
T. Herendi / Carpathian Journal of Electronic and Computer Engineering 4 (2011) 55-58 55

Pseudo Random Number Generation on FPGA

Tamás Herendi*,

* University of Debrecen/Faculty of Informatics, Debrecen, Hungary

**

Abstract—The aim of the present paper is to show the
theoretical background of the construction of uniformly
distributed (UD) pseudo random number (PRN) sequences
with good properties and efficient implementation on
FPGA.

I. INTRODUCTION
Pseudo random numbers play an essential role in many

applications, such as simulations, Monte-Carlo methods,
coding and cryptography. There are numerous ways to
produce sequences of pseudo random numbers see e.g.
[4]. The use of linear feedback shift registers (LFSR) for
generating pseudo random bit sequences is a well known
application. It has several advantages and disadvantages,
too. One of the good properties is the very simple
structure of the generators. This gives the possibility for
easy implementation, both on classical architecture
computers and in FPGAs. On the negative side, however,
the sequences contain only single bits and since the
consecutive members have a strong correlation, it is not
possible to construct sequences of several bit numbers
from them, keeping the properties of the original ones.
Knuth in [4] shows that one should be very careful when
combining uniformly distributed (UD) sequences to
achieve a new one, since the new sequence not necessarily
remains UD. Lidl and Niederreiter in [5] give a
generalization of LFSR to finite fields and show a method
for constructing UD sequences in these structures.
However, since they use a more complex algebraic
structure, the implementations of such generators are not
quite simple. In the next chapters, we give a generalization
of LFSR to residue ring structures and show the
possibility of internal representation in the general system.

II. BASIC DEFINITIONS AND PROPERTIES
Definition 1

Let 𝑎𝑎0, … , 𝑎𝑎𝑑𝑑−1 be integers and 𝑢𝑢 = {𝑢𝑢𝑛𝑛}𝑛𝑛=0
∞ is an

infinite sequence of integers, satisfying the recurrence
relation

𝑢𝑢𝑛𝑛+𝑑𝑑 = 𝑎𝑎𝑑𝑑−1𝑢𝑢𝑛𝑛+𝑑𝑑−1 + ⋯+ 𝑎𝑎0𝑢𝑢𝑛𝑛
for any 𝑛𝑛 = 0,1, … Then 𝑢𝑢 is called a linear recurring
sequence (LRS), where 𝑎𝑎0, … , 𝑎𝑎𝑑𝑑−1 are the coefficients
and 𝑢𝑢0, … , 𝑢𝑢𝑑𝑑−1 are the initial values of 𝑢𝑢.

The order of the recurrence is 𝑑𝑑 and the corresponding
characteristic polynomial is

𝑃𝑃(𝑥𝑥) = 𝑥𝑥𝑑𝑑 − 𝑎𝑎𝑑𝑑−1𝑥𝑥𝑑𝑑−1 −⋯− 𝑎𝑎0 .

Definition 2
Let 𝑢𝑢 be the integer LRS defined by the coefficients

𝑎𝑎0, … , 𝑎𝑎𝑑𝑑−1 and initial values 𝑢𝑢0, … , 𝑢𝑢𝑑𝑑−1.
Denote by

𝑢𝑢�𝑛𝑛(𝑘𝑘) = (𝑢𝑢𝑛𝑛 , … , 𝑢𝑢𝑛𝑛+𝑘𝑘−1)

the 𝑛𝑛𝑡𝑡ℎ 𝑘𝑘-dimensional state vector and by

𝑀𝑀(𝑢𝑢) =

⎝

⎜
⎛

0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0
0 0 … 0 1
𝑎𝑎0 𝑎𝑎1 … 𝑎𝑎𝑑𝑑−2 𝑎𝑎𝑑𝑑−1⎠

⎟
⎞

the companion matrix of 𝑢𝑢.

Remark
With the above notations we may write

𝑢𝑢�𝑛𝑛(𝑑𝑑) = 𝑀𝑀(𝑢𝑢)𝑛𝑛𝑢𝑢�0(𝑑𝑑).

