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Abstract

First, we present some results about the Hölder continuity of the sample paths
of so called dilatively stable processes which are certain infinitely divisible processes
having a more general scaling property than self-similarity. As a corollary, we obtain
that the most important (H, δ)-dilatively stable limit processes (e.g., the LISOU
and the LISCBI processes, see Iglói [4]) almost surely have a local Hölder exponent
H. Next we prove that, under some slight regularity assumptions, any two dilatively
stable processes with stationary increments are singular (in the sense that their
distributions have disjoint supports) if their parameters H are different. We also
study the more general case of not having stationary increments. Throughout the
paper we specialize our results to some basic dilatively stable processes such as the
above-mentioned limit processes and the fractional Lévy process.

1 Introduction

Path properties are important features of a stochastic process, this fact does not call for
an explanation. Given a set of stochastic processes, the same is true for the singularity
of their distributions on the space of sample paths (by which we understand that under
certain conditions any two such distributions have disjoint supports).

A well-known feature enabling a process to have nice path properties is self-similarity.
Systematic investigations of the sample path properties of self-similar processes had been
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begun by Vervaat’s classical paper [22], and continued by Vervaat [23], Takashima [20]
and Watanabe and Yamamuro [24] (the latter one gives laws of the iterated logarithm
for multidimensional self-similar processes with independent increments). Maejima [11],
Kono and Maejima [8] and Samorodnisky [15] (among others) treated the sample path
properties of some special self-similar processes. However, there are very few results in
the literature about the singularity properties of distributions of self-similar processes.
To the authors’ knowledge the only paper concerning this subject is that of Prakasa
Rao [13], which states that the distributions of two fractional Brownian motions (FBMs)
with different Hurst parameters are singular with respect to each other. The question
of singularity for other types of processes, for instance, for diffusion processes deserved
more attention, see, e.g., Ben-Ari and Pinsky [1], Jacod and Shiryaev [5] and Zhang [25].

In this paper we show that the so-called dilatively stable processes, introduced by
Iglói [4], can have nice sample path and singularity properties. Dilative stability is a
generalization of self-similarity. For the comparison of these two notions, we give both
definitions.

1.1 Definition. Let α > 0. A process {X(t), t ≥ 0} starting from zero (i.e., X(0) =
0) is called α-self-similar if it is not identically zero and fulfills the scaling relation

∀T > 0 : X(T · ) fd∼ T αX( · ), (1.1)

where
fd∼ denotes that the finite-dimensional distributions are the same.

Dilative stability, see Iglói [4], is an analogous property of certain infinitely divisible
processes (all finite-dimensional distributions are infinitely divisible) involving a scaling
also in the convolution exponent. The exact definition is as follows.

1.2 Definition. Let α > 0 and δ ≤ 2α. A process {X(t), t ≥ 0} starting from zero
is said to be (α, δ)-dilatively stable if its finite-dimensional distributions are infinitely
divisible, X(1) is non-Gaussian, X(t) has finite moments of all orders for all t ≥ 0 ,
and fulfills the scaling relation

∀T > 0 : X(T · ) fd∼ T α−δ/2X⊛T δ

( · ). (1.2)

Here for all c > 0 , we denote by X⊛c = {X(t), t ≥ 0}⊛c the c-th convolution power of
{X(t), t ≥ 0}, that is, {X(t), t ≥ 0}⊛c is a process the finite dimensional distributions
of which are the c-th convolution powers of the corresponding ones of {X(t), t ≥ 0}.

In Appendix A we give more insight to the properties of a dilatively stable process
that are supposed in Definition 1.2. We also note that in Kaj [7, Section 3.6] one can
find a somewhat similar, but not so general concept called aggregate-similarity. One of
the main differences between the concept of dilative stability and aggregate-similarity
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is that the later one defined only in the case of n-th convolution powers with n ∈ N

and when the relation 2α − δ = 2 holds for the parameters (which is in fact the most
important case, see the parametrization of the LIS processes in Example 1.3).

Let us observe that a not identically zero process {X(t), t ≥ 0} starting from zero
and fulfilling the scaling relation (1.2) with α > 0 and δ = 0 is an α -self-similar
process, roughly speaking (α, 0)-dilative stability is just α-self-similarity. Hence dilative
stability is a generalization of self-similiraty. Many results, such as Lamperti’s theorems,
can be transferred from the self-similar to the dilatively stable case, see Iglói [4]. Self-
similar processes are fixed points of their renormalization operators (see Taqqu [21]),
and the same is true for dilatively stable processes (see, Iglói [4, Theorem 2.8.4 (DS)]).
Accordingly, the possible limit processes in linear rescaling (i.e., in self-similar renor-
malization limit theorems) are the self-similar processes, see Lamperti [10], and if there
is a rescaling also in the convolution exponent (i.e., in dilatively stable renormalization
limit theorems) the possible limit processes are the dilatively stable ones, see, Iglói [4,
Theorem 2.2.7]. This is why dilative stability is important.

Important examples for dilatively stable processes are non-Gaussian fractional Lévy
processes (FLPs) (i.e., FLPs, where the underlying two-sided Lévy process is non-
Gaussian, but possibly with a Gaussian component) having zero mean and finite moments
of all orders. FLPs were originally introduced by Benassi et al. [2] and Marquardt [12].
For historical fidelity we note that in [2] a FLP is called a moving-average fractional Lévy
motion. We also recall that Marquardt [12, Theorem 4.4] proved that a FLP with an
underlying two-sided Lévy process having zero mean, finite second moment and not hav-
ing a Brownian component cannot be self-similar. However, by Iglói [4, Example 2.1.7],
a non-Gaussian FLP (considered only on [0,∞)) having zero mean and finite moments
of all orders is (H, 1) -dilatively stable with stationary increments, where H ∈ (1/2, 1)
is the so-called Hurst parameter or long memory parameter (see also Kaj [7, page 212]).
Roughly speaking, non-Gaussian FLPs are not self-similar but they belong to a wider
class of processes, to the class of dilatively stable processes, which also underlines the
importance of dilative stability.

