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Abstract. The concept of a canonical number system can be regarded as a natural gener-
alization of decimal representations of rational integers to elements of residue class rings of
polynomial rings. Generators of canonical number systems are CNS polynomials which are
known in the linear and quadratic cases, but whose complete description is still open. In the
present note reducible CNS polynomials are treated, and the main result is the characterization
of reducible cubic CNS polynomials.

1. Introduction

Canonical number systems have been introduced as natural generalizations of the classical
decimal representation of the rational integers to algebraic integers. We refer the reader to [7] for
a detailed account on the historical development and the connections of the concept of canonical
number systems to other theories, e.g. shift radix systems, finite automata or fractal tilings.

Let us briefly recall the main definitions for our purposes here. Consider a monic integral
polynomial P = Xd + pd−1X

d−1 + · · ·+ p0 with p0 6= 0. P is called a CNS polynomial (see [18])
if for every A ∈ Z[X] there exist a0, ..., a` ∈ {0, 1, . . . , |p0| − 1} such that

A ≡ a0 + a1X + · · ·+ a`X
` (mod P ).

In this case, the pair (α, {0, 1, . . . , |P (0)| − 1}) is called a canonical number system (CNS) where
α is a root of P . As the main ingredient of a canonical number system is the CNS polynomial P
we restrict our attention to CNS polynomials.

The characterization of linear and quadratic CNS polynomials is well-known (see e.g. [14, 13,
10, 11]), however, for higher degrees only partial results have been achieved (see e.g. [15, 14,
13, 5, 6, 21, 4, 20, 9]). An important class of reducible CNS polynomials of arbitrary degrees
has systematically been studied by Pethő [19] in connection with integral interpolation. Similar
investigations have been performed by Kane [12].

In particular, the complete description of cubic CNS polynomials is still an open problem.
Therefore, the characterization of reducible cubic CNS polynomials which is the main goal of
this short note (Section 3) seems to be interesting. In Section 2 we collect some observations on
reducible CNS polynomials.

2. On reducible CNS polynomials

It is well-known that a reducible quadratic polynomial is a CNS polynomial if and only if both
factors are CNS polynomials. This equivalence does no longer hold for polynomials of higher
degrees (see e.g. Example 3.3). In the following Proposition we resume some facts on factors of
CNS polynomials.

Proposition 2.1. (i) Let P =
∑d

i=0 piX
i be a non-constant factor of a CNS polynomial.

Then P is expanding (i.e. all of its zeroes have modulus greater than one) and without
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positive roots. Further, for every A ∈ Z[X] there are some n, k ∈ N, k < n such that

Tn(A) ≡ T k(A) mod P

where

T
( m∑

i=0

aiX
i
)

=
m−1∑

i=0

ai+1X
i − ba0

p0
c

d−1∑

i=0

pi+1X
i.

(ii) Let a ∈ N, a ≥ 2 and Q ∈ Z[X] be monic. If (X + a) · Q is a CNS polynomial then
a(Q(0)−Q(1)) ≤ Q(1).

Proof. (i) This is clear by [18], see also [6] and [19].
(ii) Let Q =

∑d
i=0 qiX

i, qd = 1, hence

(X + a) ·Q = Xd+1 +
d∑

i=1

(qi−1 + aqi)Xi + aq0

which immediately yields the assertion by [5, Lemma 4], which is called 1-subsum condition in
[6]. ¤

Now we exploit a fundamental theorem of Kovács - Pethő for the construction of examples
of CNS polynomials of arbitrary degrees which are products of a linear factor and an irreducible
CNS polynomial.

Proposition 2.2. Let m, a, q1 ∈ N, m ≥ 3, a ≥ 2, q1 ≥ 1 and q0 a prime with q0 > mq1. For
i = 1, . . . ,m− 2 set

qi+1 = min
{
mqi,

⌊
(a− 1)qi + qi−1

a

⌋}
.

Then the polynomial

Q = Xm +
m−1∑

i=0

qiX
i

is irreducible, and both Q and (X + a) ·Q are CNS polynomials.

Proof. With qm := 1 we have qi ≤ qi−1 (i = 0, . . . , m). As q0 > mq1 ≥
∑m

i=1 qi the polynomial
Q is irreducible by [17, Proposition 2.6.1]. Finally, by [2, Theorem 3.1] and [3, Theorem 3.4] the
polynomials Q and (X + a) ·Q are CNS polynomials. ¤

3. Reducible cubic CNS polynomials

In this section we completely describe reducible cubic CNS polynomials. Our proof makes
extensive use of the results of [4]. Note that Theorem 3.1 shows that Gilbert’s conjecture [10]
holds for reducible cubic CNS polynomials (see also [4]).

