2.
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7) X1 = Rk + Pk + Ck

We have
x + 1 = (tk + sk)(tk − 2)2, 3x + 1 = (tk + sk)(sk − 2)2,

ckx + 1 = (sk − 2)(tk − 2)2.

This case is completely analogous to the case 5).

Remark 1 It is easy to check that rank (E1(Q)) = 1, and from the proof of the first
statement of Theorem 2 (parts 1), 2) and 3)) it is clear that all integer points on E1 are
given by (x, y) ∈ {(−1, 0), (0,±1), (120,±6479)}. Hence Theorem 2 is true for k = 1.

Remark 2 As coefficients of Ek grow exponentially, computation of the rank of Ek

for large k is difficult. The following values of rank (Ek(Q)) are computed using the
programs SIMATH ([18]) and mwrank ([5]):

k 1 2 3 4 5 7 8∗ 9 10∗

rank (Ek(Q)) 1 2 3 3 2 4 4 3 3

In the cases k = 8, 10, the rank is computed assuming the Parity Conjecture. For
k = 6, 11, 12, under the same conjecture, we obtained that rank (Ek(Q)) is equal 2 or
4. We also verified by SIMATH that for k = 3 and k = 4 (when rank (Ek(Q)) > 2) all
integer points on Ek are given by the values from Theorem 2.

Remark 3 Let us mention that Bremner, Stroeker and Tzanakis [4] proved recently
a similar result as the first statement of our Theorem 2 for the family of elliptic curves

Ck : y2 =
1
3
x3 + (k − 1

2
)x2 + (k2 − k +

1
6
)x,

under assumptions that rank (Ck(Q)) = 1 and that Ck(Q)/Ck(Q)tors =<(1, k)>.

5 Proof of Theorem 2 (3 ≤ k ≤ 40)

We pointed out in Remark 2 that the coefficients of Ek are growing very fast. Therefore,
using SIMATH2 we were able to compute the integer points of Ek(Q) only for k ≤ 4.
However, the following elementary argument gives us the proof of the second statement
of Theorem 2.

2SIMATH is the only available computer algebra system which is capable to compute all integer points
of the elliptic curve. There is implemented the algorithm of Gebel, Pethő and Zimmer [10].
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Notice the following relations

c0 = 0, c1 = 8, ck+2 = 14ck+1 − ck + 8, if k ≥ 0, (13)
t0 = 1, t1 = 5, tk+2 = 4tk+1 − tk, if k ≥ 0, (14)
s0 = 1, s1 = 3, sk+2 = 4sk+1 − sk, if k ≥ 0, (15)
ck + 1 = s2

k =⇒ ck = (sk + 1)(sk − 1), (16)
3ck + 1 = t2k =⇒ 3ck = (tk + 1)(tk − 1), (17)

3(ck − 1) = (tk + 2)(tk − 2), (18)
ck − 3 = (sk + 2)(sk − 2). (19)

We have 8|ck for any k ≥ 0 by (13). Hence sk and tk are odd. We have further 3 6 |ck − 1
by (16).

Assume that (x, y) ∈ Z2 is a solution of (4). Put D1 = (x+1, 3x+1), D2 = (x+1, ckx+
1) and D3 = (3x+1, ckx+1). As D1 = (x+1, 3x+1) = (x+1, 2), we have D1 = 1 if x+1
is odd, and D1 = 2 if x+1 is even. We have further D2 = (x+1, ckx+1) = (x+1, ck−1)
and D3 = (3x+1, ckx+1) = (3x+1, ck−3). Hence D1, D2 and D3 are pairwise relatively
prime.

Assume first D1 = 1. Then there exist x1, x2, x3 ∈ Z such that

x + 1 = D2x
2
1

3x + 1 = D3x
2
2

ckx + 1 = D2D3x
2
3.

Eliminating x we obtain the following system

3D2x
2
1 −D3x

2
2 = 2

ckx
2
1 −D3x

2
3 =

ck − 1
D2

.

