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tumorigenesis). Recent reports identified important rearrangements in gene expression
upon the knockout of PARP-2. Such rearrangements heavily impact on inflammation
and metabolism. Metabolic effects are mediated through modifying PPARg and SIRT1
function. Altered gene expression gives rise to a complex phenotype characterized
primarily by enhanced mitochondrial activity that results both in beneficial (loss of fat,
enhanced insulin sensitivity) and in disadvantageous (pancreatic beta cell hypofunction
upon high fat feeding) consequences. Enhanced mitochondrial biogenesis provides
protection in oxidative stress related diseases. Hereby, we review the recent
developments in PARP-2 research with special attention to the involvement of PARP-2
in transcriptional and metabolic regulation.
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1. Page 2 - the modifications here are fairly minimalistic and the abbreviations ARTD2
and ARTD1 are not even defined.
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and ARTD1 are not even defined.

     In the corresponding section we incorporated the basic information on the newly
proposed nomenclature in our previous version upon the suggestion of the Reviewer.
We agree with the Reviewer that the appearance of the new nomenclature in our
manuscript is important. Moreover, in the current version we added ARTD-2 as a
keyword to help those future readers that follow the new nomenclature. The fact that
ARTD1 is the equivalent of PARP-1 is defined in the chapter “PARP superfamily”
second paragraph, first row. We added the abbreviation of ARDT-2 in the last sentence
in the first paragraph of the chapter “The PARP superfamily”. We think that these are
sufficient for the understanding of the position of PARP-2 in the PARP/ARTD
superfamily.
     We would like to note here, that the proposed new nomenclature did not gain
ground in the scientific community yet. There are only 3 relevant papers on Medline for
the keyword ARTD1, ARTD2 or ARTD (since 2010, the publication of the paper by
Hottiger et al. describing the new nomenclature). According to Medline there are
already around 290 papers published only in 2012 that contain the keyword PARP.
These data (290 vs. 3) clearly show that the PARP nomenclature is used mostly in the
literature. Moreover, even the authors of the new proposal themselves still use the old
nomenclature “PARP” (e.g. Erener S … Hottiger MO: Inflammasome-Activated
Caspase 7 Cleaves PARP1 to Enhance the Expression of a Subset of NF-κB Target
Genes. Mol Cell. 2012 Mar 28. [Epub ahead of print]), or Erener S … Hottiger MO
Poly(ADP-ribose)polymerase-1 (PARP1) controls adipogenic gene expression and
adipocyte function. Mol Endocrinol. 2012 Jan;26(1):79-86.).
     In summary, we are confident that our review sufficiently takes the new
nomenclature into consideration despite of the fact that it is not yet accepted by the
scientific community.

2. Page 3 line 12 - what is meant by "bear" mutations ? Do you mean that there is no
sequence homology?

Sequence homology modeling was carried out by Ame and co-workers (Ame et al.
Bioessays. 26:882-893. 2004). They classified sequences as PARPs on the basis of
sequence homology, therefore sequence homology does exist. However, mutation(s)
in a sequence does not necessarily mean that sequence homology is lost. In the
incriminated text, mutations mean rather point mutations that affect usually catalytic
amino acids. We had no intention to indicate the loss of sequence homology. To avoid
such misunderstanding, we exchanged “bear” to “carry”.

3. Page 3 line 34 - can more details of the alternative splicing be given and a
reference?

We drew our conclusions from the sequences available sequences at NCBI. Now we
stated the source of these data in the manuscript.

4. Page 6 line 27 - maybe "suggest" would be more appropriate than "indicate" . Is
there any evidence that PARP-2 has a similar role in humans? If not then this sentence
needs qualification to this effect (eg The results from these experimental models would
suggest that ??).

In agreement with the Reviewer we changed “indicate” to “suggest”.
Indeed, there is no human data available in that regard. To fulfill the demand of the
Reviewer we included the above proposed text.

5. Page 7 line 8 - what SNPs impact on PARP-2 function and how?

We thank for the Reviewer for this suggestion. We would like to point out that although
the SNPs were described but their actual mode of action is unknown. Nonetheless, we
included some possible explanations.
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Sakugawa and colleagues have shown on a cohort of 18 Japanese men that such
PARP-2 SNPs coincide with azoospermia in humans. Sakugawa and colleagues
identified five SNPs. Three of them fall into the coding region, while two into the 3’
UTR. The SNPs in the coding region are all in the catalytic domain. One is
synonymous (1159C/T), while two others (1359G/A and 1469A/C) lead to an amino
acid change: Arg/Gln and Asn/His, respectively. It is tempting to speculate that
changes in the catalytic domain may affect the catalytic activity of PARP-2. SNPs in the
3’UTR (1789A/C and 1790 T/C) may interfere with mRNA stability leading to the
reduction of PARP-2 mRNA copy number and consequently decreasing PARP-2
protein levels. Lower PARP-2 levels, or lower PARP-2 activity may interfere with
spermiogenesis as described in the respective chapter.
We have incorporated these data into the manuscript.

6. Page 7 line 51 in the revised sentence, should it read "A defect in PARP-2 in mouse
models?.

We narrowed the focus of our affirmation by adding “in murine models”.

7. Page 8 line 9 - please give model.

We specified the model in the given sentence.

8. Page 12 line 56 in the revised sentences: What evidence is there that PARP-1 and
PARP-2 ribosylate different substrates?

At the indicated site there is no suggestion that PARP-1 and PARP-2 would PARylate
different substrates.