Definition 3
Let 𝑢𝑢 be a sequence of integers and 𝑠𝑠 be an integer. We

say that 𝑢𝑢 reduced modulo 2𝑠𝑠 is periodic with period
length 𝜌𝜌, if there exists a positive integer 𝜌𝜌0, such that
𝑢𝑢𝑛𝑛 ≡ 𝑢𝑢𝑛𝑛+𝜌𝜌 mod 2𝑠𝑠, i.e. 𝑢𝑢𝑛𝑛 and 𝑢𝑢𝑛𝑛+𝜌𝜌 has the same residue
divided by 2𝑠𝑠, for all 𝑛𝑛 ≥ 0. The least such 𝜌𝜌 is called the
minimal period length of the sequence.

If 𝜌𝜌0 = 0 then 𝑢𝑢 is called purely periodic.

Remark
Let 𝑢𝑢 be LRS of integers. By definition, 𝑢𝑢 reduced by 2𝑠𝑠

is periodic for any positive 𝑠𝑠.

Remark
If we set 𝑠𝑠 = 1 in Definition 3, we arrive to the

mathematical model of the well known LFSR. Here the
coefficients of the recurrence are 0 and 1. The practical
meaning is that the values in registers corresponding to
coefficients equal to 1 are fed back through an exclusive
or filter while the values in registers corresponding to
coefficients equal to 0 are simply stored for future use.

Definition 4

Let 𝑢𝑢 be a sequence of integers and 𝑠𝑠 be a positive
integer. We say that 𝑢𝑢 is uniformly distributed (UD)
reduced modulo 2𝑠𝑠, if

𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁→∞

1
𝑁𝑁

#{𝑛𝑛 ≤ 𝑁𝑁|𝑢𝑢𝑛𝑛 ≡ 𝑎𝑎 mod 2𝑠𝑠} =
1
2𝑠𝑠

for all integers 𝑎𝑎, i.e. if we observe a reasonable long
segment of the sequence, the relative frequencies of the
residues derived from the members of the sequence by
reducing modulo 2𝑠𝑠 are close to each other.

Remark

In the case of the most common LFSR (𝑠𝑠 = 1) the UD
property implies that the relative frequency of the 0s (and

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/160945803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

T. Herendi / Carpathian Journal of Electronic and Computer Engineering 4 (2011) 55-58 56

ISSN 18474 – 9689

Figure 1. LFSR with 6 register

similarly the relative frequency of 1s) are approaching
0.5 .

Remark

General conditions for the UD of LRSs can be found in
[6], [7], [1] and [2].

III. THEORETICAL BACKGROUND

The main idea of the presented construction of PRN

generators is that we choose an initial UD sequence and
try to extend to some more complex one. In our case the
basic generator is a proper LFSR which is converted by a
simple but high time complexity transformation.

Example

Fig. 1 shows an LFSR composed from 6 storage
registers and 4 XOR gates. Sending [0,0,0,0,0,1] to the
input, located on the left, one get

[0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
0, 1, 0, 0, 1, 0, 0, 0, 1, 1,
0, 0, 0, 0, 0, 1, 0, 1, 1, …]

on the output, located on the right. The sequence repeats
from the fourth line. The period length of the repetition is
30. The formal description of the shift register is

𝑢𝑢𝑛𝑛+6 = 𝑢𝑢𝑛𝑛+4 ⊗ 𝑢𝑢𝑛𝑛+3 ⊗ 𝑢𝑢𝑛𝑛+2 ⊗ 𝑢𝑢𝑛𝑛+1 ⊗ 𝑢𝑢𝑛𝑛 ,
where ⨂ denotes the XOR operation.

The mathematical model of the sequence is
𝑢𝑢𝑛𝑛+6 = 𝑢𝑢𝑛𝑛+4 + 𝑢𝑢𝑛𝑛+3 + 𝑢𝑢𝑛𝑛+2 + 𝑢𝑢𝑛𝑛+1 + 𝑢𝑢𝑛𝑛 mod 2 .

