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Abstract. On a group, constant functions and left translations
by group elements map left cosets into left cosets for every sub-
group. We determine classes of groups for which this property
of preserving cosets characterizes constants and translations, e.g.,
finite non-abelian groups that are perfect, partitioned, primitive,
or generated by elements of prime order p. For certain classes of
groups we construct other coset-preserving functions, in particu-
lar, power endomorphisms and functions defined in terms of the
subgroup lattice.
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1. Introduction

In this paper we investigate interactions of the structure of a group
with the structure of its subgroup lattice. It is a longstanding problem
whether every finite lattice is isomorphic to an interval in the subgroup
lattice for some finite group. Various approaches, e.g., by Baddeley
and Lucchini [2] and most recently by Aschbacher [1], were aimed at
showing that the answer is negative. Still the problem remains open.
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The question originates from general algebraic structures by the fol-
lowing result of Pálfy and Pudlák [10]: if all finite lattices are repre-
sentable as congruence lattices of finite algebras, then all finite lattices
occur as intervals in subgroup lattices of finite groups (equivalently,
as congruence lattices of finite G-sets). Recall that for a permutation
group G on a set Ω, the algebra 〈Ω, G〉 is called a G-set.

The result of Pálfy and Pudlák does not mean that every repre-
sentable finite lattice is the congruence lattice of a G-set. However for
certain lattices this stronger implication is true. In [13] Snow observed
that if a finite order polynomially complete lattice is isomorphic to a
congruence lattice of a finite algebra, then it is isomorphic to the con-
gruence lattice of a finite vector space or of a finite affine complete
G-set (see [7] for various concepts of completeness and [8] for a general
introduction to Universal Algebra). Here, for k ∈ N, an algebra A is
called k-affine complete if every k-ary congruence preserving function
on the universe ofA is a polynomial; A is affine complete if it is k-affine
complete for all k ∈ N. In this paper we start the investigation of affine
complete G-sets. Our goal is to obtain some qualitative understanding
of how common they are and to obtain information on the structure of
their congruence lattices.

From Pálfy’s classification of minimal algebras [9] we obtain:

Theorem 1. Let G be a finite non-trivial permutation group on a set
Ω. Assume that 〈Ω, G〉 is 1-affine complete. Then

(1) 〈Ω, G〉 is affine complete or
(2) |Ω| = 2 or
(3) there exists a vector space V over some field F such that 〈Ω, G〉

is isomorphic to

〈V, {V → V, x 7→ fx+ v | f ∈ F, f 6= 0, v ∈ V }〉 .
By Theorem 1 we may restrict ourselves to the investigation of 1-

affine complete G-sets. In this paper we will consider G-sets with the
regular action, i.e., Ω = G. Therefore we set the following definitions.

For a group G we call a function f : G → G compatible if for every
subgroup H ≤ G, and for every elements x, y ∈ G from the same left
coset of H (i.e., xH = yH) we have that f(x) and f(y) are in the same
left coset of H (i.e., f(x)H = f(y)H). Let us note that for every g ∈ G

• the constant function, G → G, x 7→ g,
• the left translation, G → G, x 7→ gx,

are compatible on G.
If every compatible function f : G → G is either constant or a

left translation, then we say G is translation complete or t-complete
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for short. It is easy to see that the compatible functions on G are
exactly the unary congruence preserving functions on the regular G-
set; moreover G is t-complete if and only if the regular G-set is 1-affine
complete. Nevertheless one can consider t-completeness as a notion in
pure group theory, and we use this perspective for the remainder of
the paper. Our main reference for definitions and standard results on
group theory is [11].

The more subgroups a group has, the more restrictions a compatible
function has to satisfy. Hence groups with ‘many’ subgroups should
have ‘few’ compatible functions apart from constants and translations.
In fact we prove the following in Section 4.
Theorem 2. All of the following groups are t-complete:

(1) groups generated by involutions,
(2) finite groups all of whose minimal normal subgroups are non-

abelian,
(3) the free group on 2 or more generators,
(4) finite perfect groups,
(5) linear groups G with SL(n, F ) ≤ G ≤ GL(n, F ) for a field F

and n > 1,
(6) finite semidirect products AoB where A is elementary abelian

and B acts as non-trivial group of automorphisms on A,
(7) finite non-abelian primitive permutation groups,
(8) finite non-abelian groups that have a trivial Frattini subgroup

and do not split into a direct product of non-trivial subgroups of
coprime order,

(9) finite non-abelian groups that are generated by elements of
prime order and do not split into a direct product of non-trivial
subgroups of coprime order,

(10) finite non-abelian partitioned groups.
From this theorem it seems that t-complete groups are quite abun-

dant. By (1) all Coxeter groups are t-complete, in particular elemen-
tary abelian 2-groups, generalized dihedral groups, and all symmet-
ric groups Sn for n ∈ N are t-complete. Alternating groups An for
n ≥ 4 are t-complete by (7). Every finite non-abelian simple group is
t-complete by (2). For every field F and n > 1 we have that PSL(n, F )
is t-complete (PSL(2,Z2) ∼= S3, PSL(2,Z3) ∼= A4, otherwise PSL(n, F )
is simple and generated by involutions). By (9) all finite non-abelian
groups of exponent p are t-complete. Frobenius groups are t-complete
by (10).

In Section 4.1 we present some expanding properties for t-complete
groups. Items (1) and (2) of Theorem 2 are proved in Section 4.2.
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Items (3), (4), and (5) are shown in Section 4.3. In Section 4.4 we inves-
tigate basic properties of compatible functions on partitioned groups.
In Section 4.5 we investigate semidirect products and prove items (6)
and (7). Theorem 36 generalizes item (8). In Section 4.6 we prove
Theorem 38, which generalizes item (9). Then in Section 4.7 we revisit
partitioned groups and prove item (10). We finish our discussion by
investigating maximal t-complete quotients of a group in Section 4.8
and maximal t-complete subgroups of a group in Section 4.9 .

To show that a groupG is not t-complete we have to find a non-trivial
compatible function on it. First we investigate some general properties
of compatible functions in Section 2. Then we consider power functions
and construct functions for groups with particular subgroup lattices in
Section 3. Thus we obtain the following.

Theorem 3. None of the following groups are t-complete:

(1) abelian groups of exponent greater than 2,
(2) Hamiltonian groups,
(3) powerful p-groups of exponent greater than 2,
(4) non-abelian groups, whose index of the center is finite and not

divisible by the exponent of the group,
(5) groups G with proper non-trivial subgroups A,B such that every

subgroup of G contains A or is contained in B,
(6) direct products of two non-trivial coprime torsion groups.

Hence the smallest non-abelian group that is not t-complete is the
quaternion group with 8 elements.

Items (1), (2), (3), and (4) of Theorem 3 are proved in Section 3.1.
We show (5) and (6) in Section 3.2.

The subgroups of a group G form a lattice Sub(G) with the opera-
tions A∧B = A∩B and A∨B = 〈A∪B〉. In Section 3.2 we investigate
connections between the properties of this lattice and t-completeness.
Recall that a group with distributive subgroup lattice is locally cyclic
by a result of Ore [12, Theorem 1.2.3]. Thus by item (1) of Theorem 2
and item (1) of Theorem 3, Z2 is the only non-trivial t-complete group
with distributive subgroup lattice.

In general, whether or not a group is t-complete is not determined
by its subgroup lattice alone. The subgroup lattices of S3 and (Z3)

2

are isomorphic but S3 is t-complete by item (1) of Theorem 2 while
(Z3)

2 is not t-complete by item (1) of Theorem 3. Still, for non-abelian
groups that are generated by their minimal subgroups or that have
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trivial Frattini subgroup we obtain the following characterization of t-
completeness in terms of subgroup lattices from items (8) and (9) of
Theorem 2 and item (6) of Theorem 3.

Corollary 4. Let G be a finite non-abelian group. Assume that the
join of all atoms in Sub(G) is G or that the intersection of all coatoms
in Sub(G) is 1. Then G is t-complete if and only if Sub(G) is not a
direct product of two non-trivial lattices.

Moreover, in Proposition 42 we observe that neither ‘t-completeness’
nor ‘not t-completeness’ is hereditary to subgroups, to normal sub-
groups, or to factor groups. We finish the paper by mentioning some
open problems in Section 5.

2. Compatible functions

Let us start by examining compatible functions. We present some
basic lemmas which are used later on in the paper. The first lemma
of the section tells us that for checking whether or not a group is
t-complete, we only need to consider compatible functions fixing the
identity element of the group:

Lemma 5. A group G is t-complete if and only if every compatible
function f on G with f(1) = 1 satisfies either f(G) = 1 or f = idG.

Proof. The ‘only if’ direction is immediate: if f is constant and f(1) =
1 then f(G) = 1; if f is a translation and f(1) = 1 then f = idG.

For the ‘if’ direction, let h be a compatible function on G. Then f :
G → G, x 7→ h(1)−1h(x), is compatible as well and satisfies f(1) = 1.
If f(G) = 1, then h is constant; if f = idG, then h is a translation by
h(1). ¤

From now on we mostly consider compatible functions fixing the
identity. By the following two lemmas compatibility is inherited by
subgroups and factor groups.