9. Page 13 line 22 in the revised sentences: Would not the selective targeting of
PARP-2 mediated repair run the risk of increasing the complications in normal tissue
where radiation exposure doses might be lower?

The Reviewer is absolutely right, such phenomenon may take place. Based on the
comment of the Reviewer we feel that we drew too distant conclusions, therefore we
removed these sentences.
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Abstract 

Poly(ADP-ribose) polymerase (PARP)-2 is a nuclear enzyme that belongs to the PARP 

family and PARP-2 is responsible for 5-15% of total cellular PARP activity. PARP-2 was 

originally described in connection to DNA repair and in physiological and pathophysiological 

processes associated with genome maintenance (e.g. centromere and telomere protection, 

spermiogenesis, thymopoesis, azoospermia and tumorigenesis). Recent reports identified 

important rearrangements in gene expression upon the knockout of PARP-2. Such 

rearrangements heavily impact on inflammation and metabolism. Metabolic effects are 

mediated through modifying PPAR and SIRT1 function. Altered gene expression gives rise 

to a complex phenotype characterized primarily by enhanced mitochondrial activity that 

results both in beneficial (loss of fat, enhanced insulin sensitivity) and in disadvantageous 

(pancreatic beta cell hypofunction upon high fat feeding) consequences. Enhanced 

mitochondrial biogenesis provides protection in oxidative stress related diseases. Hereby, we 

review the recent developments in PARP-2 research with special attention to the involvement 

of PARP-2 in transcriptional and metabolic regulation. 

 

The PARP superfamily 

Poly(ADP-ribosyl)ation is a transient post-translational modification of proteins mediated 

by poly(ADP-ribose) polymerase (PARP) enzymes. This is a dynamic process during which 

the enzymes catalyze the formation of ADP-ribose polymers onto different acceptor proteins 

using NAD+ as a substrate. The half-life of the polymer is very short since it is quickly 

degraded by poly(ADP-ribose) glycohydrolase (PARG). PARPs constitute a family of 17 

members, encoded by 17 different genes sharing a conserved sequence coding for the 

catalytic domain that contains the PARP signature motif, a highly conserved sequence that 

forms the active site [1]. Based on sequence and structural homologies and the similarity of 

the reactions catalyzed, Hottiger and colleagues recently proposed to unite all ADP-ribose 

transferases (PARPs and mono-ADP-ribosyl transferases) in one protein family [2]. The 

same study proposed a new nomenclature for these enzymes, where PARP-2 was renamed 

ARTD2 (ADP-ribosyltransferase Diphtheria toxin-like 2). 

The prototypical enzyme of the PARP family is PARP-1 (ARTD1). PARP-1 cleaves NAD+ 

to ADP-ribose and nicotinamide followed by the attachment of the first ADP-ribose moiety to 

a glutamate or aspartate residue of target proteins. During the elongation of the polymer 

further ADP-ribose moieties are attached to these protein-bound monomers. In the absence 

of DNA damage the constitutive polymer levels are usually very low and appear as mono- or 

oligo(ADP-ribose). However, in response to DNA strand breaks the levels of poly(ADP-

ribose) (PAR) polymers increase 10-500-fold and large [3,4], branched PAR polymers occur 
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on different acceptor proteins and PARP-1 itself (auto-PARylation) (Fig. 1.). Upon extensive 

PARP-1 activation cellular NAD+ levels are markedly reduced [5]. Poly(ADP-rybosyl)ation, at 

any level, is likely to have important effects on the acceptor’s properties, hence PARylation 

and PARPs are involved in the regulation of various cellular processes [6]. In cells polymers 

can be detected as early as 2 to 3 minutes after the one-off induction of DNA damage, and 

then PAR polymers are quickly degraded by PARG. In tissues, PAR levels can be detected 

on a longer timeline as reflecting a steady state between synthesis and degradation. Some 

PARP enzymes carry mutations in the catalytic domain and hence are either inactive or 

perform only mono-, or oligo(ADP-ribosyl)ation [1,2,7]. 

 

The structure of the PARP-2 gene and PARP-2 protein 

PARP-2 was discovered when residual DNA-dependent PARP activity was detected in 

PARP-1-/- murine embryonic fibroblasts (MEFs) [8]. So far PARP-1, PARP-2 and PARP-3 are 

the only PARP enzymes whose catalytic activity is stimulated by DNA strand breaks 

suggesting that they function as crucial members in the cellular pathways responding to DNA 

damage [8-11]. 

PARP-2 gene is located on chromosome 14 in humans. The gene is driven by a 

bidirectional promoter that PARP-2 shares with RNase P [12]. Such combination of RNA 

polymerase II and RNA polymerase III genes is relatively rare. A functional TATA box and 

DSE/Oct-1 expression control elements were identified in the promoter regulating PARP-2 

expression [12]. Due to alternative splicing, two isoforms of PARP-2 exist with the longer 

isoform containing an extra set of 13 amino acids on the border between the DNA binding 

domain and domain E. The longer isoform has been identified, or predicted in humans [13], 

common chimpanzee (Pan troglodytes) [14], northern white-cheeked gibbon (Nomascus 

leucogenys) [15] and sumatran orangutan (Pongo abelii) [16] according to the NCBI 

database. The sequences of different mammalian PARP-2 genes are highly homologous 

(Fig. 2.). Although PARP-2 is absent in birds, sequences similar to PARP-2 can be found in 

lower vertebrates (Danio rerio, Xenopus), lower animals (e.g. sponges) and in Arabidopsis 

thaliana [17]. 