Theorem 3.1. Let a, b, c ∈ Z, a ≥ 2 and P = (X + a)(X2 + bX + c).
(i) Let b2 ≥ 4c. Then P is a CNS polynomial if and only if 3 ≤ b ≤ c.
(ii) Let b2 < 4c. Then P is a CNS polynomial if and only if the following conditions are

satisfied.
(1) a + b ≥ 0
(2) ab + a + b + c ≥ −1
(3) ab + c ≤ 0 =⇒ a + b ≤ ac− 2
(4) 1 ≤ ab + c ≤ ac− 1 =⇒ a + b ≤ ac− 1
(5) ab + c ≥ ac =⇒ a + b ≤ ac.

Proof. (i) Clearly, P has only real roots.
If P is a CNS polynomial then all roots of it are less than −1 by [1], hence c > 0 and

(−b +
√

b2 − 4c
)
/2 < −1

which implies the assertion.
On the other hand, if 3 ≤ b ≤ c then all roots of P are less than −1 and we are done by [8,
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Corollary 5.2].
(ii) If P is a CNS polynomial then all conditions are satisfied by [4, Theorem 3.1].
On the other hand, if the conditions are satisfied then clearly c ≥ 1. We distinguish several cases.
Case I. ab + c ≤ 0.
If ab+ c = 0 we are done by [4, Theorem 3.8]. If ab+ c < 0 then b ≤ −1. Now if ab+ a+ b+ c ≤ 0
we are done by [4, Proposition 3.2]. Therefore, let ab + a + b + c > 0. Then

(ab + c, a + b) 6= 1
3
(−(ac + 1), 2ac− 1

)
,

and a + b < 2ac/3. Thus c ≥ 2 and our assertion follows from [4, Proposition 3.3] (see Appendix,
Proposition 4.2).
Case II. 0 < ab + c ≤ ac− 1.
If a + b ≤ (2ac − 1)/3 we are done by [4, Proposition 3.10]. Therefore, let a + b > (2ac − 1)/3.
Then 3(a + b) ≥ 2ac and c ≥ 2. The assumption c = 2 yields the polynomial X3 + 4X2 + 5X + 6
which is a CNS polynomial by [4, Theorem 3.9]. It is easy to check that c > 2 cannot occur.
Case III. ab + c ≥ ac.
Then we find 4 > c

(
a−1

a

)2 and one checks that c ≥ 6 cannot occur. Thus we are left with 2 ≤ c ≤ 5.
The resulting polynomials and references for their CNS property are listed in Table 1.

c b a P (X)−X3 reference
2 1 2 3X2 + 4X + 4 [4, Theorem 3.9]
2 1 ≥ 2 (a + 2)X2 + 2(a + 1)X + 2a [4, Proposition 3.12]
3 2 2 4X2 + 7X + 6 [4, Proposition 3.12]
3 2 3 5X2 + 9X + 9 [4, Theorem 3.9]
3 3 ≥ 3 (a + 3)X2 + 3(a + 1)X + 3a [4, Proposition 3.12]
4 2 2 4X2 + 8X + 8 [4, Theorem 3.9]
4 3 2 5X2 + 10X + 8 [4, Proposition 3.12]
4 3 3 6X2 + 13X + 12 [4, Proposition 3.12]
4 3 4 7X2 + 16X + 16 [4, Theorem 3.9]

Table 1

¤

Corollary 3.2. (i) The product of three linear CNS polynomials is a CNS polynomial.
(ii) The product of a linear and a quadratic CNS polynomial is a CNS polynomial.

The converse of Corollary 3.2 (ii) does not hold for cubic polynomials with a non-real root as
the following example shows.

Example 3.3. The product of X + 2 and the non CNS polynomial X2 − 2X + 3 (see e.g. [10]) is
a CNS polynomial by Theorem 3.1.

4. Appendix

For the sake of completeness we give a modified statement (see Proposition 4.2 below) and
proof of [4, Proposition 3.3]. Note that for instance the polynomial X3 + 5X2 − 3X + 8 satisfies
the prerequisites of [4, Proposition 3.3], but is not a CNS polynomial by Counterexample (i) of
the same paper.

Lemma 4.1. The polynomial X3 + p2X
2 + p1X + p0 ∈ Z[X] is a CNS polynomial if

p1 ≤ −1, 0 ≤ p2 < min{p0 − 1,
2
3
p0}, 1 + p1 + p2 ≥ 0, and (p1, p2) 6= (−1

3
(p0 + 1),

1
3
(2p0 − 1)).
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Proof. In view of [4, Proposition 3.2] we may restrict to the case p1 + p2 ≥ 1, hence

1 ≤ p2 ≤ 1
3
(2p0 − 1).