Lemma 6. Let f be compatible on a group G with f(1) = 1, and let
H ≤ G. Then f(H) ⊆ H, and the restriction f |H is compatible on H.

Proof. Straightforward. ¤
Lemma 7. Let G be a group with normal subgroup N , and let f be a
compatible function on G. Then

fN : G/N → G/N, xN 7→ f(x)N,

is compatible on G/N .

Proof. Straightforward. ¤



6 GÁBOR HORVÁTH, PETER MAYR, AND ANDRÁS PONGRÁCZ

We note that in general not every compatible function on a quotient
G/N is induced by a compatible function on G. Moreover, not every
compatible function on a subgroup H is the restriction of a compatible
function on G. For example, every compatible function on (Z3)

2 is of
the form x 7→ g + kx for some g ∈ (Z3)

2 and some k ∈ {0, 1, 2} as we
later see in Lemma 13. However on Z3 every function is compatible.

On products we can study the compatible functions componentwise:

Lemma 8. Let G be a semidirect product of a normal subgroup A and
a complement B. Let f be a compatible function on G with f(1) = 1.
Then f(ab) = f(a)f(b) for all a ∈ A, b ∈ B.

Proof. Let a ∈ A, b ∈ B. Then abB = aB yields f(ab)B = f(a)B.
Since A is normal, we have abA = aAb = Ab = bA. Hence f(ab)A =
f(b)A = Af(b). Thus

f(ab) ∈ f(a)B ∩ Af(b).

Since G is a semidirect product, every intersection of an A-coset and
a B-coset contains exactly 1 element. Since f(a)f(b) ∈ f(a)B ∩Af(b)
by Lemma 6, we obtain f(a)B ∩Af(b) = {f(a)f(b)} and the assertion
follows. ¤

3. Groups that are not t-complete

In this section we prove Theorem 3 by investigating properties that
prevent groups from being t-complete.

3.1. Power maps. On a group G a power map is a function f : G →
G, x 7→ xk, for some k ∈ Z. Note that every subgroup of G is invariant
under such functions and that f(1) = 1 holds. Power maps are not
always compatible, e.g., for G = S3, H = 〈(12)〉, x = (13), y = (123)
we have xH = yH but x2H 6= y2H. Nevertheless power maps preserve
cosets of normal subgroups by the following auxiliary result.

Lemma 9. Let G be a group, let k ∈ Z, and let f : G → G, x 7→ xk.
(1) If N is a normal subgroup of G, then xN = yN implies

f(x)N = f(y)N for all x, y ∈ G.
(2) If f is a homomorphism, then f is compatible.

Proof. Assertion (1) is immediate in the factor group G/N .
For proving (2), let H ≤ G, and let x, y ∈ G be such that xH = yH.

Then y−1x ∈ H implies (y−1x)k ∈ H. Since (y−1x)k = y−kxk by the
homomorphism property, we have y−kxk ∈ H. Thus f(x)H = xkH =
ykH = f(y)H. ¤
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By (1) of the previous lemma power maps on abelian groups are
compatible. In fact we have the following.

Corollary 10. Let G be a t-complete group in which every subgroup
is normal. Then x2 = 1 for all x ∈ G, and consequently G is an
elementary abelian 2-group.

Proof. By (1) of Lemma 9 the function f : G → G, x 7→ x2, is com-
patible on G. Since f(1) = 1, either f is constant or the identity on G.
Hence f(G) = 1 or G = 1, which proves the result. ¤

Non-abelian groups in which every subgroup is normal are called
Hamiltonian groups. Thus we have proved items (1) and (2) of Theo-
rem 3. Later we see that elementary abelian 2-groups are t-complete,
as these groups are generated by involutions (Corollary 21). This
completes the characterization of t-complete abelian and Hamiltonian
groups.

We thank the referee for calling our attention to the notion of power-
ful groups, which allowed us to obtain item (3) of Theorem 3. Let p be
a prime. A finite p-group is powerful if p is odd and G′ ⊆ 〈xp | x ∈ G〉
or if p = 2 and G′ ⊆ 〈x4 | x ∈ G〉.
Corollary 11. Let G be a t-complete finite powerful p-group. Then G
is an elementary abelian 2-group.

Proof. Assume expG = pe for e ∈ N. By [3, p. 45, Exercise 2.5] the
function f : G → G, x 7→ xpe−1 , is an endomorphism. Then f is
compatible on G by (2) of Lemma 9. Since f(1) = 1 and f(G) 6= 1,
f is the identity on G. Hence expG = p and G′ = 1. As an abelian
t-complete group, G is an elementary abelian 2-group by Corollary 10.

¤
As example we mention that for an odd prime p every finite meta-

cyclic p-group G with a cylic normal subgroup N and cyclic quotient
G/N is powerful (note that G/Np is abelian). Hence by Corollary 11
none of these groups are t-complete.

Let us recall, that the transfer to the center of a non-abelian group
is always a power endomorphism [11, 10.1.3]. Combining this fact
with (2) of Lemma 9, we obtain that t-complete groups have ‘small’
centers proving item (4) of Theorem 3:

Corollary 12. Let G be a non-abelian t-complete group whose center
Z(G) has finite index in G. Then the exponent of G divides |G : Z(G)|.
Proof. The transfer into the center is a power endomorphism of the
form t : G → G, x 7→ x|G:Z(G)|, by [11, 10.1.3]. Then t is compatible on
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G by Lemma 9. As G 6= Z(G), we have t 6= idG, thus t(G) = 1. Hence
expG divides |G : Z (G)|. ¤

The abelian groups G for which all compatible functions are of the
form G → G, x 7→ gxk, for some g ∈ G, k ∈ Z were determined by
Kaarli in [6]. These are exactly the 1-affine complete abelian groups.
For the convenience of the reader we give the proof of the following
elementary fact which we use when considering direct products in Sec-
tion 4.1 and groups generated by elements of order p in Section 4.2.

Lemma 13. Let A,B be isomorphic cyclic groups. Then every com-
patible function f on A×B with f(1) = 1 is a power map.

Proof. Let a, b be generators of A,B, respectively. Let G = A × B.
Let f be a compatible function G with f(1) = 1, and let y ∈ B.
By Lemma 6 there exist integers k, l such that f(a) = ak, f(y) = yl.
Then Lemma 8 implies f(ay) = akyl. First assume |A| = |B| = n for
some n ∈ N. Since f(ay) is in the subgroup 〈ay〉, we obtain l ≡ k
(mod ord(y)). If A,B are infinite cyclic groups, then f(ay) ∈ 〈ay〉
yields l = k. In both cases we have f(y) = yk for all y ∈ B, in
particular f(b) = bk.

By switching coordinates the same argument now yields f(x) = xk

for all x ∈ A. For x ∈ A, y ∈ B, Lemma 8 then implies f(xy) =

f(x)f(y) = xkyk = (xy)k. Hence f is the k-th power map on G. ¤
3.2. Subgroup lattice. In this section we determine certain lattices
that cannot be isomorphic to subgroup lattices of t-complete groups.
The following result, which proves item (5) of Theorem 3, is due to
E. Aichinger (private communication).

Proposition 14. Let G be a group with proper, non-trivial subgroups
A,B such that for all H ≤ G either A ≤ H or H ≤ B. Let a ∈ A be
an element such that a 6= 1. Then

(1) the function

f : G → G, x 7→
{

1, if x ∈ B,
a, else,

is compatible, and
(2) the group G is not t-complete.

Proof. Let H ≤ G, and let x, y ∈ G be such that xH = yH. If A ≤ H,
then f(G) ⊆ A yields f(x)H = H = f(y)H. If H ≤ B, then xH = yH
yields xB = yB and f(x) = f(y). Hence f is compatible.

Since B is non-trivial, the function f is neither constant nor a trans-
lation, which proves the second assertion. ¤
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We finish Section 3.2 with an observation about the case when
the subgroup lattice of a group G is a direct product of two non-
trivial lattices. We say that torsion groups A,B are coprime if
gcd(ord(a), ord(b)) = 1 for all a ∈ A, b ∈ B. Groups whose subgroup
lattices are direct products of two lattices were characterized as direct
products of coprime torsion groups in [14]. By the next result they
have non-trivial compatible functions as well.

Proposition 15. The following are equivalent for a group G:
(1) The subgroup lattice of G is a direct product of two non-trivial

lattices.
(2) G is a direct product of non-trivial coprime torsion groups A

and B.
(3) G is generated by proper, non-trivial subgroups A,B, and there

exists a compatible function f on G such that f(A) = 1 and
f |B = idB.

Proof. (1)⇔(2) is [14, Lemma 3] (or see [12, Lemma 1.6.4, Theorem
1.6.5]).

(2)⇒(3): Let A,B be torsion groups such that gcd(ord(a), ord(b)) =
1 for all a ∈ A, b ∈ B. For every H ≤ A × B there exist C ≤ A and
D ≤ B such that H = C ×D by [12, Lemma 1.6.4]. It is easy to check
that

f : A×B → A×B, (x, y) 7→ (1A, y),

is compatible on A × B. Indeed, let (a1, b1)H = (a2, b2)H. Then
b1D = b2D and consequently f ((a1, b1))H = (1, b1)H = (1, b2)H =
f ((a2, b2))H.