The main contributions of this paper relate to dilatively stable processes with station-
ary increments, the general properties of which are treated by Iglói [4, Section 2.7]. Here
we point out that in this case the range of the parameter H

.
= α is (0, 1], see, Iglói [4,

Theorem 2.7.1 (DS) 1)]. In case H = 1, i.e., in case of a (1, δ)-dilatively stable process
we have δ = 0 (i.e., the process is self-similar) and it takes the form X(t) = tX(1),
t ≥ 0, almost surely (a.s.), i.e., it is degenerate. Indeed, by Iglói [4, Theorem 2.7.1 (DS)
2)], the process is degenerate, and if we suppose on the contrary that δ 6= 0, then, by
(1.2) (with T

.
= c1/δ, c > 0 ),

X(c1/δ) ∼ c
1

δ
(1−δ/2)X⊛c(1), c > 0,
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which yields that

c
1

δX(1) ∼ c
1

δ
− 1

2X⊛c(1), i.e., X(1) ∼ 1√
c
X⊛c(1), c > 0.

Hence X(1) is Gaussian with mean zero (which follows by considering characteristic
functions), in contradiction with Definition 1.2.

Moreover, an (H, δ)-dilatively stable process {X(t), t ≥ 0} with stationary incre-
ments has the same covariance function as a FBM with parameter H (apart from a
constant factor):

Cov(X(t1), X(t2)) =
1

2
D

2X(1)
(
t2H1 + t2H2 − |t1 − t2|2H

)
, t1, t2 ≥ 0,

see Iglói [4, Theorem 2.7.2] (where the parameter H can not be one, however the proof
given there works also in case H = 1).

Moments and cumulants provide a very handy tool throughout when dealing with
dilative stability. Using this tool in Section 2 we obtain some results for the almost sure
limit behavior of dilatively stable processes at zero, at infinity and, in case of processes
with stationary increments, at any point, see Lemmas 2.3, 2.5 and 2.6. Then, by the help
of the Kolmogorov–Chentsov theorem, we characterize dilatively stable processes with
stationary increments from the point of view of Hölder continuity of their sample paths,
see Theorem 2.7. This characterization has a well-known self-similar analogue presented
in Remark 2.11. Section 3 contains some results about the singularity of the distributions
of dilatively stable processes, induced on the space of continuous functions. Though a
dilatively stable process does not admit automatically continuous sample paths almost
surely, in the last section we will restrict ourselves to such processes. We note that an
(H, δ)-dilatively stable process with stationary increments and zero mean such that ei-
ther δ 6= 2H or H > 1/2 has a continuous modification, see Corollary 2.10. Using the
path properties proved in Section 2, we will find that, under some slight regularity con-
ditions, the distributions of dilatively stable processes with different parameters α are
pairwise singular, see Theorem 3.1 and Theorem 3.2 (this latter one is for the stationary
increments case). Theorem 3.2 can be carried out to self-similar processes with finite
absolute moment and stationary increments, implying, particularly, a new (and simple)
proof of the pairwise singularity of FBMs with different Hurst parameters, see Theorem
3.5.

Throughout the paper we will specialize our results to some particular dilatively
stable processes with stationary increments presented in the next example.

1.3 Example. The following processes are dilatively stable with stationary increments,
see Iglói [4]:
• LISOU process (limit of integrated superposition of Ornstein–Uhlenbeck type pro-
cesses),
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• LISCBI process (limit of integrated superposition of continuous state branching pro-
cesseses with immigration),
• LISDLG process (limit of integrated superposition of diffusion processes with linear
generator; this is a particular LISCBI process),
• non-Gaussian FLP (fractional Lévy process), i.e., FLP defined on [0,∞), where the
underlying two-sided Lévy process is non-Gaussian (but possibly with a Gaussian com-
ponent) having zero mean and finite moments of all orders.

These processes have a parameter H, which can now be only in the interval (1/2, 1),
hence it can be called the Hurst parameter or long memory parameter. The LISOU, LIS-
CBI and LISDLG processes with parameter H are (H, 2H − 2)-dilatively stable, while
the non-Gaussian FLP with parameter H is (H, 1)-dilatively stable, and all of these
processes have the same covariance function as a FBM with parameter H.

We will suppose throughout that the processes have zero mean. This is a natural as-
sumption when dealing with path properties, since the mean function, as a deterministic
function, can be handled separately. One can also check that the subtraction of the mean
function preserves dilative stability. In addition, if an (H, δ)-dilatively stable process has
stationary increments, then its mean function is automatically zero, unless H+ δ/2 = 1,
see Iglói [4, Theorem 2.7.1 (DS) 3)].

2 Path properties

Throughout in this paper I ⊆ [0,∞) denotes an interval. Let γ ∈ (0, 1]. A function
f : I → R is called locally γ -Hölder continuous if for every bounded subinterval J ⊆ I,

sup
t,s∈J,

t 6=s

|f(t)− f(s)|
|t− s|γ < ∞,

see, e.g., Revuz and Yor [14, page 26]. Clearly, local γ1 -Hölder continuity implies local
γ2 -Hölder continuity if 1 ≥ γ1 ≥ γ2 > 0. This relation gives rise to the following notion
of local Hölder exponent. The value

Γf
.
= sup

γ∈(0,1]

{
γ : f is locally γ -Hölder continuous

}

is called the (optimal) local Hölder exponent of a function f and set to 0 if f is not
locally Hölder continuous. This notion is similar to the notion of the optimal Hölder
index at a point, see, e.g., Jaffard [6] or Fleischmann, Mytnik and Wachtel [3].

In what follows by the expression that ‘an infinitely divisible distribution has a Gaus-
sian component’ we mean that in its Lévy-Khintchine representation the Gaussian part
has positive variance.

In some cases we will refer to the following assumptions.
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2.1 Assumption. If {X(t), t ≥ 0} is an (α, δ)-dilatively stable process with δ ≥ 0,
then the distribution of X(1) (equivalently, the distribution of X(t) for any t > 0)
has a Gaussian component.