The tissue-specific expression of PARP-2 was primarily characterized by in situ 

hybridization. Liver expression of PARP-2 was high at fetal age 12.5 days, decreased at 18.5 

days fetal age and was even lower in newborn mice [8,18]. In adult mice the expression of 

PARP-2 is low in the liver (the lowest among the metabolic tissues; Bai P, unpublished data). 

It is tempting to speculate that the gradual decrease in PARP-2 expression by age during 

fetal and postnatal development points toward the possible involvement of PARP-2 in early 

stage hemopoiesis that takes place in the liver.  
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In the central nervous system PARP-2 content was high in the spinal ganglia and in 

certain parts of the brain. In the neocortical areas PARP-2 expression is elevated as 

compared to lower brain regions. High PARP-2 expression was detected in stratum 

granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus and was 

even higher in the cortex and the olfactory bulb [18]. Apart from the previously mentioned 

tissues, PARP-2 is highly expressed in the cortical region of the kidneys, the spleen, adrenal 

glands, stomach, thymus and intestinal epithelium [18]. The testis was also positive for 

PARP-2 expression. 

In humans a slightly different expression pattern was detected. PARP-2 was very 

abundant in the skeletal muscle, brain, heart, testis, it was high in pancreas, kidney, 

placenta, ovary, spleen and low PARP-2 expression was detected in the lungs, leukocytes, 

gastrointestinal tract (both colon and small intestine), thymus and liver [19]. 

Translation of the PARP-2 mRNA yields a protein product of 62 kDa apparent molecular 

weight. PARP-2 protein can be divided into similar functional regions as PARP-1: The N-

terminus of mouse PARP-2 contains the DNA binding domain (DBD), followed by domain E 

and the catalytic domain (domain F) [8]. The DBD is formed by a SAP domain that is 

responsible for DNA binding [20], and contains a functional nuclear localization signal (NLS) 

[21] and a nucleolar localization signal (NoLS) [22]. A caspase-3 cleavage site defines the 

border between the DBD and domain E, which is homologous to the caspase-3 site in the E 

domain of PARP-1 [23]. Domain E serves as a homodimerization interface, an 

automodification domain and a protein-protein interaction domain as well [24]. Auto-

poly(ADP-ribosyl)ation of PARP-2 takes place on domain E [25] and on lysine 36 and 37 that 

are targets of simultaneous acetylation [26,27]. The PARP-2 interactome was mapped by 

Isabelle and co-workers [28], who identified a large number of proteins. These proteins 

covered a wide array of functions such as cell cycle, cell death, DNA repair, DNA replication, 

transcription, metabolism, energy homeostasis and RNA metabolism. 

Domain F on the C-terminus of PARP-2 harbours the PARP signature motif carrying the 

essential amino acid residues for catalysis [8]. Domain F is separated from domain E by a 

caspase-8 cleavage site [29]. PARP-2 and PARP-1 share a catalytic domain of 69% 

similarity, with the exception that PARP-2 contains an additional three amino acid insertion in 

the loop connecting the β-strands k and l in PARP-1 [8,30,31] (Fig. 3.). The three 

dimensional structure of the catalytic domain also shows high similarity, however the catalytic 

domain of PARP-2 has a narrower catalytic cleft that likely explains the lower substrate 

affinity and turnover rate of PARP-2 as compared to PARP-1 (KM for NAD+ 50/130 M; 

kcat/KM 6000 s-1 M-1/323 s-1 M-1 for PARP-1/-2 respectively) [8,30]. PARP-2 accounts for 5-

15% of total PARP activity in cells depending on the model used [8,32,33]. PARP-2 performs 

auto [18] and hetero-PARylation of proteins. Troiani and co-workers have identified possible 
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targets of PARP-2 activity that covered proteins involved in transcription, translation and 

mitochondrial organization [34]. 

 

PARP-2 in the maintenance of genomic integrity 

PARP-2 in DNA repair and genomic integrity 

PARP-1 is a well established DNA-repair protein [6], therefore the functional similarity 

with PARP-2 suggested a role for PARP-2 in the maintenance of DNA integrity. Upon the 

induction of DNA damage (ionizing irradiation, or laser irradiation), PARP-2 accumulates at 

the damage foci [35] with a slower kinetics  than PARP-1, and PARP-2 persisted longer at 

DNA damage sites [36]. In murine embryonic fibroblasts (MEFs) the loss of PARP-2 leads to 

hypersensitivity to ionizing irradiation and cell cycle arrest in G1 [23], although PARP-2-/- cells 

are less sensitive to ionizing radiation than PARP-1-/- cells [23,24]. In line with these 

observations female lethality due to X chromosome instability was observed in PARP-1+/- 

PARP-2-/- mice [23]. 

PARP-2 preferentially binds to one nucleotide gaps [25] and it is involved in single strand 

repair processes. As shown in murine models, upon the loss of PARP-2, base excision repair 

(BER) slows down [18]. Moreover, PARP-2 interacts with numerous members of the BER 

machinery such as XRCC1, PARP-1, DNA pol and DNA ligase III [18] that further signifies 

its importance in BER. It is tempting to hypothesize that the early embryonic lethality of the 

PARP-1/PARP-2 double knockout mice [23] might be due to the strong impairment of DNA 

repair processes.  