(3)⇒(2): Let 1 < A,B < G, and let f : G → G be a compatible
function such that f(A) = 1, f |B = idB. Let a ∈ A, a 6= 1, and
b ∈ B, b 6= 1. Since b〈b−1a〉 = a〈b−1a〉, we have b〈b−1a〉 = f(b)〈b−1a〉 =
f(a)〈b−1a〉 = 〈b−1a〉. Hence b ∈ 〈b−1a〉 and consequently a = b · b−1a ∈
〈b−1a〉. Since a, b are both in the cyclic group generated by b−1a, they
commute. Then 〈a〉〈b〉 is cyclic with 〈a〉 ∩ 〈b〉 = 1 since f(A) = 1,
f |B = idB. Now 〈b−1a〉 cannot be infinite, as any two non-trivial
subgroups of the group Z meet non-trivially. Hence 〈b−1a〉 is finite,
and the orders of a and b are finite and coprime. ¤

Proposition 15 immediately implies (6) of Theorem 3. Thus the proof
of Theorem 3 is complete.

4. t-complete groups

In this section we present some examples for t-complete groups and
prove Theorem 2.
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4.1. Expanding properties. First we investigate how one can con-
struct t-complete groups from smaller t-complete groups. Let us start
by checking direct products.

Proposition 16. Let A,B be groups of finite exponents such that
exp(A) divides exp(B).

(1) Let f be a compatible function on A × B with f(1) = 1. Then
there exists k ∈ Z such that for all x ∈ A × B whose order
divides exp(A) we have f(x) = xk.

(2) If B is t-complete, then A×B is t-complete.

Proof. First we prove (1). Let G = A × B, and let f be a compatible
function on G with f(1) = 1. Let q be a maximal prime power dividing
exp(A). Let a ∈ A, b ∈ B be of order q: ord(b) = ord(a) = q. Consider
the subgroup 〈a, b〉. Now a and b commute, and both a and b generate
a cyclic group of order q. By Lemma 13 there exists an integer kq, such
that f(x) = xkq for every x ∈ 〈a, b〉.

Let c ∈ A such that ord(c) divides q. We claim that

(4.1) f(c) = ckq .

Note that c and bord(b)/ord(c) commute and both generate a cyclic
group of order ord(c). Thus by Lemma 13, f is a power map on
〈c, bord(b)/ord(c)〉. Since f(bord(b)/ord(c)) = bkqord(b)/ord(c), we have f(x) =
xkq for all x ∈ 〈c, bord(b)/ord(c)〉. Hence (4.1) is proved.

Now let d ∈ B such that ord(d) divides q. We consider the subgroup
generated by d and aord(a)/ord(d). Then the same argument as above
yields that f(d) = dkq .

From Lemma 8 we can conclude that f(x) = xkq for every x ∈ G,
whose order divides q. By the Chinese Remainder Theorem, we have
k ∈ Z such that k ≡ kq (mod q) for every maximal prime power q that
divides exp(A). Finally let y ∈ G such that ord(y) divides exp(A).
Then y is a product of elements of prime power order, which are mapped
to their k-th power by f . By Lemma 8 we obtain f(y) = yk.

For (2) let f be a compatible function on A×B with f(1) = 1. Thus
f is compatible on B by Lemma 7, and we have either f(B) = 1 or
f |B = idB. By (1) we have f(A) = 1 if f(B) = 1, or we have f |A = idA

if f |B = idB. Now the result follows from Lemma 8. ¤

We continue with showing that t-completeness can extend from a
subgroup under certain circumstances. We use Lemma 17 for exam-
ple to prove that non-abelian linear groups and non-abelian primitive
permutation groups are t-complete.
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Lemma 17. Let G be a group, let N ≤ G, and let H = {H ≤
G | NH = G}. Assume that

⋂H = 1 and that every compatible
function f on G with f(1) = 1 satisfies either f(N) = 1 or f |N = idN .
Then G is t-complete.

Proof. Let f be a compatible function on G with f(1) = 1. For x ∈ G
and H ∈ H, we have a suitable h ∈ H such that xh ∈ N . Since
xH = xhH, we get

(4.2) f(x)H = f(xh)H.

If f(N) = 1, then f(x) ∈ H by (4.2). Hence f(x) ∈ ⋂H = 1 and
f(G) = 1. If f |N = idN , then f(xh) = xh yields f(x) ∈ xH by (4.2).
Hence f(x) ∈ x

⋂H = {x} and f = idG. ¤
4.2. Generating by subgroups. We continue our investigation with
the situation when t-complete subgroups generate a group. The main
result in this section is Theorem 20, saying that a group generated by t-
complete subgroups is t-complete unless it is a direct product of coprime
torsion groups. This fact has many corollaries, such as items (1) and
(2) of Theorem 2.

First we prove two lemmas about the connection of subgroups and
compatible functions.

Lemma 18. Let G be a group, let A ≤ G, such that for every compat-
ible function h on G with h(1) = 1 either h(A) = 1 or h|A = idA. Let
f be a compatible function on G, and let g ∈ G. Then either

(1) f(gA) = f(g) or
(2) f(ga) = f(g)a for all a ∈ A.

Proof. As a composition of compatible functions, h : G → G, x 7→
f(g)−1f(gx), is compatible on G with h(1) = 1. If h(A) = 1, then
f(gA) = f(g). If h(a) = a for every a ∈ A, then f(ga) = f(g)a. ¤
Lemma 19. Let G be a group, and let H be a set of subgroups of G
such that 〈⋃H〉 = G. Assume that for every compatible function f
on G with f(1) = 1 either f(Ag) = 1 for all A ∈ H and g ∈ G or
f |Ag = idAg for all A ∈ H and g ∈ G. Then G is t-complete

Proof. Let f be a compatible function on G with f(1) = 1. First
assume that f(Ag) = 1 for every A ∈ H and every g ∈ G. We prove
that

(4.3) ∀n ∈ N ∀u1, . . . , un ∈
⋃

H : f(u1 · · · un) = 1.

Seeking a contradiction let us suppose that we have a minimal n ∈
N with u1, . . . , un ∈ ⋃H such that f(u1 · · · un) 6= 1. Then n > 1.
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By Lemma 18 we have f(u1 · · · un) ∈ {f(u1 · · · un−1), f(u1 · · · un−1)un}.
Since f(u1 · · ·un−1) = 1 by the minimality of n, this yields

f(u1 · · · un) = un.

Since f(Aun) = 1 for all A ∈ H, we obtain similarly that

f(u1 · · ·un) = f(u1 · · · un−2unun−1
un) = un−1

un .

Then f(u1 · · · un) = un = un−1
un implies un = un−1. Let v = un−1

2.
Then v is in

⋃H. Now f(u1 · · · un) = f(u1 · · ·un−2v) = 1 by the
minimality of n. This contradiction proves (4.3).

Next we assume that f |Ag = idAg for every A ∈ H and every g ∈ G.
We prove that

(4.4) ∀n ∈ N ∀u1, . . . , un ∈
⋃

H : f(u1 · · ·un) = u1 · · · un.

Again, seeking a contradiction we suppose that we have a min-
imal n ∈ N with u1, . . . , un ∈ ⋃H such that f(u1 · · · un) 6=
u1 · · · un. Then n > 1. By Lemma 18 we have f(u1 · · · un) ∈
{f(u1 · · · un−1), f(u1 · · · un−1)un}. By the minimality of n we have
f (u1 . . . un−1) = u1 . . . un−1, thus

f(u1 · · · un) = u1 · · ·un−1.

Similarly, as f |Aun = idAun for all A ∈ H, we have

f(u1 · · · un) = f(u1 · · · un−2unun−1
un) = u1 · · · un−2un.

Now u1 · · ·un−1 = u1 · · · un−2un implies un = un−1, and the proof is
completed as in the previous case: v = u2

n−1 is in
⋃H, and

f (u1 · · · un) = f
(
u1 · · · un−2v

2
)
= u1 · · · un−2v

2 = u1 · · ·un

by the minimality of n. The contradiction proves (4.4) and finishes the
proof of the lemma. ¤

Now we are ready to prove the most important theorem of this sec-
tion.

Theorem 20. Let G be a group which is generated by t-complete sub-
groups A and B. Then exactly one of the following holds:

(1) G is t-complete, or
(2) A and B are commuting, coprime torsion groups and

G = A×B.

Proof. Let f be a compatible function on G with f(1) = 1. Then
the restrictions f |A, f |B are compatible by Lemma 6, and hence they
are either the constant or the identity map. If f |A = idA, f(B) = 1
or if f(A) = 1, f |B = idB, then A and B are commuting, coprime
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torsion groups by Proposition 15, (3)⇒(2). Otherwise we have either
f(A) = 1, f(B) = 1 or f |A = idA, f |B = idB.