If p1− p2 > −p0 then P = X3 + p2X
2 + p1X + p0 ∈ Z[X] satisfies the dominant condition and [6,

Theorem 5.3, Theorem 3.5] and [4] yield our assertion.
Finally, let p1 − p2 ≤ −p0. Then we have

−2
3
p0 +

4
3
≤ p1 ≤ −1

3
p0 − 1

3
,

1
3
p0 +

4
3
≤ p2 ≤ 2

3
p0 − 1

3
, p0 ≥ 5, p1 + 2p2 ≤ p0 − 1.

One checks that the points (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 0, 0), (1, 0,−1), (0,−1, 0),

(0, 0,−1), (−1, 0, 0), (0,−1,−1), (−1, 0, 1), (1, 1,−1), (0, 1, 2), (1, 0,−2), (0, 0, 2), (0, 2, 1), (0, 1,−1)

belong to the set N of elements of Z3 which fall into the zero cycle under the iterates of τP (we
refer the reader to [4] for the definition). Now we distinguish several cases.

Case I. p1 − p2 < −p0

Then p1 ≤ − 1
3p0 − 4

3 , 1
3p0 + 7

3 ≤ p2, 0 < p1 + 2p2 ≤ p0 − 2, hence (1, 2, 1), (2, 1,−1), (1,−1,−1),
(−1,−1, 1), (−1,−1, 0), (1,−1,−2), (−1,−2,−1), (−1, 1, 1), (−1, 1, 2) ∈ N.

Case I.1 2p2 ≤ p0 − 1
Observing (0,−2,−1), (−2,−1, 1) ∈ N we have found a set of witnesses and conclude P is a

CNS polynomial.
Case I.2 2p2 > p0 − 1
Now, (1, 2, 0), (0, 2, 2), (2, 2, 0), (2, 0,−2), (0,−2,−1), (−2,−1, 1), (0,−2,−2), (0, 2, 0), (−2, 0, 2),

(2, 1,−2), (1,−2,−2), (−2,−2, 0), (1, 1, 1), (1, 1,−2), (−1, 2, 2) ∈ N, and we finish our argument as
above.

Case II. p1 − p2 = −p0

Then p1 + 2p2 ≤ p0 − 1.
Case II.1 p1 + p2 = 1
Then p1 = − 1

2p0 + 1
2 , p2 = 1

2p0 + 1
2 , p1 + 2p2 ≤ p0 − 1, hence (−1,−1, 1), (−1, 1, 2), (1, 2, 1),

(2, 1,−1), (1,−1,−1), (−1,−1, 0), (0, 2, 2), (2, 2, 0), (2, 0,−2), (1,−1,−2), (−1,−2,−1),

(0,−2,−1), (−2,−1, 1), (−1, 1, 1), (0,−2,−2), (2, 1,−2), (1,−2,−2), (−2,−2,−0), (−1,−2, 0),

(−2, 0, 2), (1, 1, 1), (1, 1,−2), (−1, 2, 2), (1, 2, 0) ∈ N, and we finish our argument as above.
Case II.2 p1 + p2 > 1
Then 1

2p0 + 1 ≤ p2 ≤ 2
3p0 − 2

3 , − 1
2p0 + 1 ≤ p1, hence (0, 1, 2), (1, 2, 1), (2, 1,−1), (1, 2, 0),

(2, 0,−2), (1,−1,−1), (−1,−1, 0), (−1,−1, 1), (0,−2,−1), (1,−1,−2), (−1,−2,−1),

(−2,−1, 1), (−1−2, 0), (0, 2, 0), (−2, 0, 2), (0,−1, 1), (−1, 1, 1), (−1, 1, 2) ∈ N, and the proof is com-
pleted. ¤

Proposition 4.2. Let P = X3+p2X
2+p1X+p0 ∈ Z[X] with p1 ≤ −1, 0 ≤ p2 < min{p0−1, 2

3p0}
and 1 + p1 + p2 ≥ 0. Then P is a CNS polynomial if and only if p0 ≤ 7 or (p1, p2) 6= (− 1

3 (p0 +
1), 1

3 (2p0 − 1)).

Proof. Let P be a CNS polynomial. Then the assumption p0 > 7 and (p1, p2) = (− 1
3 (p0 +

1), 1
3 (2p0 − 1)) contradicts Counterexample (i) of [4].
If (p1, p2) 6= (− 1

3 (p0 + 1), 1
3 (2p0− 1)) the Lemma 4.1 yields our assertion. Let p0 ≤ 7. If p2 = 0

then we use [4, Proposition 3.2], and if p2 > 0 then we use Lemma 4.1 for (p1, p2) 6= (− 1
3 (p0 +

1), 1
3 (2p0 − 1)) or [6, Theorem 5.3, Theorem 3.5] and [4] for (p1, p2) = (− 1

3 (p0 + 1), 1
3 (2p0 − 1))

because then p0 = 5, p1 = −1, p2 = 3. ¤
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