PARP-1 has been described to participate in double strand break repair [37]. Nicolás and 

co-workers have identified the accumulation of double strand breaks in PARP-2-/- murine 

thymocytes [38]. This observation is in line with previous report by Yelamos and colleagues 

[24] who suggested that PARP-2 interacts with the Ku proteins, mediators of double strand 

break repair. Moreover, Robert and colleagues have identified PARP-2 as a suppressor of 

recombination during immunoglobulin class switch events in murine and human B cells [39], 

while Bryant et al. have suggested that both PARP-1 and -2 are essential in resolving 

blocked replication forks by homologous recombination in CHO and murine embryonic 

fibroblasts (MEFs) [37,40]. The fact that the ATM/PARP-2 double knockout genotype is 

embryonic lethal [20] further supports the involvement of PARP-2 in double strand break 

repair during replication. Moreover, the fact that mitomycin C treatment that leads to DNA 

double strand breakage provoked the induction of PARP-2 expression and other double 

strand break repair proteins in human cervical carcinoma cells also underlines the 

involvement of PARP-2 in double strand break repair [41]. 
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Appropriate telomere and centromere maintenance requires PARP-2. PARP-2 binds to 

and negatively regulates the DNA binding of telomere-binding protein, TRF-2 in different 

rodent and human cell models. The loss of PARP-2 expression increased the frequency of 

spontaneous chromosome and chromatid breaks and the number of DNA ends lacking 

detectable telomere repeats [42].  

PARP-2 localizes to centromeres in human and murine cells in a cell-cycle dependent 

manner and interacts with the kinetochore proteins centromere protein A (CENPA), 

centromere protein B (CENPB) and mitotic spindle checkpoint protein BUB3 in 

prometaphase and metaphase [43]. Interestingly, this centromeric accumulation of PARP-2 

is increased when microtubule dynamics are disrupted suggesting a dominant role of PARP-

2 in accurate chromosome segregation [44]. 

Incomplete or insufficient DNA repair may ultimately lead to either cell death, or cellular 

transformation and tumorigenesis. PARP-1 has been associated with both cell death [45] and 

tumorigenesis [46]. PARP-2 seems to be involved in cell death regulation similarly to PARP-1 

[44,47]. However, Cohausz and colleagues have found differences in the expression of cell 

death genes upon N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment in PARP-1 and -2 

knockdown cells. Furthermore, PARP-2 is also engaged in tumorigenesis. In mice the double 

deletion of PARP-2 and p53 induced spontaneous lymphomas and certain sarcomas [38] 

and decreased expression of PARP-2 correlated with increased susceptibility to alkylator-

induced acute myeloid leukemia (AML) [48]. Results from these experimental models 

suggest that PARP-2 has a dominant role in suppressing leukemias [49]. 

 

Role of PARP-2 in chromatin remodeling and genome maintenance during 

spermiogenesis 

PARP-2 is expressed in the testis of mice [18] and rats [50], and is highly expressed in 

human testis [19]. Moreover, PARP-2 is found in the ejaculated spermatozoa in both mice 

and in humans [44,51]. However, PARP-2 seems to be responsible for a smaller portion of 

PARP activity than PARP-1 in rat testis [52]. These observations prompted the study of the 

possible testicular functions of PARP-2 in mice. Dantzer and co-workers have revealed that 

upon crossing of PARP-2-/- males and females litter size was lower then in colonies bred by 

crossing wild type mice. A smaller testis size and high number of abnormal spermatids in the 

distal epidymis have also been reported [44].  

Decreased spermatogenesis is likely to have multiple roots that all trace back to 

insufficient maintenance of genomic integrity during spermatocyte differentiation. The 

differentiation of spermatozoa was found to be hampered and large numbers of apoptotic 

cells were detected in murine testis [44]. Cell death is probably linked to hampered meiotic 
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sex chromosome inactivation, and the block of cell division in meiosis I, whereby 

chromosome missegregation was detected [44]. Jha and colleagues, based on studies on 18 

healthy and 12 infertile humans, also proposed a role for PARP-2 in the preservation of 

genomic integrity by protecting DNA against oxidative stress [53]. Spermiogenesis involves 

the compaction of DNA and the exchange of histones to different protamines [54]. In this 

process PARP-2 (and PARP-1) regulate the activity of topoisomerase II that is essential for 

appropriate DNA organization (e.g. removal of histone 1) [55], transition protein 2 (TP2) and 

the transition chaperone HSPA2 [56] as shown in mice. 

Different SNPs impacting on PARP-2 functionality may also hamper human 

spermiogenesis. Sakugawa and colleagues [51] have shown on a cohort of 18 Japanese 

men that such PARP-2 SNPs coincide with azoospermia in humans. Sakugawa and 

colleagues identified five SNPs. Three of them fall into the coding region, while two into the 3’ 

UTR. The SNPs in the coding region are all in the catalytic domain. One is synonymous 

(1159C/T), while two others (1359G/A and 1469A/C) lead to an amino acid change: Arg/Gln 

and Asn/His, respectively. It is tempting to speculate that changes in the catalytic domain 

may affect the catalytic activity of PARP-2. SNPs in the 3’UTR (1789A/C and 1790 T/C) may 

interfere with mRNA stability leading to the reduction of PARP-2 mRNA copy number and 

consequently decreasing PARP-2 protein levels. Lower PARP-2 levels, or lower PARP-2 

activity may interfere with spermiogenesis as described above. 