First let us assume that f(A) = 1, f(B) = 1. For any g ∈ G the
group Ag is t-complete, moreover A and Ag are not coprime torsion
groups. Hence f(Ag) = 1 by Proposition 15. Similarly f(Bg) = 1.
Thus G is t-complete by Lemma 19.

If f |A = idA, f |B = idB, Proposition 15 yields by the same reasoning
as above that f |Ag = idAg , fBg = idBg for all g ∈ G. Again G is
t-complete by Lemma 19. ¤

Item (1) of Theorem 2 is an immediate corollary.

Corollary 21. Every group G which is generated by involutions is t-
complete.

Proof. Since all four functions on Z2 are either constant or left trans-
lations, Z2 is t-complete. Let H be the set of subgroups of size 2 of G.
By Proposition 15, (3)⇒(2), every compatible function f on G with
f(1) = 1 satisfies either f(A) = 1 for all A ∈ H or f |A = idA for all
A ∈ H. Since H is closed under conjugation by any g ∈ G, Lemma 19
yields that G is t-complete. ¤

The following groups are generated by involutions (see e.g., [11]) and
consequently t-complete by Corollary 21:

(1) for any abelian A, the generalized dihedral group A o Z2 with
Z2 acting on A by inverting elements,

(2) finite non-abelian simple groups (Odd-order Theorem [4]),
(3) and generally all Coxeter groups, i.e., groups with generators

r1, . . . , rk satisfying the relations

(rirj)
mij = 1

where mii = 1 and mij ≥ 2 for all distinct i, j ∈ {1, . . . , k}.
The Odd-order Theorem [4] together with Lemma 17 has item (2) of

Theorem 2 as a consequence:

Corollary 22. Let G be a finite group all of whose minimal normal
subgroups are non-abelian. Then G is t-complete.

Proof. Let N be the product of all minimal normal subgroups of G.
From the assumption it follows that

(4.5) N is a direct product of simple non-abelian groups.

Thus N is t-complete by Corollary 21.
Assume we have g ∈ G \N . Let U = 〈g〉. Let K = UN . We claim

that K satisfies the assumptions of Lemma 17 with H =
{
Uk | k ∈ K

}
.
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For k ∈ K we have UkN = K. Let H =
⋂

k∈K
Uk. Then H is a cyclic

normal subgroup of K. By (4.5) N has no abelian normal subgroups
and in particular H ∩N = 1. Thus [H,N ] = 1. But the centralizer of
N in G is trivial. Hence H = 1 and K is t-complete by Lemma 17.

Now let f be compatible on G with f(1) = 1. Since N is t-complete,
we have either f(N) = 1 or f |N = idN . Since K is t-complete, f(N) =
1 implies f(g) = 1 and f |N = idN implies f(g) = g. As we chose
g ∈ G \N arbitrarily, we obtain either f(G) = 1 or f = idG. ¤

Since Zp is not t-complete for any odd prime p, there is no immediate
generalization of Corollary 21 for groups generated by elements of order
p. Nevertheless, we can already prove part of item (9) of Theorem 2.
For that the following easy observation will be useful.

Lemma 23. Let p be a prime, let G be a nilpotent p-group which
contains two distinct subgroups of size p, and let f be a compatible
function on G with f(1) = 1. Then there exists an integer k such that
for all x ∈ G with xp = 1 we have f(x) = xk.

Proof. Let c ∈ Z(G) be an element of order p. Since f(c) ∈ 〈c〉, there
exists an integer k such that f(c) = ck. Let a ∈ G \ 〈c〉 have order
p. Note that such an element exists by assumption. Then 〈c, a〉 is
isomorphic to (Zp)

2, and f is a power map on 〈c, a〉 by Lemma 13.
Hence f(x) = xk for every x ∈ 〈c, a〉. In particular f maps every
element in 〈c〉 to its k-th power and every element of order p outside
of 〈c〉 to its k-th power. ¤
Corollary 24. Let G be a non-abelian, nilpotent p-group that is gen-
erated by elements of prime order p. Then G is t-complete.

Proof. We note that if p = 2, then the statement follows from Corol-
lary 21. Let f be a compatible function on G with f(1) = 1. By
Lemma 23 we have an integer k such that

(4.6) ∀x ∈ G : xp = 1 ⇒ f(x) = xk.

In order to show k ∈ {0, 1} we consider a certain quotient of G. Let
N = [[G,G], G] be the third term in the lower central series G >
[G,G] > [[G,G], G] ≥ . . . of G. We write Ḡ = G/N and x̄ = xN for
x ∈ G. Note that Ḡ′ = G′/N is central in Ḡ, and it is non-trivial
since G is non-abelian. Moreover we have a, b ∈ G of order p such that
[b̄, ā] 6= 1.

Let fN : G/N → G/N be the function induced by f on G/N :
fN (xN) = f (x)N for every x ∈ G. Recall that fN is well-defined
and compatible by Lemma 7. Let Ā = 〈ā〉Ḡ′. Since Ḡ′ is central, Ā
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is an abelian normal subgroup of Ḡ. In particular Ā ∩ 〈b̄〉 = 1, hence
Ā〈b̄〉 is a semidirect product. Then Lemma 8 yields

fN(āb̄) = fN(ā)fN(b̄) = ākb̄k.

Further we have r ∈ N0 such that

fN(āb̄) = (āb̄)r = [b̄, ā]r(r−1)/2ārb̄r.

For the second equality we used Ḡ′ ≤ Z(Ḡ). Since āk, [b̄, ā]r(r−1)/2ār ∈
Ā, we obtain b̄r = b̄k. Hence r ≡ k (mod p) and ār = āk as well. Now
[b̄, ā]r(r−1)/2 = 1 implies that p divides either r or r−1. Thus k ∈ {0, 1}.
Finally (4.6) together with Lemma 19 yields f(G) = 1 or f = idG. ¤

Note that in particular the following p-groups are generated by ele-
ments of order p and hence t-complete by Corollary 24:

(1) non-abelian nilpotent groups of exponent p,
(2) non-abelian semidirect products (Zp)

n o Zp.

4.3. Lifting. We investigate when the t-completeness of a group fol-
lows from the t-completeness of its quotients. First we note that a
subdirect product of two t-complete groups, which is not direct, is t-
complete. We later use Theorem 25 to prove item (8) of Theorem 2.

Theorem 25. Let G be a group with normal subgroups A,B such that
A ∩ B = 1 and AB 6= G. If G/A and G/B are t-complete, then G is
t-complete.

Proof. Let f be a compatible function on G with f(1) = 1. For
every normal subgroup N of G the induced function fN : G/N →
G/N, xN 7→ f(x)N , is compatible on G/N by Lemma 7. By assump-
tion, fA and fB are either constant or the identity on G/A and on G/B,
respectively. Since AB 6= G the function f induces either a constant
or the identity on G/(AB) as well.

If fAB is constant modulo AB, then both fA and fB are constant
modulo A and modulo B, respectively. Thus f(G) ⊆ A and f(G) ⊆ B
which implies f(G) ⊆ A ∩B = 1. Then f is constant on G.

If f induces the identity on G/(AB), then fA is the identity on
G/A and fB is the identity on G/B. For x ∈ G we have f(x) ∈
f(xA) ∩ f(xB) ⊆ xA ∩ xB = {x}. Thus f = idG. ¤

We continue by proving item (3) of Theorem 2.

Corollary 26. A free group on at least 2 generators is t-complete.
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Proof. Let G be free over some subset X of G with |X| > 1. Let f be
a compatible function on G with f(1) = 1. We will prove that
(4.7)
either f(〈a〉g) = 1 ∀a ∈ X∀g ∈ G or f |〈a〉g = id〈a〉g ∀a ∈ X∀g ∈ G.

Let N be the normal subgroup of G that is generated by {a2 | a ∈ X}.
Since G/N is generated by involutions, it is t-complete by Corollary 21.
Then the induced function fN : G/N → G/N, xN 7→ f(x)N, is com-
patible on G/N by Lemma 7. So fN is either constant or the identity
on G/N . Assume that f(G) ⊆ N . Let a, b ∈ X with a 6= b, and
let H = 〈a, b〉. Then f(ab) ∈ 〈ab〉 ∩ N = 1 yields f(ab) = 1. We
note that f induces a power map on H/H ′ ∼= Z2 by Lemma 13. So
f(ab) = 1 implies f(a) ∈ 〈a〉 ∩ H ′ = 1. Thus f(a) = 1. Similarly,
we obtain f(〈a〉g) = 1 for all g ∈ G. If fN is the identity on G/N ,
then f |〈a〉g = id〈a〉g for all g ∈ G follows in the same fashion. This
proves (4.7). Now Lemma 19 yields that G is t-complete. ¤

The following lemma is used for proving items (4) and (5) of Theo-
rem 2.

Lemma 27. Let G be a group, let N be a normal subgroup of G, and
let H = {H ≤ G | N ∩ H = 1}. Assume that 〈⋃H〉 = G and that
G/N is t-complete. Then G is t-complete

Proof. Let f be a compatible function on G with f(1) = 1. Then the
induced function fN : G/N → G/N , xN 7→ f(x)N , is compatible on
G/N by Lemma 7. By assumption, fN is either constant or the identity
on G/N .

