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a b s t r a c t

In an attempt to present a refinement of Faulhaber’s theorem concerning sums of powers
of natural numbers, the authors investigate and derive all the possible decompositions of
the polynomial Sk

a,b(x) which is given by

Sk
a,b(x) = bk + (a + b)k + (2a + b)k + · · · +


a(x − 1) + b

k
.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction, definitions and preliminaries

Throughout this work, we use the following standard notations:

N := {1, 2, 3, . . .}, N0 := {0, 1, 2, 3, . . .} = N ∪ {0}

and

Z−
:= {−1, −2, −3, . . .} = Z−

0 \ {0}.

Also, as usual, Z denotes the set of integers, R denotes the set of real numbers and C denotes the set of complex numbers.
We denote by C[x] the ring of polynomials in the variable xwith complex coefficients.

A decomposition of a polynomial F(x) ∈ C[x] is an equality of the following form:

F(x) = G1

G2(x)

 
G1(x),G2(x) ∈ C[x]


. (1)

The decomposition in (1) is nontrivial if

deg{G1(x)} > 1 and deg{G2(x)} > 1.

Two decompositions

F(x) = G1

G2(x)


and F(x) = H1


H2(x)


∗ Corresponding author. Tel.: +1 250 472 5313; fax: +1 250 721 8962.

E-mail addresses: bazsoa@math.unideb.hu (A. Bazsó), apinter@math.unideb.hu (Á. Pintér), harimsri@math.uvic.ca (H.M. Srivastava).

0893-9659/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2011.09.042

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/160973602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.aml.2011.09.042
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:bazsoa@math.unideb.hu
mailto:apinter@math.unideb.hu
mailto:harimsri@math.uvic.ca
http://dx.doi.org/10.1016/j.aml.2011.09.042


A. Bazsó et al. / Applied Mathematics Letters 25 (2012) 486–489 487

are said to be equivalent if there exists a linear polynomial ℓ(x) ∈ C[x] such that

G1(x) = ℓ

H1(x)


and H2(x) = ℓ


G2(x)


.

The polynomial F(x) is called decomposable if it has at least one nontrivial decomposition; otherwise, it is said to be
indecomposable.

In his monumental book [1], Johann Faulhaber (1580–1635) discovered that the sums of the first n odd powers can be
expressed as the polynomials of the simple sum N given by

N = 1 + 2 + 3 + · · · + n =
1
2

n(n + 1).

He also conjectured that similar representation exists for the sum of every odd power. The first correct proof of this
conjecture was published by Jacobi [2] (see also [3]). The following sums of the powers of natural numbers:

Sk(n) = 1k
+ 2k

+ 3k
+ · · · + (n − 1)k (n ∈ N \ {1}; k ∈ N0) (2)

are closely related to the classical Bernoulli polynomials Bk(x), namely, for positive integers nwe have

Sk(n) =
1

k + 1
[Bk+1(n) − Bk+1] (n ∈ N \ {1}; k ∈ N0), (3)

where the classical Bernoulli polynomials Bn(x) are usually defined by means of the following generating function (see, for
details, [4, p. 59 et seq.]; see also [5,6] and the references cited in each of these recent investigations on the subject):

zexz

ez − 1
=

∞−
n=0

Bn(x)
zn

n!
(|z| < 2π) (4)

with, of course, the classical Bernoulli numbers Bn given by

Bn := Bn(0) (n ∈ N0).

By using the connection exhibited in (3), we can extend Sk(n) appropriately to Sk(x) for every real value of x ∈ R. We thus
have

Sk(x) :=
1

k + 1
[Bk+1(x) − Bk+1] (x ∈ R \ {1}; k ∈ N0). (5)

Such sums as Sk(n) in (2) of powers of natural numbers, but with real or complex exponents, have also been investigated
in the existing literature. For example, Srivastava et al. [7] made use of certain operators of fractional calculus to derive,
among other results, the following summation identity:

Z(n, λ) := 1λ
+ 2λ

+ 3λ
+ · · · + nλ (λ ∈ C; ; n ∈ N; 1λ

:= 1)

=
1

Γ (−λ)

n−
k=1

∞−
j=0

(j − λ)−1L(−λ)
j (k) (λ ∈ C \ N0), (6)

where L(α)
n (z) denotes the classical Laguerre polynomial of order (or index) α and degree n in z, defined by (see [4, p. 55,

Equation 1.4(72)])

L(α)
n (z) =

n−
k=0


n + α

n − k


(−x)k

k!
(z, α ∈ C; n ∈ N0). (7)