 

 

The role of PARP-2 in thymopoesis and inflammatory regulation 

The earliest reports on PARP-2 described high PARP-2 expression in the subcapsular 

zone of the thymus where lymphocyte proliferation is the most intense. PARP-2 expression 

gradually decreases towards the center of the thymus as lymphocytes differentiate and 

mature [18,47]. PARP-2 transcripts were detected in the white pulp of the spleen and Peyer 

patches in mice which also points toward the involvement of PARP-2 in the proliferation of 

lymphocytes [18]. 

In line with these observations, the deletion of PARP-2 in mice led to decreases in the 

weight of thymus and in the total cell numbers and number of CD4+, CD8+ thymocytes in 

thymus [47]. The loss of the double positive thymocytes was due to enhanced p53-mediated 

apoptosis [47]. Increased expression of a pro-apoptotic, bcl-2 homolog NOXA showed 

correlation with the enhanced apoptosis [47]. Apoptosis can be reversed by the removal of 

p53 [38] suggesting that cell death is induced by unresolved DNA damage. In line with this 

observation, when PARP-2-/- mice were bred on a p53-/- background, spontaneous 

lymphomas and to a smaller extent other sarcomas developed in the double knockout mice 
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[38] indicating a functional interplay between these two proteins in protecting genome 

integrity. 

It remains to be seen whether atrophy of thymus and the higher rate of thymocyte 

apoptosis in PARP-2-/- mice results in a restricted T cell repertoire and altered T cell 

responses. In fact, PARP inhibition or PARP-1 depletion has provided marked protection in 

most animal models of inflammation with many of them being dependent on T cell functions 

[45,57]. The defect of PARP-2 seems to be associated with a narrower spectrum of diseases 

in murine models. The lack of PARP-2 impairs astrocyte activation [58] and provides 

protection against colitis [59], while it has no effect in models of contact hypersensitivity [60], 

irritative dermatitis [60] or pancreatitis [61]. Interestingly, a common set of genes (iNOS, Il-

1, TNF) has been shown to be regulated by both PARP-1 and PARP-2 suggesting similar 

or overlapping mechanisms in inflammatory regulation by the two PARP isoforms. However, 

yet the exact mechanism of protection by genetic PARP-2 deletion is unknown [58,59]. 

 

PARP-2 in the regulation of gene expression 

Recent reports revealed that the depletion of PARP-2 modifies the activity of multiple 

transcription factors [62-64]. In HepG2 cells depleted of PARP-2 by shRNA, we have found 

the dysregulation of more than 600 genes in microarray experiments (Szántó and Bai, 

unpublished data) indicating an important role for PARP-2 in the regulation of gene 

expression. 

PARP-2 acts at multiple levels on gene transcription. PARP-2 might be capable of 

modifying chromatin through regulating transcriptional intermediary factor (TIF)-1 and 

heterochromatin protein (HP)-1 [65]: depletion of PARP-2 modified the expression of two 

genes (Mest and HNF4) that are dependent on the TIF1-HP1 complex [65]. Poly(ADP-

ribosyl)ation and PARP-1 have eminent roles in epigenetic control [66-69]. Based on the 

similarities of PARP- and PARP-2-catalyzed reactions, and partially overlapping interactome 

and acceptor protein profile, it is tempting to assume that similar epigenetic roles may also 

be assigned to PARP-2. 

PARP-2 can influence gene expression through more direct interactions. PARP-2 

interacts with topoisomerase I and topoismerase II [40,55] and may thus regulate the 

rearrangement of DNA structure in conjunction with RNA transcription. Moreover, PARP-2 

has been shown to interact with nucleophosmin/B23 [22] that is involved in rRNA 

transcription [70]. RNA polymerase I inhibition removes PARP-2 from the nucleolus, however 

the deletion of PARP-2 does not change rRNA expression. Thus the exact mechanism 

whereby PARP-2 regulates rRNA expression requires further investigation. On the course of 

mRNA expression, also known as RNA polymerase II-mediated transcription, PARP-2 can 
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act as either a positive co-factor, or a repressor of gene expression. Transcription factors 

regulated by PARP-2 are summarized in Table 1. 

 

Nuclear receptor signaling 

PARP-2 has been shown to interact with several members of the nuclear receptor 

superfamily such as the peroxisome proliferator activated receptors (PPARs) and estrogen 

receptor (ER). 

The group of PPARs has three members, PPAR, PPAR and PPAR [71] that 

heterodimerize with the retinoid X receptor (RXR) and thus bind to DNA [72,73]. PPARs bind 

different lipophylic ligands [74]  that regulate their transcriptional activity. PPARs control the 

expression of a large set of genes involved in the regulation of energy, lipid and glucose 

homeostasis [75]. The binding of ligands to the receptors leads to receptor activation and the 

release of corepressor proteins and the subsequent binding of activators [76]. PARP-1 has 

been suggested to be involved in nuclear receptor function. Ju and colleagues [77] have 

shown that upon estrogen receptor activation, topoisomerase II creates DNA strand breaks 

that are resolved through the action of PARP-1. Moreover, inhibition of topoisomerase II or 

PARP-1 hampered efficient gene expression [77]. 

PARP-2 serves as a cofactor for the members of the PPAR transcription factor family. 

The absence of PARP-2 impairs PPAR activation but enhances PPAR and PPAR 

activation [63]. PARP-2 binds to PPAR-driven promoters and its absence decreases the 

expression of genes such as adipocytes protein 2 (aP2), CD36, lipoprotein lipase (LPL) and 

fatty acid synthase (FAS) [63]. Since PARP-2 is a DNA repair protein and can interact with 

topoisomerase II [55], it is possible that PARP-2 may also play a role in resealing 

transcription-related DNA breaks. The effects of PARP-2 depletion on PPAR and PPAR 

activation were demonstrated only in reporter assays [63], therefore further molecular and in 

vivo verification of these interactions is necessary. 