If fN is constant, then f(G) ⊆ N and

f(H) ⊆ H ∩N = 1 for all H ∈ H.

If fN is the identity on G/N , then for all H ∈ H, h ∈ H we have
f(h) ⊆ H ∩ hN = {h}. Hence

f |H = idH for all H ∈ H.

Since H is closed under conjugation by any g ∈ G, Lemma 19 yields
that G is t-complete. ¤

Recall that a group is perfect if it is equal to its derived subgroup.
Item (4) of Theorem 2 is now a consequence of the previous Lemma 27
and of Corollary 22:

Corollary 28. Let G be a finite perfect group. Then G is t-complete.
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Proof. We prove the statement by induction on the size of G. If all the
minimal normal subgroups of G are non-abelian, then G is t-complete
by Corollary 22.

Now let us assume that N is an abelian minimal normal subgroup of
G. Then N is an elementary abelian p-group for some prime p. Let M
be the set of cyclic subgroups of G whose orders are coprime to p. Then
M = 〈⋃M〉 is normal in G, and G/M is a finite p-group. Since every
quotient of a perfect group is perfect, this implies G = M . Hence G
is generated by subgroups which intersect with N trivially. Since G/N
is t-complete by the induction assumption, Lemma 27 yields that G is
t-complete as well. ¤

As further consequence of Lemma 27 we obtain item (5) of Theo-
rem 2:

Corollary 29. For n > 1 and for a field F , every group G with
SL(n, F ) ≤ G ≤ GL(n, F ) is t-complete.

Proof. We note that SL(2,Z2) = GL(2,Z2) ∼= S3 is generated by in-
volutions and hence t-complete by Corollary 21. In the following we
assume that n > 2 or |F | > 2. Let S = SL(n, F ), and let Z = Z(S).
We claim that

(4.8) S/Z is t-complete.

Note that SL(2,Z3)/Z ∼= A4 is t-complete by Lemma 17: the Klein
4-group NEA4 is an elementary abelian 2-group and hence t-complete.
Moreover the Sylow 3-subgroups of A4 are complements to N and their
intersection is trivial. Assume that n > 2 or |F | > 3. We show that
S/Z is generated by involutions. We denote the block diagonal matrix
with square matrices A1, . . . , Ak along the diagonal and 0 elsewhere by
diag(A1, . . . , Ak). Define an n× n-matrix

s =

{
diag(( 0 −1

1 0 ) , 1, . . . , 1) if n = 2 or F has characteristic 2,
diag(−1,−1, 1, . . . , 1) otherwise.

Here s ∈ S \Z and s2 ∈ Z. Then the conjugates of sZ are involutions,
which generate a normal subgroup of S/Z. Since S/Z is simple [11,
3.2.9], this implies that S/Z is generated by involutions. So (4.8) follows
from Corollary 21.

Next we show that

(4.9) S is t-complete.

For i, j ∈ {1, . . . , n} with i 6= j, let eij denote the matrix with 1 in the
(i, j)-th position and 0 everywhere else. For a ∈ F \ {0} a matrix of
the form t = 1+ aeij is called a transvection. Note that every power of
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a transvection is either a transvection or 1. In particular 〈t〉 ∩ Z = 1
for every transvection t ∈ S. Since S is generated by its transvections
by [11, 3.2.10], Lemma 27 implies that S is t-complete.

Finally we note that for every subgroup G of GL(n, F ) that contains
S, there exists a subgroup H of the multiplicative group of F (the
determinants of the elements of G) such that

G = S{diag(h, 1, . . . , 1) | h ∈ H} = S{diag(1, . . . , 1, h) | h ∈ H}.
Since S is t-complete by (4.9) and has two complements in G which
intersect trivially, Lemma 17 yields that G is t-complete. ¤

4.4. Partitioned groups. A group G is partitioned by a set H of
proper subgroups of G if every x ∈ G \ {1} is contained in exactly
one H ∈ H. For an overview and the complete classification of finite
partitioned groups we refer to [15].

Recall that a Frobenius group is a transitive permutation group such
that no non-trivial element fixes more than one point and there exist
an element fixing exactly one point. The stabilizer of a point is called a
Frobenius complement, the elements not fixing any point together with
the identity element form the Frobenius kernel. The Frobenius kernel
is a normal subgroup in the Frobenius group (see, e.g., [11]). Every
Frobenius group is partitioned by the kernel and the conjugates of
the complement. Other examples for partitioned groups are p-groups
of exponent p. Non-abelian nilpotent p-groups of exponent p are t-
complete by Corollary 24. In this section we investigate some properties
of compatible functions on finite non-abelian partitioned groups. We
continue our investigation with semidirect products in Section 4.5, then
investigate groups generated by elements of prime order in Section 4.6.
In Section 4.7 we revisit partitioned groups and prove that all finite
non-abelian partitioned groups are t-complete. The following lemma is
crucial for the proof.

Lemma 30. Let G be a group that is partitioned by a set H of proper
subgroups, and let f be a compatible function on G such that f(1) = 1.

(1) If there exists an a ∈ G \ {1} with f(a) = 1, then f(G) = 1.
(2) If there exists an a ∈ G \ {1} with f(a) = a, then f = idG.

Proof. Let a ∈ A with A ∈ H such that f(a) = 1 or f(a) = a. Let
b ∈ B for some B ∈ H, B 6= A. Let C be the unique element in H such
that a−1b ∈ C. Note that C is neither A nor B. The intersection of
any two cosets corresponding to distinct subgroups in H has at most
one element since any two such subgroups meet in 1. Therefore f(b)
is uniquely determined by its B-coset B and its C-coset f(b)C. Since
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aC = bC, we have f(a)C = f(b)C. Thus

f(a)C ∩B = {f(b)}.
Case 1: If f(a) = 1, then f(a)C ∩ B = {1} and f(b) = 1. Hence

f(G \ A) = 1. When switching the role of a and b the same argument
yields f(G \B) = 1. Thus f(G) = 1.

Case 2: If f(a) = a, then f(a)C ∩ B = {b}. Hence f(b) = b and
f |G\A = idG\A. When switching the role of a and b the same argument
yields f |G\B = idG\B. Thus f = idG. ¤

Lemma 30 immediately yields that every partitioned group which
contains some t-complete subgroup (e.g., a subgroup of size 2) is t-
complete. Another consequence is the following.

Corollary 31. Let G be a partitioned group, and let f be a compatible
function on G. Then f is either constant or injective.

Proof. Assume we have distinct elements a, b in G such that f(a) =
f(b). Then h : G → G, x 7→ f(a)−1f(ax), is compatible and satisfies
h(1) = 1 = h(a−1b). Hence h(G) = 1 by Lemma 30. Now f(G) = f(a)
follows. ¤

4.5. Semidirect products. Next we show that the smallest non-
abelian partitioned groups are t-complete:

Lemma 32. Let G be a non-abelian group of size pq for distinct primes
p and q. Then G is t-complete.

Proof. Even though G is not commutative, we use + to denote the
group operation. We denote the identity element of G by 0. Without
loss of generality we may assume that G is generated by elements a, b
with ord(a) = p, ord(b) = q, and b+a− b = ra for some r ∈ {2, . . . , p−
1}. Note that rq ≡ 1 (mod p). Hence G is the semidirect product of
the normal subgroup 〈a〉 of order p and a complement 〈b〉 of order q
with q < p. In particular G is partitioned by 〈a〉 and all the conjugates
of 〈b〉.

Let f be a compatible function with f(0) = 0 and f(G) 6= 0. We
prove that f = idG. By Lemma 30 it suffices to show that f has a fixed
point in G \ {0}. To this end, let k ∈ {1, . . . , q − 1} and consider first
f(kb). Since f(kb) is contained in the subgroup 〈b〉 of size q and f is
not constant, by Corollary 31 there is a bijection α : {1, . . . , q − 1} →
{1, . . . , q − 1} such that

(4.10) f (kb) = α (k) b.
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Now consider f(a + kb). Then f(a + kb) is contained in the subgroup
〈a+kb〉 of size q. If f(a+kb) = 0, then f(G) = 0 by Lemma 30. Hence
we have some n ∈ {1, . . . , q − 1} (depending on k) such that
f(a+ kb) = n (a+ kb)

= a+ (kb+ a− kb) + . . .+ (k(n− 1)b+ a− k(n− 1)b) + knb

= a+ rka+ . . .+ rk(n−1)a+ knb,

thus

(4.11) f(a+ kb) =
rkn − 1

rk − 1
a+ knb.

By Lemma 8 we have f(a + kb) = f(a) + f(kb). This is the unique
way to split f(a+ kb) into a sum of an element of 〈a〉 and an element
of 〈b〉. Together with equations (4.10) and (4.11) we obtain

f(kb) = knb = α(k)b,

and thus

(4.12) f(a) =
rα(k) − 1

rk − 1
a.

If f(a) = 0, then f(G) = 0 by Lemma 30. Hence by (4.12), we havem ∈
{1, . . . , p− 1} such that rα(k)−1

rk−1
≡ m (mod p) for all k ∈ {1, . . . , q− 1}.