2.2 Assumption. If {X(t), t ≥ 0} is an (α, δ)-dilatively stable process with δ ≤ 0,
then the distribution of X(1) (equivalently, the distribution of X(t) for any t > 0)
has a Gaussian component.

Note that the above two assumptions are the dual of each other with respect to δ, and
we will always indicate explicitly which of them is used. Furthermore, when Assumption
2.1 is supposed and the parameter δ of an (α, δ)-dilatively stable process is negative,
then this assumption does not come into play, and a similar statement holds for Assump-
tion 2.2 and an (α, δ)-dilatively stable process with positive δ. The intrinsic reason for
considering only the non-negative values δ in Assumption 2.1 is that the LISOU, LIS-
CBI and LISDLG processes (the dilatively stable processes with stationary increments
presented in Example 1.3) may not have a Gaussian component and their parameter δ
is negative. However, this also means that Assumption 2.2 may not hold for these par-
ticular dilatively stable processes, and from this specific point of view Assumptions 2.1
and 2.2 are not exactly the dual of each other. On the other side, we call the attention
that these assumptions are not too restrictive, since, as it is easy to see, the independent
sum of a Gaussian α-self-similar process with zero mean and an (α, δ)-dilatively stable
process remains (α, δ)-dilatively stable. Particularly, the independent sum of an (H, δ)-
dilatively stable process and a FBM with parameter H remains (H, δ)-dilatively stable,
see Iglói [4, Proposition 2.7.5]. Thus, we can make a Gaussian component preserving the
dilative stability. Finally, we remark that under the non-trivial cases of Assumption 2.1 or
Assumption 2.2, i.e., when there exists a Gaussian component, the distribution of X(1)
is absolutely continuous (see, e.g., Sato [16, Lemma 27.1]), and hence P(X(1) = 0) = 0
in this case.

The following lemma treats the sample path behaviour at zero of a dilatively sta-
ble process. In what follows by a zero-sequence we mean a sequence of real numbers
converging to 0.

2.3 Lemma. There exists a zero-sequence (tn)n∈N with positive terms such that for any
(α, δ)-dilatively stable process {X(t), t ≥ 0} with zero mean, the following assertions
hold.
(i) If κ < α, then

lim sup
n→∞

|X(tn)|
tκn

= 0 a.s. (2.1)

(ii) If κ > α and Assumption 2.1 holds, then

lim sup
n→∞

|X(tn)|
tκn

= ∞ a.s. (2.2)
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Further, for any sequence (tn)n∈N with positive terms such that

lim sup
n→∞

n
√
tn < 1, (2.3)

the assertions of parts (i) and (ii) hold.

Proof. Let (tn)n∈N be a sequence with positive terms such that (2.3) holds. Then the
root test yields that the series

∑∞
n=1 tn is convergent, and hence (tn)n∈N is a zero-

sequence.
(i) By (1.2), we have

D
2X(tn) = D

2
(
tα−δ/2
n X⊛tδn(1)

)
= t2α−δ+δ

n D
2X(1) = t2αn D

2X(1), n ∈ N.

Hence the Markov inequality yields that

∞∑

n=1

P

( |X(tn)|
tκn

> ε

)
≤ D

2X(1)

ε2

∞∑

n=1

t2(α−κ)
n < ∞, ε > 0,

where the convergence of the series is a consequence of (2.3). Applying the Borel–Cantelli
lemma we obtain that limn→∞X(tn)/t

κ
n = 0 a.s., which implies (2.1). We remark that in

this case any sequence (tn)n∈N with positive terms satisfying (2.3) is obviously universal.
(ii) Using (1.2), we have

|X(tn)|
tκn

∼ tα−κ
n

∣∣∣X⊛tδn(1)
∣∣∣

t
δ/2
n

, n ∈ N. (2.4)

First we show that the right-hand side (and hence the left-hand side) of (2.4) converges
in probability to infinity along some appropriate subsequence. We consider the three
cases corresponding to the sign of δ separately.
• If δ < 0, then X⊛tδn(1)

/
t
δ/2
n converges in distribution to a normal distribution with

variance E(X(1))2. Indeed, limn→∞ tδn = ∞, and

X⊛tδn(1) ∼ ξ1 + · · ·+ ξ⌊tδn⌋ + ηn,

where ⌊·⌋ denotes the integer part, ξ1, . . . , ξ⌊tδn⌋ and ηn are independent random
variables such that ξ1, . . . , ξn has a common distribution as X(1) has and ηn ∼
X⊛(tδn−⌊tδn⌋)(1). By the central limit theorem we get that

ξ1 + · · ·+ ξ⌊tδn⌋

t
δ/2
n

converges in distribution to a normal distribution with variance E(X(1))2, while the

remainder term ηn/t
δ/2
n converges to 0 in L2 as n → ∞. Therefore the right-hand
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side of (2.4) converges in probability to infinity, and hence so does the left-hand side.
(Here we used the fact that if ζn, n ∈ N, and ζ are non-negative random variables
such that ζn converges to ζ in distribution, ζ has a continuous distribution function
[hence P(ζ > 0) = 1] and (cn)n∈N is a sequence of positive real numbers converging
to infinity, then cnζn converges in probability to infinity as n → ∞ , i.e., ∀M > 0 :
limn→∞ P(cnζn < M) = 0.)
• If δ = 0, then the right-hand side of (2.4) is tα−κ

n |X(1)|. Using Assumption 2.1 and
the fact that if at least one term of an independent (finite) sum of random variables has
a continuous distribution, then also the sum itself has a continuous distribution (see,
e.g., Sato [16, Lemma 27.1]), we have P(X(1) = 0) = 0, i.e., X(1) has no atom at zero.
Hence tα−κ

n |X(1)| converges almost surely to infinity, which yields that the left-hand
side of (2.4) converges in probability to ∞.
• If δ > 0, then, since

D
2

(
X⊛tδn(1)

t
δ/2
n

)
= D

2X(1) = E(X(1))2, n ∈ N, (2.5)

the tightness of the sequence of distributions of X⊛tδn(1)/t
δ/2
n , n ∈ N, follows by the

Markov inequality. Indeed, with the notation

Kε
.
=
[
−
√

E(X(1))2/ε,
√

E(X(1))2/ε
]
, ε > 0,

for all n ∈ N, we have

P

(
X⊛tδn(1)

t
δ/2
n

∈ R \Kε

)
= P

(∣∣∣∣∣
X⊛tδn(1)

t
δ/2
n

∣∣∣∣∣ >
√

E(X(1))2

ε

)
≤ ε.