On the other hand, the following functional relation for the sum Z(n,m) defined by (6) with λ = m (m ∈ N0) was proven
by Nishimoto and Srivastava [8, p. 130, Equation 2.3]:

Z(n,m) = m!

m−
j=0

(−1)j

m + α

m − j

 j−
k=0

(−1)k

k!


j + α

j − k


Z(n, k) (m ∈ N0; n ∈ N). (8)

Rakaczki [9] proved that the polynomial Sk(x), defined by (5), is indecomposable for even values of k ∈ N0. Furthermore,
for odd k ∈ N0, Rakaczki [9] observed that all the decompositions of Sk(x) are equivalent to the following decomposition:

Sk(x) = S̃k


x −

1
2

2


. (9)

His result is a consequence of Theorem 1 below, which is due to Bilu et al. [10].
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Theorem 1. The polynomial Bn(x) is indecomposable for odd n ∈ N0. If n = 2m (m, n ∈ N0 is even), then any nontrivial
decomposition of Bn(x) is equivalent to the following decomposition:

Bn(x) = B̃m


x −

1
2

2


.

In particular, the polynomial B̃m(x) is indecomposable for any m ∈ N0.

Chen et al. [11] formulated a generalization of the classical Faulhaber theorem. For a given arithmetic progression

a + b, 2a + b, . . . , a(n − 1) + b,

Faulhaber’s result implies that odd power sums of this arithmetic progression are polynomials in

(n − 1)b +
1
2

n(n − 1)a.

For example,

12m−1
+ 32m−1

+ 52m−1
+ · · · + (2n − 1)2m−1

is a polynomial in n2. Furthermore,

12m−1
+ 42m−1

+ 72m−1
+ · · · + (3n − 2)2m−1

is a polynomial in the pentagonal number 1
2 n(3n − 1).

For a positive integer n ∈ N \ {1}, let

Ska,b(n) := bk + (a + b)k + (2a + b)k + · · · +

a(n − 1) + b

k
. (10)

It is easy to see that

Ska,b(n) =
ak

k + 1

[
Bk+1


n +

b
a


− Bk+1

]
−

[
Bk+1


b
a


− Bk+1

]
. (11)

We can thus extend the definition (10) to hold true for every real value of x ∈ R as follows:

Sk
a,b(x) :=

ak

k + 1


Bk+1


x +

b
a


− Bk+1


b
a


. (12)

The main object of this work is to prove a generalization and refinement of the above-cited results of Rakaczki [9] and
Chen et al. [11].

2. The main result

In this section, we apply Theorem 1 in order to derive the following generalization and refinement of the results of
Rakaczki [9] and Chen et al. [11], which we referred to in the preceding section.

Theorem 2. The polynomial Sk
a,b(x) is indecomposable for even k ∈ N0. If k = 2v − 1 is odd, then any nontrivial decomposition

of Sk
a,b(x) is equivalent to the following decomposition:

Sk
a,b(x) = Ŝv


x +

b
a

−
1
2

2


(k = 2v − 1). (13)

Proof. We prove Theorem 2 by suitably applying Theorem 1. First of all, we let k ∈ N0 be an even integer,

t = x +
b
a

and suppose that there exist polynomials f1 and f2 such that

deg{f1(t)} > 1 and deg{f2(t)} > 1 (14)

and

ak

k + 1

[
Bk+1(t) − Bk+1


b
a

]
= f1


f2(t)


. (15)
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From this last expression, Eq. (15), we have a decomposition for the (k+1)th Bernoulli polynomial, which is a contradiction.
We now let k ∈ N \ {1} be an odd integer. Then we have

Bk+1(t) =
k + 1
ak

f1

f2(t)


+ Bk+1


b
a


and upon choosing

f (t) =
k + 1
ak

f1(t) + Bk+1


b
a


,

we obtain

Bk+1(t) = f

f2(t)


.

We thus find from Theorem 1 that

f2(t) =


t −

1
2

2

=


x +

b
a

−
1
2

2

. (16)

This evidently completes our proof of Theorem 2. �

3. Remarks and observations

By considering the following power sum:

n−1−
j=0

(5j + 3)3 =
125
4

n4
+

25
2

n3
−

55
4

n2
− 3n, (17)

we can easily observe that the polynomial in (17) is given by

n−1−
j=0

(5j + 3)3 =
125
4


n +

1
10

4

−
125
8


n +

1
10

2

+
49
320

. (18)

We conclude our investigation by remarking that the decomposition properties of a polynomial with rational coefficients
play an important rôle in the theory of such separable diophantine equations as follows (see [12]):

f (x) = g(y).
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