Thus
rα(k) − 1 ≡ m(rk − 1) (mod p) for all k ∈ {1, . . . , q − 1}.

Taking the sum of all these equations yields

(4.13)
q−1∑

k=1

(rα(k) − 1) ≡ m

q−1∑

k=1

(rk − 1) (mod p).

Since α : {1, . . . , q − 1} → {1, . . . , q − 1} is a bijection, (4.13) yields

(m− 1)

q−1∑

k=0

(rk − 1) ≡ 0 (mod p).

Together with
q−1∑
k=0

rk ≡ rq−1
r−1

≡ 0 (mod p) we obtain

(m− 1)(−q) ≡ 0 (mod p).

Since q < p, this means m ≡ 1 (mod p). From (4.12) we derive
f(a) = ma = a. Thus f has a non-trivial fixed point and f = idG

by Lemma 30. ¤
Corollary 33. Let p, q be primes, let n ∈ N. Let G = (Zp)

n o Zq be
non-abelian. Then G is t-complete.
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Proof. If p = q, then G is t-complete by Corollary 24. If n = 1, then
G is t-complete by Lemma 32. We assume p 6= q and n ≥ 2 in the
following. First we construct a subgroup H of G that is partitioned.
Let N be the normal Sylow p-subgroup of G, let B be a Sylow q-
subgroup. By the conjugation action of B on N , we may consider N
as module over the group algebra Zp[B].

As p 6= q, Maschke’s Theorem [11, 8.1.2] yields that N is a direct
sum of simple Zp[B]-modules. Since G is non-abelian, N is a faithful
Zp[B]-module. Hence N contains a non-trivial simple Zp[B]-module
M . Since every b ∈ B \{1} generates B, we have CM(b) = CM(B) = 1.
Consequently Bm ∩B = 1 for all m ∈ M \ {1}. Let H = MB, then H
is a Frobenius group with complement B and kernel M . In particular
H is partitioned; M and Bm for m ∈ M form a partition of H.

Let f be a compatible function f on G with f(1) = 1. We claim that

(4.14) f(H) = 1 or f |H = idH .

Assuming f(H) 6= 1, we want to show that f has a fixed point in
H \ {1}. Let a ∈ M \ {1}, b ∈ B \ {1}. Now ab〈ab〉 = b〈ab〉 implies
f(ab)〈ab〉 = f(b)〈ab〉. Hence

f(b)−1f(ab) ∈ 〈a〉b.
Since f(ab) = f(a)f(b) by Lemma 8, this yields f(a)f(b) ∈ 〈a〉b and
finally

(4.15) f(a)f(b)b
−1 ∈ 〈a〉.

If f(a) = 1, then f(H) = 1 by Lemma 30. Thus f(a) generates 〈a〉.
Consequently (4.15) implies that f(b)b−1 normalizes 〈a〉.

If f fixes b, then f = idH by Lemma 30. Assume f(b)b−1 6= 1.
Since f(b)b−1 generates B, we then have that b normalizes 〈a〉. Hence
〈a, b〉 = H is a non-abelian subgroup of size pq. Lemma 32 yields
f |H = idH , and (4.14) is proved.

Since f |N is a power map by Lemma 13, (4.14) implies f(N) =
1, f(B) = 1 or f |N = idN , f |B = idB. Now the result follows from
Lemma 8. ¤

Item (6) of Theorem 2 is an easy consequence of Corollary 33:

Corollary 34. Let G be a semidirect product of a normal elementary
abelian subgroup A and a complement B such that CB(A) = 1. Then
G is t-complete.

Proof. Let b ∈ B have prime order. Then A〈b〉 is non-abelian and
hence t-complete by Corollary 33. Every compatible function f on G
with f(1) = 1 restricts to a constant or the identity on A〈b〉. Since
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the intersection of the complements of A, namely
⋂

a∈ABa, is a normal
subgroup of G that intersects A trivially, we have

⋂
a∈ABa ⊆ CB(A) =

1. The result now follows from Lemma 17. ¤
Let us recall that a transitive permutation group G on a finite set Ω

is primitive if G preserves no non-trivial partition of Ω. Equivalently, a
transitive group G is primitive if and only if the stabilizer Gα of some
element α ∈ Ω is a maximal subgroup of G. Every 2-transitive group
is primitive.

We are now ready to prove (7) of Theorem 2.
Corollary 35. Let G be a finite non-abelian primitive permutation
group on Ω. Then G is t-complete.
Proof. If all minimal normal subgroups of G are non-abelian, then the
result follows from Corollary 22. Hence assume that G has an abelian
minimal normal subgroup N . Let α ∈ Ω. By [11, 7.2.6] G is a semidi-
rect product of N and the point stabilizer Gα. Further CGα(N) = 1.
Now Corollary 34 yields the result. ¤

Recall that every finite group G has quotients with primitive actions:
Let M be a maximal subgroup of G, and let MG =

⋂
g∈G M g be the

core of M in G. Then G/MG acts by left multiplication on the left
cosets of M in G. This action is faithful, and it is primitive because
the point stabilizer M/MG of M is a maximal subgroup in G/MG. By
Corollary 35 we have that G/MG is t-complete except if it is abelian,
that is, if M contains the derived subgroup G′ and thus M = MG has
prime index in G.

We can now prove (8) of Theorem 2.
Theorem 36. Let G be a finite group. Then G/Frat(G) splits into a
direct product of pairwise coprime subgroups that are elementary abelian
or t-complete.
Proof. We use induction on the size of G/Frat(G). Let N be a normal
subgroup of G that is minimal such that Frat(G) ≤ N and G/N is
t-complete. If N = G, then G/MG is simple and abelian for every
maximal subgroup M of G by Corollary 35. Hence every maximal
subgroup M of G contains G′, and G/Frat(G) is a direct product of
elementary abelian subgroups.

We assume N < G in the following. Let M be a maximal subgroup
of G. Assume gcd(|G : N |, |G : MG|) > 1. We claim
(4.16) N ⊆ M.

Case 1. If G/MG is abelian, then MG = M is a maximal subgroup
in G and either N ⊆ M or NMG = G. In the latter case G/(N ∩
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MG) ∼= G/N × G/MG is t-complete by Proposition 16. This implies
N ⊆ MG ⊆ M by the minimality of N .

Case 2. If G/MG is t-complete, then either NMG < G and G/(N ∩
MG) is t-complete by Theorem 25 or NMG = G and G/(N ∩MG) ∼=
G/N × G/MG is t-complete by Theorem 20. Thus G/(N ∩ MG) is
t-complete which yields that N ⊆ MG ⊆ M by the minimality of N .
Hence (4.16) is proved.

Let S be the set of maximal subgroups of G that do not contain N ,
and let

K =
⋂

S.

By (4.16) we have

Frat(G) = N ∩K and gcd(|G : N |, |G : K|) = 1.

By the induction hypothesis G/K splits into a direct product of pair-
wise coprime subgroups M1, . . . ,Mn that are elementary abelian or
t-complete. Hence

G/Frat(G) ∼= M1 × . . .×Mn ×G/N

with all factors pairwise coprime and elementary abelian or t-complete.
¤

4.6. Groups generated by elements of prime order. Corollary 33
helps us to omit the assumption of nilpotence in Corollary 24.

Lemma 37. Let p be a prime, and let G be a finite non-abelian group
that is generated by elements of order p. Then G is t-complete.

Proof. If p = 2, then the lemma follows from Corollary 21. We assume
that p > 2 in the following. If G is perfect, then the result follows from
Corollary 28. Assume that G/G′ is a non-trivial elementary abelian
p-group. Let f be a compatible function on G such that f(1) = 1.
First we prove that

(4.17) ∃A ≤ G, |A| = p,A ∩G′ = 1 : either f(A) = 1 or f |A = idA.

Case 1, G′ is perfect: Then G′ is t-complete by Corollary 28. Let P
be a Sylow p-subgroup of G. First assume P ∩ G′ 6= 1. Then we have
H ≤ P ∩ G′ with |H| = p such that either f(H) = 1 or f |H = idH .
Since P also contains a subgroup A of size p that is not contained in G′,
Lemma 23 yields (4.17). Next we assume P ∩G′ = 1. Since P cannot
be normal in G, we have an A ≤ P with |A| = p and g ∈ G′ such that
Ag 6⊆ P . Then A ∩ Ag = 1 and G′A is t-complete by Lemma 17. This
implies (4.17).

Case 2, G′′ < G′, G/G′′ is nilpotent: Now G/G′′ is a non-abelian
p-group generated by elements of order p. Hence G/G′′ is t-complete
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by Corollary 24. Let A ≤ G be any subgroup of order p such that
A ∩G′ = 1. Now (4.17) follows from Lemma 7.

Case 3, G′′ < G′, G/G′′ is not nilpotent: Since G/G′′ is solvable,
we then have normal subgroups B,C of G (two neighbouring elements
of a principal series) with G′′ ≤ B < C ≤ G′ such that C/B is a
minimal normal subgroup of G/B but is not central in G/B. Then
C/B ∼= (Zq)

n for some prime q and some n ∈ N. Further we have some
a ∈ G \ G′ with ord(a) = p that does not centralize C/B. Now U =
C〈a〉/B is isomorphic to a non-abelian semidirect product (Zq)

n oZp.
By Corollary 33, f induces either the constant function on U or the
identity. In particular (4.17) follows for A = 〈a〉. The proof of (4.17)
is complete.