Therefore, by Prohorov’s theorem, there exists a subsequence X⊛tδnk (1)/t
δ/2
nk

, k ∈ N,
which converges in distribution. Using Assumption 2.1 and the Lévy–Khintchine formula

we get that for all k ∈ N, X⊛tδnk (1)/t
δ/2
nk has a Gaussian component, the distribution of

which is the same as the distribution of the Gaussian component of X(1). Indeed, if G

denotes the Gaussian component of X(1), then G⊛tδnk/t
δ/2
nk is the Gaussian component

of X⊛tδnk (1)/t
δ/2
nk and it has the same distribution as G (here we also use that G has zero

mean since X(1) has zero mean). Thus the limiting distribution of this subsequence also
has a Gaussian component. Therefore the limiting distribution is continuous and hence it
has no atom at zero, and, as it was explained earlier in the proof of the case δ < 0, this
fact ensures that the right-hand side of (2.4) converges along the subsequence (tnk

)k∈N in
probability to infinity, hence so does the left-hand side (along the subsequence (tnk

)k∈N ).
We call the attention that in the proof of the case δ > 0 (i.e., in the last case) we

do not use that δ is positive, but Assumption 2.1 comes into play in this case. This also
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shows that the proof of the case δ > 0 remains still valid for the case δ < 0 under
the additional assumption that X(1) has a Gaussian component. (However, the proof
of the case δ < 0 presented above does not work for the case δ > 0.)

In each of the above three cases (denoted by bullets) we obtained that a subsequence
of the left-hand side of (2.4) (in case of δ ≤ 0 the whole sequence) converges in proba-
bility to infinity. Thus, by the Riesz lemma, there is some subsequence of the left-hand
side of (2.4), which converges to infinity almost surely. Indeed, Riesz’s lemma can be
proved for a sequence of random variables (ζn)n∈N converging in probability to ∞, as
follows. Since for all k ∈ N there exists some nk ∈ N such that P(ζnk

< k) < 1/2k,
the Borel–Cantelli lemma yields that

P(ζnk
< k for infinitely many k ≥ 1) = 0.

Hence P(lim infk→∞ ζnk
= ∞) = 1 which yields that P(limk→∞ ζnk

= ∞) = 1 . This
implies (2.2) and we also have the universality of any sequence (tn)n∈N with positive
terms satisfying (2.3). ✷

2.4 Remark. We note that in part (i) of Lemma 2.3 one can also write lim instead of
lim sup . The reason for writing lim sup is that we will use only this later on. We also
remark that the case κ = α is not covered by Lemma 2.3, since we do not need it and
we can not address any result in this case.

The following lemma shows that the behaviour of the sample paths at infinity can be
characterized similarly as their behaviour at zero.

2.5 Lemma. There exists a sequence (tn)n∈N converging to infinity such that for any
(α, δ)-dilatively stable process {X(t), t ≥ 0} with zero mean the following assertions
hold.
(i) If κ < α and Assumption 2.2 holds, then

lim sup
n→∞

|X(tn)|
tκn

= ∞ a.s. (2.6)

(ii) If κ > α, then

lim sup
n→∞

|X(tn)|
tκn

= 0 a.s. (2.7)

Further, for any sequence (tn)n∈N with positive terms such that lim supn→∞
n
√
1/tn < 1,

the assertions of parts (i) and (ii) hold.

Proof. One can use the same arguments as in the proof of Lemma 2.3, but with some
changes. Namely, the sequence (tn)n∈N can be the reciprocal of the sequence (with posi-
tive terms satisfying (2.3)) used in the proof of Lemma 2.3. Then the proof of statement
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(ii) corresponds to that of statement (i) in Lemma 2.3, while part (i) goes the same way
as part (ii) in Lemma 2.3, just the cases δ < 0 and δ > 0 have to be interchanged. ✷

In the stationary increments case Lemma 2.3 can be formulated not only for zero-
sequences but also for sequences converging to a non-negative real number, see as follows.

2.6 Lemma. For any t0 ≥ 0 there exists a sequence (tn)n∈N converging to t0 such
that tn 6= t0, n ∈ N, and for any (H, δ)-dilatively stable process {X(t), t ≥ 0} with
stationary increments and zero mean the following assertions hold.
(i) If κ < H, then

lim sup
n→∞

|X(tn)−X(t0)|
|tn − t0|κ

= 0 a.s. (2.8)

(ii) If κ > H and Assumption 2.1 holds, then

lim sup
n→∞

|X(tn)−X(t0)|
|tn − t0|κ

= ∞ a.s. (2.9)

Further, for any sequence (tn)n∈N
.
= (t0 + t̃n)n∈N, where (t̃n)n∈N is a sequence with

positive terms such that lim supn→∞
n
√

t̃n < 1, the assertions of parts (i) and (ii) hold.

Proof. The process Y (t)
.
= X(t + t0)−X(t0), t ≥ 0, is (H, δ)-dilatively stable with

zero mean such that the distribution of Y (1) has a Gaussian component if X(1) has.
Hence Lemma 2.3 yields that there exists a zero-sequence (t̃n)n∈N with positive terms
such that if κ < H, then

lim sup
n→∞

|X(t̃n + t0)−X(t0)|
t̃κn

= 0 a.s.,

and if κ > H and Assumption 2.1 holds, then

lim sup
n→∞

|X(t̃n + t0)−X(t0)|
t̃κn

= ∞ a.s.