Estrogen receptor (ER) activation is repressed by the depletion of PARP-2 in luciferase 

reporter assays (P. Bai, unpublished data). The effect of PARP-2 on PPAR and ER may 

share similar molecular characteristics. Further investigation is required to reveal possible 

physiological consequences of the reduced ER activity upon PARP-2 ablation. It is 

important to note that PARP-2 does not interfere with the activation of ER, therefore ER 

and its target genes (e.g. keratin 19) are ideal negative controls in studies addressing the 

role of PARP-2 in nuclear receptor-mediated gene expression [63]. 

 

Interaction with SIRT1  
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SIRT1 belongs to the family of sirtuins. Sirtuins have seven homologs in humans and 

mice (SIRT1-7) [78,79]. SIRT1 is considered to be a nuclear enzyme [80], although it may 

also appear in the cytosol [81]. SIRT1 is an NAD+-dependent protein deacetylase [82] that 

enables SIRT1 to sense the energetic status of cells (e.g. changes in NAD+/NADH ratio) [83]. 

SIRT1 is activated by increases in NAD+ levels, or indirectly by different small molecule 

activators such as resveratrol [84], SIRT1720 [85], AMPK activators [86] or PARP inhibitors 

[87]. SIRT1 activation leads to the deacetylation and activation of numerous metabolic 

transcription factors such as PPAR gamma coactivator (PGC)-1 [88], FOXOs [89] and p53 

[90]. Their activation leads to increased mitochondrial biogenesis and oxidative metabolism 

through enhancing the expression of key mitochondrial enzymes involved in terminal 

oxidation, fatty acid degradation, and mitochondrial uncoupling in several target tissues 

[88,91]. 

It has been shown that PARP-2 can directly regulate the expression of SIRT1 [62]. 

PARP-2 serves as a negative regulator of SIRT1 expression, as the absence of PARP-2 

induces SIRT1 expression and results in higher SIRT1 activity [33,62]. PARP-2 binds to the 

murine SIRT1 promoter in a region between -1 - -91,  which is a highly conserved region 

among mammals, showing homology even in Xenopus [62]. It must be noted that the 

ablation, or pharmacological inhibition of PARP-1 also induces SIRT1 activity. However 

SIRT1 activation in the absence of PARP-1 depends on enhanced NAD+ availability and the 

ablation of PARP-1 does not alter the activity of the SIRT1 promoter [87]. 

SIRT1 induction upon PARP-2 ablation causes the deacetylation of PGC-1 and FOXO1, 

which in turn boost mitochondrial biogenesis by enhancing the expression of PGC-1, 

uncoupling protein (UCP)-2, muscle isoform of carnitine O-palmitoyltransferase 1 (mCPT1b), 

acyl coenzyme A oxidase I (ACOX1), medium-chain specific acyl-CoA dehydrogenase 

(MCAD), malonyl-CoA decarboxylase (MCD), Ndufa2, cytochrome c (cyt c) and COX IV [62]. 

The action of PARP-2 has been shown in multiple organs and tissues such as skeletal 

muscle, liver, smooth muscle [33,62] and an unexpected diadvantageous effect has been 

shown in the pancreas [62]. The depletion of PARP-2 was found not to interfere with SIRT2 

or SIRT3 activation [62]. 

Similar to PARP-2 gene inactivation, SIRT1 activation has been shown to inhibit the 

production of inflammatory mediators and suppress certain forms of inflammation [92-94]. It 

is therefore plausible that the induction of SIRT1 may be responsible for the antiinflammatory 

effect of PARP-2 depletion in colitis [59] and in astrocyte activation [58] . 

 

Thyroid transcription factor-1 

Nkx-2 transcription factors constitute a family of homeodomain-containing transcription 

factors. Thyroid transcription factor (TTF)-1 belongs to the Nkx-2 family and TTF-1 plays a 
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dominant role in lung morphogenesis, respiratory epithelial cell morphogenesis and 

differentiation [95,96]. In cultured lung epithelial cells PARP-2 interacts with TTF1 [64]. By 

affecting TTF1 activity PARP-2 may regulate the expression of surfactant protein-B. 

 

The role of PARP-2 in metabolic regulation 

Alterations in gene expression accompany various biological phenomena ranging from 

inflammatory responses (NOXA, TNF, IL-1, etc.) to metabolic regulation. The 

transcriptional regulatory role of PARP-2 has been linked to cellular metabolism. PARP-2-/- 

mice are smaller and leaner as they have less body fat than their wild type littermates 

[62,63]. At the same time PARP-2-/- mice showed higher oxygen consumption rates and 

lower respiratory quotient during the active (dark) phase which points toward higher fatty acid 

oxidation [62]. 

When examining the skeletal muscle of PARP-2-/- mice, increased mitochondrial content 

was observed in line with higher expression of genes related to oxidative metabolism and 

fatty acid oxidation which is in line with the above described phenotype [62]. The increase in 

oxidative metabolism can be explained by higher SIRT1 expression due the loss of the 

transcriptional repressor activity of PARP-2. It is the increase in SIRT1 expression that 

induces mitochondrial biogenesis through PGC-1 and FOXO1 deacetylation [62]. 