First consider the case that we have A ≤ G with |A| = p and A∩G′ =
1 such that f |A = idA. For g ∈ G, a ∈ A we have agG′ = aG′, which
yields f(ag) ∈ Ag ∩ f(a)G′ = {ag}. Hence f acts as identity mapping
on every conjugate of A in G. On each Sylow p-subgroup P of G,
Lemma 23 yields that for all x ∈ P with xp = 1 we have f(x) = x.
Hence f maps every element of order p in G to itself. Thus f = idG by
Lemma 19.

Now let A ≤ G with |A| = p and A ∩ G′ = 1 such that f(A) = 1.
For g ∈ G we have f(AgG′) = f(AG′) ⊆ G′, which yields f(Ag) ⊆
Ag ∩ G′ = 1. Since every Sylow p-subgroup P of G contains some
conjugate of A in G, Lemma 23 yields that for all x ∈ P with xp = 1
we have f(x) = 1. Hence f maps every element of order p in G to 1.
Thus f(G) = 1 by Lemma 19. ¤

Lemma 37 together with Corollary 24 yields (9) of Theorem 2:

Theorem 38. Let G be a finite group that is generated by its elements
of prime order. Then G splits into a direct product of pairwise coprime
subgroups that are elementary abelian or t-complete.

Proof. We use induction on the size of G. For a prime p let

Ωp(G) = 〈x ∈ G | xp = 1〉.
By assumption

(4.18) G =
∏

{Ωp(G) | p prime} .
If p = 2, then Ωp(G) is t-complete by Corollary 21. If p is odd,
then Ωp(G) is either elementary abelian or non-abelian, t-complete by
Lemma 37.

Let N be a normal subgroup of G that is maximal such that N is t-
complete. If N = 1, then Ωp(G) is elementary abelian for every prime
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p. Moreover G splits into a direct product of the subgroups Ωp(G)
by (4.18).

We assume N > 1 in the following. First we show that

(4.19) Ωp(G) ∩N ∈ {1,Ωp(G)} for every prime p.

Let p be a prime. Assume that Ωp(G)∩N 6= 1. If Ωp(G) is t-complete,
then Ωp(G)N is t-complete by Theorem 20. Otherwise, if Ωp(G) is
elementary abelian, then every compatible function f on Ωp(G)N with
f(1) = 1 is constant or the identity on Ωp(G) by Ωp(G) ∩ N 6= 1 and
Lemma 13. Further Ωp(G)N is t-complete by Lemma 19. In any case
the maximality of N yields Ωp(G) ⊆ N . Hence (4.19) is proved.

Let S be the set of primes p such that Ωp(G) ∩N = 1, and let

M =
∏
p∈S

Ωp(G).

By (4.19) we have

G = MN and gcd(|M |, |N |) = 1.

Since M is normal in G, we obtain G = M × N . By the induction
hypothesisM splits into a direct product of pairwise coprime subgroups
M1, . . . ,Mn that are elementary abelian or t-complete. Hence

G ∼= M1 × . . .×Mn ×N

with all factors pairwise coprime and elementary abelian or t-complete.
¤

The result above immediately implies the following.

Corollary 39. Every finite group that is generated by two non-
commuting elements of prime order is t-complete.

4.7. Partitioned groups revisited. Finally we are ready to
prove (10) of Theorem 2 as a consequence of Lemma 37.

Corollary 40. Let G be a finite non-abelian group with a partition H.
Then G is t-complete.

Proof. If G contains an involution, the result follows from Lemma 30.
We assume that |G| is odd in the following. By the Odd-order theorem
G is solvable [4]. We have an abelian minimal normal subgroup A of
G, which is isomorphic to (Zp)

n for some odd prime p and n ∈ N. Let
Hp(G) = 〈x ∈ G | xp 6= 1〉 be the Hughes subgroup. The idea of the
proof is that if G is generated by elements of prime order then we use
Lemma 37; otherwise we find a subgroup isomorphic to (Zp)

noZq and
use Corollary 33 and Lemma 30.
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Case 1: Assume that |G| has a prime divisor q distinct from p, and
that there exists an element b ∈ G whose order is a power of q such
that b does not centralize A but bq does. Then U = A〈b〉/〈bq〉 is non-
abelian and isomorphic to (Zp)

n oZq. Let f be a compatible function
on G with f(1) = 1. By Corollary 33 the function f induces either
the constant function on U or the identity. In particular f(A) = 1 or
f |A = idA which implies that G is t-complete by Lemma 30.

Case 2: Assume that |G| has a prime divisor q distinct from p, and
that all elements in G whose orders are not divisible by p centralize A.
We prove that Hp(G) ≤ H for some H ∈ H. Let a ∈ A \ {1}, and
let g ∈ G with ord(g) coprime to p. Since (ga)p = gp 6= 1, we have
that g, ga, and thus a are in the same subgroup H ∈ H. Consequently
A ⊆ H and all elements with orders not divisible by p are contained in
H. Now let g ∈ G with ord(g) = pm for some m > 1. Thus C = 〈g〉 is
a p-group that acts by conjugation on A. Hence A is partitioned into
C-orbits which all have p-power size. Since A is a p-group itself, not
all orbits distinct from 1 have size divisible by p. Hence there exists
another 1-element orbit, say the orbit of the non-trivial element a ∈ A.
Then a commutes with g. Again (ga)p = gp 6= 1 yields that ga, g,
and a are contained in the same component of H, namely H. Hence
Hp(G) ⊆ H and in particular Hp(G) 6= G. Since G is covered by Hp(G)
and 〈G \ Hp(G)〉, these two subgroups cannot be proper at the same
time. Thus G is generated by the elements of G \Hp(G), which have
order p. Since G is not abelian, Lemma 37 yields that G is t-complete.

Case 3: Assume that G is a p-group. We prove that Hp(G) ≤ H for
someH ∈ H. Since G is a p-group, A is central. Let a ∈ A\{1}, and let
g ∈ G with ord(g) > p. Since (ga)p = gp 6= 1, we have that g, ga, and
thus a are in the same subgroup H ∈ H. Hence all elements of order
greater than p are contained in H. Thus Hp(G) ⊆ H and in particular
Hp(G) 6= G. Since G is covered by Hp(G) and 〈G \Hp(G)〉, these two
subgroups cannot be proper at the same time. Thus G = 〈G \Hp(G)〉,
and therefore G is generated by elements of order p. Since G is not
abelian by assumption, Lemma 37 yields that G is t-complete. ¤

The proof of Theorem 2 is complete.

4.8. Maximal t-complete quotients. For the proof of Theorem 36
we used that for every finite group G with maximal subgroup M the
action of G/MG on the left cosets of M is primitive. Note that G/MG

is abelian if and only if G′ ⊆ M . Otherwise G/MG is t-complete by
Corollary 35. All maximal subgroups of G contain G′ (i.e., the Frattini
subgroup of G contains G′) if and only if G is nilpotent [11, 5.2.16].
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Thus every finite group that is not nilpotent has some non-trivial t-
complete quotient.

By Theorem 3 we find the following examples of groups that do not
have any non-trivial t-complete quotients at all: abelian groups of odd
order and powerful p-groups for any odd prime p.

In this section we want to investigate t-complete quotients of groups
in general. To this end we define

N (G) = {N EG | G/N is t-complete}
and

T (G) =
⋂

N (G).

Theorem 41. For every group G we have the following:
(1) Every element in N (G) contains a minimal element in N (G);

further every minimal element in N (G) is characteristic in G.
(2) T (G) is characteristic in G.
(3) If G is t-complete, then T (G) = 1.
(4) For G finite, we have T (G) = G if and only if G is a direct

product of powerful p-groups for odd primes p.
(5) G/T (G) is either t-complete or a subdirect product of t-

complete, pairwise coprime torsion groups.

Proof. For (1) let C be a subset of N (G) that is linearly ordered by
inclusion. We claim that

(4.20) G/
⋂

C is t-complete.

Let f be compatible on G with f(1) = 1. Then f induces a compatible
function fN on G/N for all N ∈ C. Hence either f(G) ⊆ N for all
N ∈ C or f(x) ∈ xN for all x ∈ G, N ∈ C. Consequently f(G) ⊆ ⋂ C
or f(x) ∈ ⋂

N∈C xN = x
⋂ C for all x ∈ G. Thus we have (4.20), and

the first part of (1) follows.
Next let N be a minimal element in N (G), and let α be an auto-

morphism of G. Then G/α(N) is isomorphic to G/N and consequently
t-complete. Let M = N ∩ α(N). If α(N)N = G, then G/M is iso-
morphic to (G/N)2. Hence G/M is t-complete by Theorem 20. If
α(N)N < G, then G/M is t-complete by Theorem 25. Thus M = N
by the minimality of N . Hence N is characteristic.