With the definition tn
.
= t̃n + t0, n ∈ N, we have the assertions of the lemma. (This

also shows that in (2.8) and (2.9) one can write (tn − t0)
κ instead of |tn − t0|κ.) ✷

The above lemmas, interesting in their own rights, will be used mainly in the next
section, but Lemma 2.6 will appear also in the proof of the following theorem. The rest of
the section deals with Hölder continuity of the sample paths of dilatively stable processes
with stationary increments.

2.7 Theorem. Let {X(t), t ≥ 0} be an (H, δ)-dilatively stable process with stationary
increments and zero mean such that either δ 6= 2H or H > 1/2. Then {X(t), t ≥ 0}
has a continuous modification, the sample paths of which are locally γ -Hölder continuous
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(i) for every γ ∈ (0, H) if δ < 0,

(ii) for every γ ∈ (0, H − δ/2) if 0 ≤ δ < 2H,

(iii) for every γ ∈ (0, H − 1/2) if δ = 2H and H > 1/2.

Moreover, under Assumption 2.1, for the local Hölder exponent ΓX of the sample paths
of the above continuous modification of the process {X(t), t ≥ 0} we have

(̃i) ΓX = H if δ < 0,

(ĩi) ΓX ∈ [H − δ/2, H ] if 0 ≤ δ < 2H,

(ĩii) ΓX ∈ [H − 1/2, H ] if δ = 2H and H > 1/2.

Proof. We are going to apply the Kolmogorov–Chentsov theorem see, e.g., Revuz and
Yor [14, Chapter I, Theorem 2.1]. Therefore we have to prove that {X(t), t ≥ 0} satisfies
Kolmogorov’s condition: there exist constants c, p, q > 0 such that

E
∣∣X(t)−X(s)|p ≤ c|t− s|1+q, s, t ≥ 0. (2.10)

Then, by the Kolmogorov–Chentsov theorem, {X(t), t ≥ 0} has a continuous modifica-
tion which is locally γ -Hölder continuous for every γ ∈ (0, q/p). Clearly, it is sufficient
for (2.10) to hold for every s, t ≥ 0 for which 0 ≤ t − s < 1, so in what follows we
suppose that t and s are of these kinds. Indeed, in this case for all n ∈ N ∪ {0},

E
∣∣X(n)(t)−X(n)(s)|p ≤ c|t− s|1+q, s, t ≥ 0,

where

X(n)(t)
.
=





X(n/2) if t ≤ n/2,

X(t) if n/2 < t < n/2 + 1,

X(n/2 + 1) if t ≥ n/2 + 1,

n ∈ N ∪ {0},

and hence for all n ∈ N∪{0}, the process {X(n)(t) : t ≥ 0} has a continuous modifica-
tion which is locally γ -Hölder continuous for every γ ∈ (0, q/p). The desired property
of {X(t) : t ≥ 0} follows by that [0,∞) =

⋃
n∈N∪{0}[n/2, n/2 + 1].

Now, let p be a positive even number. Using the stationary increments property and
the relation between moments and cumulants we obtain

E
∣∣X(t)−X(s)

∣∣p = E(X(t− s))p =
∑

Π

∏

B∈Π

Cum nB
(X(t− s)), (2.11)

where Π runs through the list of all partitions of a set of size p, B ∈ Π means that B
is one of the blocks into which the set is partitioned given the partition Π, nB is the
size of the set B (in notation: nB = |B|) and Cum k(X(t − s)) denotes the cumulant
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of order k of X(t − s), see, e.g., Shiryaev [17, page 292, formula (46)]. Observe that
EX(t − s) = 0 implies that for any Π and any one element block B ∈ Π, we have
Cum nB

(X(t−s)) = Cum 1(X(t−s)) = EX(t−s) = 0, which yields that for any partition
Π the sum on the right hand side of (2.11) has at most p/2 terms different from 0.
Using the dilative stability relation (1.2) we can continue (2.11) as follows:

E
∣∣X(t)−X(s)

∣∣p =
∑

Π

∏

B∈Π

Cum nB
(X(t− s))

=
∑

Π

∏

B∈Π

(t− s)(H−δ/2)nB+δ
CumnB

(X(1))

= (t− s)(H−δ/2)p
∑

Π

(
(t− s)δ|Π|

∏

B∈Π

Cum nB
(X(1))

)
. (2.12)

It is important to observe that for each Π, the product
∏

B∈Π CumnB
(X(1)) is non-

negative. Indeed, if nB is even, then Cum nB
(X(1)) ≥ 0, since the cumulant of order

greater than or equal to 2 of X(1) is the moment of the same order of the Lévy measure
in the Lévy–Khinthine representation of the distribution of X(1) (plus the variance
of the Gaussian component if nB = 2 ), see Steutel and Van Harn [18, Chapter IV,
Theorem 7.4]. A cumulant Cum nB

(X(1)) can be negative for an odd nB, however, the
number of blocks B ∈ Π, with an odd size nB, must be even, since p is even. This
yields the nonnegativity of

∏
B∈Π CumnB

(X(1)). At this point the proof separates into
three cases corresponding to the three parts of the statement of the theorem.

• If δ < 0, then (2.12) can be continued in the following way:

E
∣∣X(t)−X(s)

∣∣p = (t− s)(H−δ/2)p
∑

Π

(
(t− s)δ|Π|

∏

B∈Π

CumnB
(X(1))

)

≤ (t− s)(H−δ/2)p
∑

Π

(
(t− s)δp/2

∏

B∈Π

Cum nB
(X(1))

)

= E(X(1))p(t− s)Hp,

where at the inequality we used the facts that 0 ≤ t − s < 1 and |Π| ≤ p/2 for
all Π not having one-element blocks; and the last equality follows by (2.11). Choosing
p > 1/H, we conclude, by the Kolmogorov–Chentsov theorem, that {X(t), t ≥ 0} has
a continuous modification which is locally γ -Hölder continuous for every

0 < γ <
Hp− 1

p
= H − 1

p
.