The liver of the PARP-2-/- mice displayed characteristics similar to the ones in skeletal 

muscle: SIRT1 induction and consequently enhanced mitochondrial biogenesis and oxidative 

metabolism [62]. Interestingly, the brown adipose tissue was not involved in the development 

of the energy expenditure phenotype in contrast to PARP-1-/- mice [62,87] 

The increased energy expenditure fuelled by enhanced mitochondrial biogenesis in 

skeletal muscle and liver had beneficial effects on the metabolism of PARP-2-/- mice. PARP-

2-/- mice are protected against diet-induced obesity, and insulin resistance of the animals was 

retained even after high fat feeding [62]. Interestingly, PARP-2-/- mice proved to be glucose 

intolerant after high fat feeding [62]. The pancreas in PARP-2-/- mice failed to appropriately 

respond to diet-induced insulin resistance as it showed no signs of hyperproliferation or 

reduction in pancreas weight, islet size and pancreatic insulin content [62]. Reduced 

expression of pancreatic and duodenal homeobox 1 (pdx-1) is likely to be responsible for the 

pancreatic hypofunction in PARP-2-/- mice [62]. 

Functions of the white adipose tissue (WAT) are orchestrated by the RXR/PPAR 

receptor [72]. We have shown that PARP-2 acts a cofactor of the RXR/PPAR dimer [63,97]. 

The loss of PARP-2 hampers RXR/PPAR receptor activation and decreases the expression 

of certain PPAR-driven genes (e.g. LPL, CD36, etc.). Due to that alterations in gene 

expression, the WAT of PARP-2-/- mice turned hypomorphic and hypofunctional [63]. 
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Moreover, in cellular models of adipocyte differentiation, the lack of PARP-2 resulted in 

decreased adipocytic differentiation [63]. It is of note that SIRT1 induction may inhibit PPAR 

[98] that may provide an auxiliary mechanism underlying WAT hypofunction in the absence 

of PARP-2. 

 

PARP-2 in oxidative stress-related diseases  

PARP-1 depletion, or pharmacological PARP inhibition is protective against numerous 

oxidative stress-related diseases [45]. Depletion of PARP-2 also resulted in a protective 

phenotype against diseases associated with increased oxidative stress. Genetic deletion or 

silencing of PARP-2 has provided protection in models of focal and global cerebral ischaemia 

[99,100], colitis [59] and doxorubicin-induced vascular smooth muscle damage [33]. Since 

PARP-2 accounts for a small fraction of total cellular PARP activity [8,32,33], it is unlikely that 

the ablation of PARP-2 could protect against the loss of cellular NAD+ and ATP suggesting 

different mechanisms of cell death as compared to the case of PARP-1 ablation. 

Cerebral ischaemia and doxorubicin-induced vascular impairment involve mitochondrial 

damage [101,102] and preventing mitochondrial damage proved to be a successful novel 

treatment in these pathologies [103-108]. Since SIRT1 has been demonstrated to enhance 

or restore mitochondrial activity in various tissues [62,87,91,109-111] it is logical to assume 

that the interference between PARP-2 and SIRT1 expression [62] could be key for the 

protective phenotype. Indeed, in the case of doxorubicin-induced vascular damage, 

enhanced SIRT1 expression and consequent stabilization of the mitochondrial membrane 

potential was proposed to be responsible for the protection provided by the PARP-2-/- 

phenotype [33] which might be a prototypical mechanism by which PARP-2 mediates 

oxidative stress-related pathologies. Moreover, ablation of PARP-2 led to the mitochondrial 

retention of apoptosis inducing factor (AIF) [100]. AIF is a mitochondrial protein that shuttles 

to the nucleus upon oxidative stress-evoked cell death in a PARP-1-dependent manner 

[112]. In a model of focal cerebral ischemia, ablation of PARP-2 only slightly reduced PAR 

formation but markedly inhibited the nuclear translocation of AIF [100]. This interesting 

finding may also be linked to the stabilization of mitochondrial membrane upon SIRT1 

induction. 

The involvement of PARP-2 in oxidative stress-related pathologies points towards the 

applicability and hence the development of PARP-2 specific inhibitors. However, all known 

PARP inhibitors are capable of inhibiting both PARP-1 and -2, which is not surprising since 

the catalytic domain of the enzymes are very similar and most PARP inhibitors bind there 

[30,31]. In the quest for synthesizing PARP-2 specific inhibitors, the laboratory of Gilbert de 

Murcia suggested the targeting of a loop that is unique in PARP-2, [25,30]. Efforts to develop 
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highly PARP-2-selective compounds have given rise to inhibitors that have 10-60 fold higher 

affinity for PARP-2 as compared to PARP-1 [113-117]. One of these inhibitors, UPF-1069 

that has 60 fold higher affinity towards PARP-2 than PARP-1, was shown to provide 

protection against cerebral ischemia [117]. Although at the moment such selectivity is the 

highest achievable, it is possible that in cellular models or in in vivo settings these inhibitors 

may partially inhibit PARP-1 too. Nevertheless, the development of highly PARP-2 specific 

inhibitors is of current interest. Since PARP-2 is a minor PARP isoform, its inhibition is an 

attractive way to counteract certain drawbacks of pan-PARP inhibition or PARP-1 specific 

inhibitors. Since PARP-2 accounts for only 5-15% of PARP activity [8,18,32,33] therefore it is 

tempting to speculate that its loss probably would not drastically hamper PARylation-

dependent DNA repair. Thus highly PARP-2 specific inhibitors may provide a preferable 

alternative for the treatment of metabolic diseases, whereas pan-PARP inhibitors may be 

superior in severe oxidative injury. However DNA damage assessment in such cases is an 

absolute necessity. 