Items (2) and (3) are immediate from the definition of T (G).
For proving (4) we first assume that T (G) = G for a finite group

G. Then G/Frat(G) is abelian by Theorem 36, and G is nilpotent
by [11, 5.2.16]. Further G cannot have a quotient of size 2. Hence |G|
is odd. For every prime divisor p of |G| the quotient G/〈xp | x ∈ G〉
has exponent p and is t-complete or abelian by Theorem 38. Thus
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T (G) = G implies G′ ⊆ 〈xp | x ∈ G〉. That is, the Sylow subgroups of
G are powerful p-groups.

For proving the converse, we assume that G is a direct product of
powerful p-groups of odd order. LetNEG such thatG/N is t-complete.
Then G/N is a p-group by item (6) of Theorem 3. As quotient of
a powerful p-group, G/N is powerful. By Corollary 11 the only t-
complete powerful groups are elementary abelian 2-groups. Since p is
odd, G/N is trivial. Hence (4) is proved.

For (5) let

M = {N EG | G/N is a maximal t-complete quotient of G}.
Then T (G) =

⋂M. If |M| = 1, then G/T (G) is t-complete. Now
assume we have distinct elements M,N ∈ M. Since G/(M ∩N) is not
t-complete, we have MN = G by Theorem 25. Thus G/(M ∩ N) ∼=
G/M ×G/N . By Theorem 20 the factors G/M and G/N are coprime
torsion groups. Now

h : G →
⊗
N∈M

G/N, x 7→ (xN)N∈M,

is a homomorphism with kernel T (G). Since the projection on each
coordinate, G → G/N, x 7→ xN , is onto, (5) is proved. ¤

4.9. Maximal t-complete subgroups. We close Section 4 by inves-
tigating the subgroup generated by all t-complete subgroups. We take
the following easy consequence of Propositions 15 and 16 as motivation.

Proposition 42. Let G be a group of finite exponent d. Let D2d denote
the dihedral group with 2d elements. Let p be a prime not dividing d.
Then

(1) the group G× Zp is not t-complete,
(2) the group G×D2d is t-complete,
(3) neither t-completeness nor not t-completeness is hereditary to

subgroups, to normal subgroups, or to factor groups.

Proof. Item (1) follows from Proposition 15. Item (2) follows from
Proposition 16. Item (3) follows from items (1) and (2). ¤

Let t (G) be the subgroup in G which is generated by all t-complete
subgroups of G,

t (G) = 〈H ≤ G | H is t-complete 〉.
We summarize our observations about t (G) in Theorem 43.

Theorem 43. For every group G we have the following:
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(1) Every t-complete subgroup of G is contained in a maximal t-
complete subgroup; further every maximal t-complete subgroup
of G is characteristic in G.

(2) t (G) is characteristic in G.
(3) If G is t-complete, then t (G) = G.
(4) If G is finite and t (G) = 1, then |G| is odd and any two elements

of prime order commute in G.
(5) t (G) is either t-complete or a direct product of maximal t-

complete, pairwise coprime torsion subgroups.

Proof. For (1) let C be a set of t-complete subgroups of G such that C
is linearly ordered by inclusion. We claim that

(4.21) K =
⋃

C is t-complete.

Let f be compatible on K with f(1) = 1. Then f restricts to a com-
patible function on every H ∈ C. Hence either f(H) ⊆ 1 for all H ∈ C
or f |H = idH for all H ∈ C. In the first case we obtain f(K) = 1,
in the second f = idK . Thus we have (4.21), and the first part of (1)
follows.

Next let H be a maximal t-complete subgroup of G, and let α be
an automorphism of G. Then 〈H,α (H)〉 is t-complete by Theorem 20.
Thus α(H) ⊆ H by the maximality of H. Hence H is characteristic.

Items (2) and (3) are immediate from the definition of t(G).
For (4) assume that G is finite and t (G) = 1. Every subgroup of size

2 is t-complete by Corollary 21. Thus |G| is odd. Further the subgroup
of G that is generated by all elements of prime order is abelian by
Theorem 38.

Finally for (5), if H1 and H2 are distinct maximal t-complete sub-
groups of G, then H1 and H2 are commuting coprime torsion groups
by Theorem 20. We conclude that either t (G) is the unique maximal
t-complete subgroup of G or that t (G) is the direct product of at least
two maximal t-complete subgroups, which are then pairwise coprime
torsion groups. This proves (5). ¤

5. Problems

Several problems remain open for investigation. By Corollary 4 every
finite non-abelian group G is t-complete if its subgroup lattice Sub(G)
satisfies

• Sub(G) is not a non-trivial direct product, and
• the join of atoms in Sub(G) is G or the intersection of coatoms
in Sub(G) is 1.
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For example, for every prime p the lattice Mp+1, whose p+ 1 elements
distinct from 0 and 1 form an antichain, is the subgroup lattice of the
t-complete dihedral group D2p with 2p elements. Moreover, we know
that no direct product of two non-trivial lattices and no lattices that
are covered by two non-trivial intervals can occur as subgroup lattice
of a t-complete group by Theorem 3. This leads to the question:
Problem 1. Which subgroup lattices of finite groups can occur as
subgroup lattices of t-complete groups?

For the finite congruence lattice representation problem it would be
interesting to consider affine complete G-sets in general, not only t-
complete groups.
Problem 2. Which finite (order polynomially complete) lattices can
occur as congruence lattice of an affine complete G-set?

In our main results, Theorems 2 and 3, we list conditions that imply
t-completeness and conditions that prevent t-completeness. This wide
variety of properties seems to indicate that the phenomenon is not
easily pinned down. Still we would like to have some necessary and
sufficient conditions for a group to be t-complete.
Problem 3. Characterize t-complete groups.

One important subproblem would be the study of t-complete p-
groups.
Problem 4. Characterize t-complete nilpotent groups.

Finally, we feel that the characteristic subgroups T (G) and t (G) are
worth investigating as well.
Problem 5. Characterize properties of T (G) and t (G) and their rela-
tions to G.

6. Acknowledgements

We are grateful to Erhard Aichinger and Csaba Szabó for discus-
sions on this topic. In particular we want to thank Erhard Aichinger
for the experimental data on t-complete groups obtained by his com-
puter programs using GAP [5]. Moreover, Proposition 14 is due to
him. We thank the anonymous referee for numerous helpful remarks,
in particular for calling our attention to the notion of powerful p-groups
which led to Corollary 11 and consequently improvements of Theo-
rems 3 and 41. This research was partially supported by the Hungarian
National Foundation for Scientific Research grants K67870 and N67867
and by the Portuguese Project ISFL-1-143 of CAUL financed by FCT
and FEDER.



TRANSLATIONS ON GROUPS 31

References

[1] M. Aschbacher. On intervals in subgroup lattices of finite groups. J. Amer.
Math. Soc., 21(3):809–830, 2008.

[2] R. Baddeley and A. Lucchini. On representing finite lattices as intervals in
subgroup lattices of finite groups. J. Algebra, 196(1):1–100, 1997.

[3] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal. Analytic pro-p-groups,
volume 157 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 1991.

[4] W. Feit and J. G. Thompson. Solvability of groups of odd order. Pacific
J. Math., 13:775–1029, 1963.

[5] The GAP Group. GAP – Groups, Algorithms, and Programming, Version
4.4.12. 2008, (http://www.gap-system.org).

[6] K. Kaarli. Affine complete abelian groups. Math.Nachr., 107:235–239, 1982.
[7] K. Kaarli and A. F. Pixley. Polynomial completeness in algebraic systems.

Chapman & Hall / CRC, Boca Raton, Florida, 2001.
[8] R. N. McKenzie, G. F. McNulty, and W. F. Taylor. Algebras, lattices, varieties,

Volume I. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey,
California, 1987.

[9] P. P. Pálfy. Unary polynomials in algebras, I. Algebra Universalis, 18:262–273,
1984.

[10] P. P. Pálfy and P. Pudlák. Congruence lattices of finite algebras and intervals
in subgroup lattices of finite groups. Algebra Universalis, 11:22–27, 1980.

[11] D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1996.

[12] R. Schmidt. Subgroup lattices of groups, volume 14 of de Gruyter Expositions
in Mathematics. Walter de Gruyter & Co., Berlin, 1994.

[13] J. W. Snow. OPC lattices and congruence heredity. Algebra Universalis, 58:59–
71, 2008.

[14] M. Suzuki. On the lattice of subgroups of finite groups. Trans. Amer. Math.
Soc., 70:345–371, 1951.

[15] G. Zappa. Partitions and other coverings of finite groups. Illinois J. Math.,
47(1-2):571–580, 2003. Special issue in honor of Reinhold Baer (1902–1979).

Institute of Mathematics, University of Debrecen, Pf. 12, Debre-
cen, 4010, Hungary

E-mail address: ghorvath@math.unideb.hu

CAUL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal & Insti-
tut für Algebra, JKU Linz, Altenberger Strasse 69, 4040 Linz, Austria

E-mail address: stein@cii.fc.ul.pt

Department of Algebra and Number Theory, Eötvös Loránd Uni-
versity, 1117 Budapest, Pázmány Péter sétány 1/C, Hungary

E-mail address: pongeee@cs.elte.hu