By letting p → ∞ we have finished the proof of the case (i).
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• If 0 ≤ δ < 2H, the proof proceeds similarly. Using (2.12) we obtain

E
∣∣X(t)−X(s)

∣∣p = (t− s)(H−δ/2)p
∑

Π

(
(t− s)δ|Π|

∏

B∈Π

CumnB
(X(1))

)

≤ (t− s)(H−δ/2)p
∑

Π

(
(t− s)0

∏

B∈Π

CumnB
(X(1))

)

= E(X(1))p(t− s)(H−δ/2)p.

For p > 1/(H − δ/2), the Kolmogorov–Chentsov theorem ensures that {X(t), t ≥ 0}
has a continuous modification which is locally γ -Hölder continuous for every

0 < γ <
(H − δ/2)p− 1

p
= H − δ

2
− 1

p
.

Letting p → ∞ as above, we obtain the statement (ii).
• If δ = 2H and H > 1/2, it is enough to use the second moment:

E
∣∣X(t)−X(s)

∣∣2 = E(X(t− s))2 = E(X⊛(t−s)2H (1))2 = E(X(1))2(t− s)2H ,

to conclude that (by the Kolmogorov–Chentsov theorem) {X(t), t ≥ 0} has a continuous
modification which is locally γ -Hölder continuous for every

0 < γ <
2H − 1

2
= H − 1

2
,

which is the statement (iii).

Finally, the statements (̃i) – (ĩii) follow from part (ii) of Lemma 2.6, using also
that for a (H, δ) -dilatively stable process with stationary increments, the range of the
parameter H is (0, 1] (see the Introduction). ✷

2.8 Remark. The key in the proof of Theorem 2.7 was the Kolmogorov condition,
which is known to be not a necessary condition for having a continuous modification of
a stochastic process, see Stoyanov [19, p. 219]. It is not a necessary condition for having
a locally Hölder continuous modification either, as one can see using a modification
of the counterexample of Stoyanov [19, p. 220]. Namely, if {W (t), t ≥ 0} is a FBM
with parameter H, then X(t)

.
= exp(W 3(t)), t ≥ 0, has infinite moments, hence the

Kolmogorov condition does not make sense. However, as {W (t), t ≥ 0} has a continuous
modification which is locally γ -Hölder continuous for every γ ∈ (0, H) (see Remark
2.11), we have for every bounded subinterval J ⊆ [0,∞),

|X(t)−X(s)| ≤ c1
∣∣W 3(t)−W 3(s)

∣∣ ≤ c2|W (t)−W (s)| ≤ c3|t− s|γ, s, t ∈ J,
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with some (random) constants c1, c2, c3, hence {X(t), t ≥ 0} is a.s. locally γ -Hölder
continuous for every γ ∈ (0, H). (Here one can choose universal constants ci, i = 1, 2, 3,
i.e., which do not depend on the specific choices of s, t ∈ J, since W is almost surely
bounded on the bounded interval J.) Therefore it is reasonable to ask how strong the

assertions (ĩi) and (ĩii) of Theorem 2.7 are. By Benassi et al. [2, Proposition 3.2],
if γ > H − 1/2, then on any interval the sample paths of a non-Gussian FLP with
parameter H are not γ -Hölder continuous with positive probability p > 0. Furthermore,
if the Lévy measure (control measure) of the Lévy process in the defining integral of the
non-Gussian FLP is infinite, then p = 1. This example shows that part (ĩi) of Theorem
2.7 cannot be strengthened in general, in the sense that, as the above shows, there exists
an (H, δ)-dilatively stable process with stationary increments and zero mean for which
0 ≤ δ < 2H and ΓX = H − δ/2 (namely, a non-Gaussian FLP with parameter H for
which δ = 1 ), i.e., the left endpoint of the interval [H − δ/2, H ] can be reached. The
authors do not know whether the right endpoint of the interval [H − δ/2, H ] can be
reached. We have only a partial result in case of δ = 0. Namely, by part (ĩi) of Theorem
2.7 with δ = 0, we see that if X is a H -self-similar process with stationary increments,
having non-Gaussian, infinitely divisible finite-dimensional distributions, finite moments
of all orders, and a Gaussian component, then it a.s. admits a local Hölder exponent H.

Next we formulate two corollaries of Theorem 2.7.

2.9 Corollary. For the LISOU, LISCBI and LISDLG processes with parameter H (see
Example 1.3) one can apply parts (i) and (̃i) of Theorem 2.7 (remember, 1/2 < H < 1,
hence δ = 2H − 2 < 0), hence the local Hölder exponent ΓX of these processes is a.s.
H. On the other hand, the non-Gaussian FLP with parameter H (but possibly with
a Gaussian component, see again Example 1.3) is a.s. locally γ -Hölder continuous for
every 0 < γ < H−1/2 by part (ii) of Theorem 2.7 (since we have 1/2 < H < 1, hence
δ = 1 < 2H ), which is known by Benassi et al. [2, Proposition 3.2] or Marquardt [12,
Theorem 4.3]. Particularly, all four processes have continuous modifications.

2.10 Corollary. Let {X(t), t ≥ 0} be an (H, δ)-dilatively stable process with station-
ary increments and zero mean such that either δ 6=2H or H > 1/2. Then {X(t), t ≥ 0}
has a continuous modification.

2.11 Remark. The self-similar analogue of Theorem 2.7 is a well-known and easy con-
sequence of the Kolmogorov–Chentsov theorem. Namely, for a H -self-similar process
{X(t), t ≥ 0} with stationary increments and finite moments of all orders, we have
E|X(t) − X(s)|p = |t − s|pHE|X(1)|p, p > 0, from which we obtain, by the same way
as in the proof of Theorem 2.7, that {X(t), t ≥ 0} has a continuous modification, the
sample paths of which are locally γ -Hölder continuous for every γ ∈ (0, H). For com-
pleteness, we note that the zero mean condition in Theorem 2.7 is automatically satisfied
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by a H -self-similar process with H 6= 1, stationary increments and finite absolute mo-
ment, see, e.g., Vervaat [22, Auxiliary Theorem 3.1]. In the special case H = 1 (and
δ = 0) it is not sure that we have a zero mean process, but it is a degenerate case, i.e.,
X(t) = tX(1), t ≥ 0, a.s., see, e.g., Iglói [4, Theorem 2.7.1 (SS) 2)], and hence the
corresponding assertions of parts (ii) and (ĩi) of Theorem 2.7 hold readily.