 

Conclusions and perspectives 

PARP-2 has been shown to participate in multiple cellular processes such as DNA repair, 

maintenance of genomic integrity, spermiogenesis and thymopoesis. On the other hand, 

PARP-2 is involved in transcriptional regulation of metabolism and oxidative stress response. 

In fact, this plethora of functions partly overlaps with the functions of PARP-1 [24]. A better 

understanding of the similarities and differences between the actions of PARP-1 and -2 is of 

outmost importance. On the one hand PARP-1 and -2 can act synergistically, while on the 

other hand isoform specific functions of the PARP enzymes also exist. Specific targeting of 

PARP-2 may help overcome unwanted side effects of pan-PARP inhibition. 

Understanding the role of PARP-2 in DNA repair may hold importance in tumor biology. 

The better understanding of the role of PARP-2 in DNA repair may provide new knowledge 

on tumorigenesis, and can be capitalized in inducing synthetic lethality by joint inhibition of 

parallel DNA repair pathways [49].  

The metabolic effects of PARP-2 can be exploited in multiple different manners. 

Obviously, the depletion of PARP-2 can be utilized in combating metabolic diseases and 

mitochondrial stabilization may overcome oxidative stress-evoked damage. Better 

understanding the properties of PARP-2 may in turn facilitate the development of PARP-2 

specific inhibitors that may have advantages over pan-PARP inhibitors. 
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Figure legends 

 

Figure 1. The poly(ADP-ribosyl)ation cycle. 

NAM- nicotinamide, ADPR- ADP-ribose, PAR- poly(ADP-ribose), all other abbreviations are 

in the text. 

 

Figure 2. The structure of PARP-2 gene and PARP-2 protein. 

The PARP-2 gene is driven by a bidirectional promoter and consists of 16 exons. The protein 

product of the gene can be divided into three domains: DBD, domain E, domain F. Numbers 

bellow the protein product indicate amino acids on the border between domains. The arrows 

point at caspases-3 and caspases-8 cleavage sites. The highlighted amino acid sequence is 

the conserved 13 amino acid sequence of the longer PARP-2 isoform. 

18 mammalian PARP-2 sequences of the shorter isoform (Ailuropoda melanoleuca [118], 

Bos taurus [119], Callithrix jacchus [120], Canis lupus familiaris [121], Cavia porcellus [122], 

Cricetulus griseus [123], Equus caballus [124], Homo sapiens [13], Loxodonta africana [125], 

Macaca mulatta [126], Monodelphis domestica [127], Mus musculus [128], Nomascus 

leucogenys [15], Oryctolagus cuniculus [129], Pan troglodytes [14], Pongo abelii [16], Rattus 

norvegicus [130], Sus scrofa [131]) were compared in the Clustal W2 software 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) and relative conservation of the amino acids 

were plotted. Higher values indicate higher levels of conservation. 

DBD- DNA binding domain, AM- automodification, NLS- nuclear localization signal, NoLS- 

nucleolar localization signal, SAP- SAP domain 

 

Figure 3. The three dimensional structure of the catalytic domain of PARP-1 and 

PARP-2. 

Crystal structure of PARP-1 (3GN7) and PARP-2 (3KJD) were retrieved from the protein data 

bank (PDB, www.rcsb.org). Both structures contain an inhibitor (in color), the PARP-1 

catalytic domain is in complex with A861696, while the PARP-2 catalytic domain is in 

complex with ABT-888 [31]. The catalytic cleft and the PARP-2 specific loop is indicated. 

 

Figure 4. Tissue specific functions of PARP-2. 
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Table 1. Transcription factors directly regulated by PARP-2. 

Name Mode of action Effects Model sytem Known tissue 

specificity 

Ref 

ER Unknown Depletion of PARP-2 suppress ER 

activation. 

Luciferase reporter system in PARP-2 

specific shRNS treated HEK293T cells. 

unknown - 

RXR/PPAR Unknown Depletion of PARP-2 enhance PPAR 

activation. 

Luciferase reporter system in PARP-2 

specific shRNS treated HEK293T cells. 

Unknown [59] 

RXR/PPAR Unknown Depletion of PARP-2 enhance PPAR 

activation. 

Luciferase reporter HEK293T in PARP-

2 specific shRNS treated HEK293T 

cells. 

Unknown [59] 

RXR/PPAR Cofactor of 

receptor 

Modulates transcription of PPARtarget 

genes, 

Depletion of PARP-2 leads to WAT 

hypofunction. 

Luciferase reporter system in PARP-2 

specific shRNS treated HEK293T cells; 

PARP-2 knockout mice; embryonic 

fibroblasts from PARP-2 knockout mice. 

White adipose tissue [59] 

SIRT1 Transcriptional 

repressor of the 

SIRT1 promoter. 

 

PARP-2 depletion induces SIRT1 and 

consequently enhance mitochondrial 

biogenesis in skeletal muscle and liver. 

PARP-2 knockout mice; Luciferase 

reporter system in PARP-2 specific 

shRNS treated HEK293T cells; PARP-2 

knockdown C2C12 cells. 

Skeletal muscle, liver [58, 83] 

TTF1 Transcriptional 

cofactor 

Regulates the expression of surfactant 

protein B. 

Luciferase reporter system in PARP-2 

specific shRNS treated HeLa/MLE15 

cells, interaction mapping in mice and in 

cells. 

Lungs [60] 
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