Similarly, if D1 = 2, then (4) implies

x + 1 = 2D2x
2
1

3x + 1 = 2D3x
2
2

ckx + 1 = D2D3x
2
3,

from which we obtain

3D2x
2
1 −D3x

2
2 = 1

2ckx
2
1 −D3x

2
3 =

ck − 1
D2

.
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Hence, to find all integer solutions of (4), it is enough to find all integer solutions of
the systems of equations

d1x
2
1 − d2x

2
2 = j1, (20)

d3x
2
1 − d2x

2
3 = j2, (21)

where

• d1 = 3D2, D2 is a square-free divisor of ck − 1 = (tk + 2)(tk − 2)/3,

• d2 = D3, D3 is a square-free divisor of ck − 3 = (sk + 2)(sk − 2), which is not
divisible by 3,

• (d3, j1, j2) = (ck, 2, ck−1
D2

) or (d3, j1, j2) = (2ck, 1, ck−1
D2

).

We expect that most of the systems (20)–(21) are not solvable. To exclude as early
as possible the unsolvable systems we considered the equations (20) and (21) separately
modulo appropriate prime powers.

As 8|ck and ck|d3, and d2 and j2 are odd, the equation (21) is solvable modulo 8 only
if −d2j2 ≡ 1 (mod 8).

Assume that the equation (20) is solvable. Let p be an odd prime divisor of d2. Then
(20) implies

d1x
2
1 ≡ j1 (mod p),

hence
(d1x1)2 ≡ j1d1 (mod p),

i.e.
(

j1d1

p

)
= 1, where

(
·
p

)
denotes the Legendre symbol. Similarly, (21) implies

(
j2d3

p

)
=

1. If q and r are odd prime divisors of d1 and d3 respectively, then we obtain the following
conditions for the solvability of (20) and (21):

(
−j1d2

q

)
= 1 and

(
−j2d2

r

)
= 1.

Let finally p1 be an odd prime divisor of j2, such that ordp1(j2) is odd. Then a
necessary condition for solvability of equation (21) is:

(
d2d3
p1

)
= 1.

We performed this test for 3 ≤ k ≤ 40 and we found that, apart from the systems
listed in the following table, all are unsolvable except those of the form

3x2
1 − x2

2 = 2,

ckx
2
1 − x2

3 = ck − 1,

and this system is equivalent to the system (2) and (3) which is completely solved by
Theorem 1.
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k d1, d2, d3, j1, j2

19 251210975091, 44809, 3371344269872647091408, 2, 40261110431

23/1 380631510488414383527682077, 11263976658479,
253754340325609589018454720, 1, 1

23/2 19509779867757, 11263976658479, 25375430325609589018454720,
1, 19509779867761

23/3 58529339603283, 1, 126877170162804794509227360, 2,
6503259955919

35 20288310329233162249058888791445649852717,
2254256703248129138784320976827294428079,

13525540219488774832705925860963766568480, 1, 1

37 187060083, 1489467623830555129,
1311942540724389723505929002667880175005208, 2,

21040446251556347115048521645334887

We considered the case k = 19 modulo 5. We obtained

x2
1 − 4x2

2 ≡ 2 (mod 5),
3x2

1 − 4x2
3 ≡ 1 (mod 5).

The first congruence implies x2
1 ≡ 1, 2 or 3 (mod 5), and the second congrunce implies

x2
1 ≡ 0, 2 or 4 (mod 5). Hence, x2

1 ≡ 2 (mod 5), which is a contradiction.
In the cases k = 23/3 and k = 35 we used arithmetical properties of some real

quadratic number fields.
In the case k = 23/3 we have d3 = 126877170162804794509227360. The fundamental

unit of the order Z[
√

d3] = Z[
√

d2d3] is ε = 11263976658481 +
√

d3. By a theorem of
Nagell [15, Theorem 108a] the base solution of the equation

x2
3 − 1268771701262804794509227360x2

1 = −6503259955919

satisfies 0 < x
(0)
1 < 1, which is impossible.

In the case k = 35 the fundamental unit of the order Z[
√

d1d2] is u+
√

d1d2, where u =
6762770109744387416352962930481883284238. A necessary condition for the solvability
of the equation d1x

2
1 − d2x

2
2 = 1 is that 2d1|(u + 1) (see [11]). But u+1

2d1
= 1

6 , and hence
the last equation has no solution.

In the remaining three cases k = 23/1, 23/2 and 37 all our methods fail to work.
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