Further, assuming that P(X(1) = 0) = 0 , i.e., the distribution of X(1) has no
atom at zero, the proof of Lemma 2.3 in the case of δ = 0 shows that the local Hölder
exponent ΓX equals a.s. H.

3 Singularity of the distributions

In what follows C(I) will denote the set of continuous functions on a closed interval I ⊆
[0,∞) with the local uniform topology and Borel σ-algebra B(C(I)). If the processes
{X1(t), t ∈ I} and {X2(t), t ∈ I} have sample paths in C(I) a.s., then we say
that they are singular on I (in notation: X1⊥X2 ), if their distributions PX1

and
PX2

on (C(I),B(C(I))) are singular (in notation: PX1
⊥PX2

), i.e., there exists a set
A ∈ B(C(I)) such that PX1

(A) = 1 and PX2
(A) = 0.

3.1 Theorem. Let I ⊆ [0,∞) be a closed interval and {X1(t), t ≥ 0}, {X2(t), t ≥ 0}
be dilatively stable processes with parameters (α1, δ1) and (α2, δ2), respectively, both
processes with zero mean, and having sample paths in C(I) a.s. Assume that one of the
following two conditions holds:
• inf{t : t ∈ I} = 0 (i.e., the left endpoint of I is zero) and the above two processes
satisfy Assumption 2.1.
• sup{t : t ∈ I} = ∞ (i.e., I is unbounded) and the above two processes satisfy
Assumption 2.2.
Then α1 6= α2 implies X1⊥X2.

Proof. Assume that the left endpoint of I is zero, and Assumption 2.1 holds for the
processes X1 and X2. Let (tn)n∈N be a sequence for which the assertions of Lemma
2.3 hold, and define the following two subsets of C(I):

Ai
.
=

{
f ∈ C(I) : lim sup

n→∞

|f(tn)|
tκn

= 0 for all κ ∈ Q ∩ (0, αi)

and lim sup
n→∞

|f(tn)|
tκn

= ∞ for all κ ∈ Q ∩ (αi,∞)

}
, i = 1, 2,
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where Q denotes the set of rational numbers. Considering the decompositions

Ai =
⋂

κ∈Q∩(0,αi)

(
∞⋂

m=1

∞⋃

p=1

∞⋂

r=p

{
f ∈ C(I) :

|f(tr)|
tκr

<
1

m

})

⋂ ⋂

κ∈Q∩(αi,∞)

(
∞⋂

m=1

∞⋂

p=1

∞⋃

r=p

{
f ∈ C(I) :

|f(tr)|
tκr

> m
})

, i = 1, 2,

and using that for each κ ∈ Q and n ∈ N, the mapping C(I) ∋ f 7→ f(tn)/t
κ
n is

continuous, we get Ai ∈ B(C(I)), i = 1, 2. One can argue in another way, namely, by
Lemma 2.3, for all κ ∈ Q ∩ (0, αi) [resp. κ ∈ Q ∩ (αi,∞) ], we have

{
f ∈ C(I) : lim sup

n→∞

|f(tn)|
tκn

= 0
} [

resp.
{
f ∈ C(I) : lim sup

n→∞

|f(tn)|
tκn

= ∞
} ]

is in B(C(I)). Hence, by Lemma 2.3, PXi
(Ai) = 1, i = 1, 2. Since α1 6= α2 we have

A1 ∩ A2 = ∅, hence the assertion follows.
In the other case the proof is analogous, but we have to refer to Lemma 2.5 instead

of Lemma 2.3. ✷

The next theorem is the counterpart of Theorem 3.1 for processes with stationary
increments, in which case the closed interval I can be arbitrary.

3.2 Theorem. Let I ⊆ [0,∞) be a closed interval, and {X1(t), t ≥ 0}, {X2(t), t ≥
0} be dilatively stable processes with stationary increments and parameters (H1, δ1)
and (H2, δ2), respectively, both processes with zero mean and having sample paths in
C(I) a.s. such that they satisfy Assumption 2.1. Then H1 6= H2 implies X1⊥X2.

Proof. One can argue similarly to the proof of Theorem 3.1. Namely, let t0 ∈ I, (tn)n∈N
be a sequence for which the assertions of Lemma 2.6 hold, and for i = 1, 2,

Ai
.
=

{
f ∈ C(I) : lim sup

n→∞

|f(tn)− f(t0)|
|tn − t0|κ

= 0 for all κ ∈ Q ∩ (0, αi)

and lim sup
n→∞

|f(tn)− f(t0)|
|tn − t0|κ

= ∞ for all κ ∈ Q ∩ (αi,∞)

}
.

Hence the assertion follows by Lemma 2.6. ✷

3.3 Remark. If either δ 6= 2H or H > 1/2, then in Theorem 3.2 the assumption
of having a.s. continuous sample paths is automatically fulfilled. Indeed, by Corollary
2.10, apart from the exceptional case δ=2H and 0<H ≤ 1/2, every dilatively stable
process with stationary increments and zero mean has a continuous modification.
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3.4 Example. By Theorem 3.2, any two LISOU processes with different parameters
H are singular on any closed interval I ⊆ [0,∞), because Assumption 2.1 is trivially
fulfilled (since δ = 2H − 2 < 0). The same is true for the LISCBI, and particularly,
for the LISDLG processes, since they have the same parameter of dilative stability as
the LISOU process. It also follows that any two of these processes of three types are
singular if their parameters H are different. However, for the non-Gaussian FLP we
have δ=1≥ 0, hence Assumption 2.1 is non-trivial, and Theorem 3.2 states that two
non-Gaussian FLPs, both having Gaussian components, are singular if their parameters
H are different.

Theorem 3.2 applies to the case δ=0, i.e., for (α, 0)-dilatively stable processes too.
These processes are exactly those self-similar, infinitely divisible processes, which have
finite moments of all orders and non-Gaussian one-dimensional distributions (except for
that at zero). But of course, there exist self-similar processes without these properties,
e.g. the FBM. For this reason, Theorem 3.2 does not automatically apply to self-similar
processes in general. However, let us observe that not all of the three properties above
are utilized in the proof: neither the non-Gaussianity, nor the moments (or cumulants)
of order higher than two are in use (recall the proofs of Lemma 2.3 and Theorem 3.2 in
the case of δ = 0), and in case of δ = 0 we had nothing to do with infinite divisibility
(since the convolution exponent T δ in (1.2) is 1 in this case). In fact, not even finite
second moments are needed for Theorem 3.2 to apply to the self-similar case. Indeed,
the only place where moments appear in case of δ = 0, is the Markov inequality in the
proof of part (i) of Lemma 2.3, where one can use, e.g., the absolute moment instead
of the second order one. Let us also observe that when δ = 0, Assumption 2.1 (i.e.,
the existence of a Gaussian component) is utilized only in a way that it follows that the
dilatively stable process in question does not have an atom at zero. So, if we replace
dilatively stable processes by self-similar ones possessing the following properties, then
Theorem 3.2 remains true, and reads as follows.

3.5 Theorem. Let I ⊆ [0,∞) be a closed interval, and {X1(t), t ≥ 0}, {X2(t), t ≥
0} be self-similar processes with stationary increments and parameters H1, H2 ∈ (0, 1),
both processes with finite absolute moment and having sample paths in C(I) a.s. such
that neither the distribution of X1(1) nor that of X2(1) has an atom at zero. Then
H1 6= H2 implies X1⊥X2.

Note that under the conditions Theorem 3.5, the processes X1 and X2 have zero
mean, see, Vervaat [22, Auxiliary Theorem 3.1].

The most important particular case of Theorem 3.5 sounds as follows.

3.6 Corollary. Two FBMs with different parameters H are singular.

In fact, this latter result is known, see Prakasa Rao [13], where the proof is based on
a Baxter type theorem of Kurchenko [9].
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3.7 Remark. A consequence of the above theorems on singularity (which are in fact
based on Lemmas 2.3 [or 2.5] and 2.6) is that the parameter α, or H in the stationary
increments case, can be estimated without error, as long as we have a continuous-time
sample path available (or at least its values at the time points of a sequence (tn)n∈N
appearing in Lemmas 2.3 [2.5] and 2.6). Note also that in Lemmas 2.3 [2.5] and 2.6 not
just the existence of an appropriate sequence (tn)n∈N is guaranteed, but we also give
an example for such a sequence, which is important from the point of view of practical
applications.

Finally, we recall a known result about variation of sample paths of self-similar pro-
cesses, the generalization of which may serve as a future task.

3.8 Remark. If {X(t), t ≥ 0} is a H -self-similar process with stationary increments,
finite absolute moment and H < 1 then the sample paths of X have no bounded
variation on any (bounded) interval a.s., see Vervaat [22, Theorem 3.3]. As a possible
future task one can study variation of sample paths of dilatively stable processes.

A On the definition of dilatively stability

First we note that, at the first view, the Definition 1.2 of dilative stability is a little bit
different from Definition 2.1.3 in Iglói [4], since the right continuity of the n-th order
(n ≥ 2, n ∈ N) cumulant function cn : [0,∞) → R, cn(t) := Cumn(X(t)), t ≥ 0, is
not supposed. However, it follows since cn(t) = t(α−δ/2)n+δcn(1), t ≥ 0. Even so, this
does not mean that Definition 2.1.3 in Iglói [4] contains a superfluous condition (since it
defines dilative stability in a more general setting) and it turns out to be equivalent to
our definition, see Iglói [4, Theorem 2.2.1].

Next we note that there is a slight redundancy in Definition 1.2 in the sense that the
property that a dilatively stable process starts from 0 follows from the other properties.
More precisely, if a process {X(t), t ≥ 0} satisfies the properties listed in Definition
1.2 except that it starts from 0, then P(X(0) = 0) = 1. Indeed, by (1.2), X(0) ∼
T α−δ/2X⊛T δ

(0) (where ∼ denotes equality in distribution), which yields that

EX(0) = T α−δ/2
EX⊛T δ

(0) = T α−δ/2T δ
EX(0) = T α+δ/2

EX(0), T > 0,

and

D
2X(0) = T 2α−δ

D
2X⊛T δ

(0) = T 2α−δT δ
D

2X(0) = T 2α
D

2X(0), T > 0.

If δ 6= −2α, then this implies that EX(0) = 0 and D
2X(0) = 0, yielding that

P(X(0) = 0) = 1. If δ = −2α, then, by (1.2), X(0) ∼ T 2αX⊛T−2α

(0) for all T > 0,
or equivalently cX(0) ∼ X⊛c(0) for all c > 0, which yields that the distribution of
X(0) is strictly 1-stable. Using that a non-degenerate (strictly) 1-stable distribution
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does not have a finite first moment, our assumption that X(0) has (finite) moments of
all orders implies that P(X(0) = C) = 1 with some C ∈ R. For completeness, we also
note that there is a slight redundancy in Definition 1.1 too, in the sense that if a process
{X(t), t ≥ 0} satisfies the scaling property (1.1), then P(X(0) = 0) = 1.

Finally, we call the attention that the non-Gaussianity condition in Definition 1.2,
namely, that X(1) (or, equivalently, X(t), for some t > 0 ) is non-Gaussian is crucial
in the sense that it is extensively used in the proofs both in the present paper and in Iglói
[4]. Note also that this condition ensures that all the higher-dimensional distributions
are also non-Gaussian.
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