Here the order 𝑑𝑑 of the recurrence is 6, while the
characteristic polynomial is

𝑃𝑃(𝑥𝑥) = 𝑥𝑥6 − 𝑥𝑥4 − 𝑥𝑥3 − 𝑥𝑥2 − 𝑥𝑥 − 1 .
By general theory, one can prove that 𝑢𝑢𝑛𝑛 is UD modulo

2, which can be checked by counting the members of the
sequence (any consecutive subsequence of length 30
contains exactly 15 0′𝑠𝑠 and 15 1′𝑠𝑠).

There are two weakness of the above defined sequence:
first, its period is rather short and second, the generation
of numbers greater than 1 is possible only by tying
together some 𝑘𝑘 bits using a proper selection method, e.g.
the 𝑘𝑘 consecutive members of the sequence. However, the
computed number sequence looses the UD property. Both
problem can be solved using the following results.

Definition 5

An LFSR (or in general an LRS) with initial values

[0,0, … ,0,1] is called an impulse response sequence (IR).

Theorem 1
Let 𝑢𝑢 be an IR LRS of integers with characteristic

polynomial
𝑃𝑃(𝑥𝑥) ≡ (𝑥𝑥 + 1)2𝑄𝑄(𝑥𝑥) mod 2 ,

where 𝑄𝑄(𝑥𝑥) is a degree 𝑘𝑘, modulo 2 irreducible
polynomial. Then 𝑢𝑢 is UD modulo 2. Choosing 𝑄𝑄(𝑥𝑥) with
a little care, 𝑢𝑢 have period length 2𝑘𝑘+1 − 2.
The proof of Theorem 1 can be found in [2].

Remark

Thanks to Theorem 1, theoretically, one can simply
create an UD LRS generated by an LFSR with long
period. Choosing the degree of 𝑄𝑄(𝑥𝑥) to be large enough,
the period length of the sequence became reasonable. For
instance, set 𝑘𝑘 = 1000 then the period length is 21001 −
2, which is approximately 10302 .

For the construction of pseudo random number (PRN)

sequences the following result is important.

Theorem 2
Let 𝑄𝑄(𝑥𝑥) be an irreducible polynomial modulo 2 of

degree 𝑘𝑘 and let
𝑃𝑃(𝑥𝑥) ≡ (𝑥𝑥 + 1)2𝑄𝑄(𝑥𝑥) mod 2 .

Further, let
 𝑃𝑃1(𝑥𝑥) = 𝑃𝑃(𝑥𝑥),
 𝑃𝑃2(𝑥𝑥) = 𝑃𝑃(𝑥𝑥) − 2,
 𝑃𝑃3(𝑥𝑥) = 𝑃𝑃(𝑥𝑥) − 2𝑥𝑥,
 𝑃𝑃4(𝑥𝑥) = 𝑃𝑃(𝑥𝑥) − 2𝑥𝑥 − 2 ,
and the corresponding IR LRSs are 𝑢𝑢(1), 𝑢𝑢(2), 𝑢𝑢(3)

és 𝑢𝑢(4) , respectively.
Then exactly one of the sequences 𝑢𝑢(𝑖𝑖) is UD reduced

modulo 2𝑠𝑠 for all 𝑠𝑠 ≥ 1. With a proper 𝑄𝑄(𝑥𝑥) we can
assume, that the period length of the sequences are
2𝑠𝑠(2𝑘𝑘+1 − 2) .
The proof of Theorem 2 can be found in [2].

Remark

By Theorem 2, if we find the LRS 𝑢𝑢(𝑖𝑖) with the strong
UD property, then the sequence reduced modulo 2𝑠𝑠
provides pseudo random integers of 𝑠𝑠 bits.

IV. ALGORITHM
The algorithm, presented below, based on the previous

results and on their proofs, lets us to construct LRSs
which are UD modulo 2s for all s ≥ 1.
Step 1.

Choose a suitable integer k and find a monic
polynomial Q(x) of degree k, which reduction modulo 2
is irreducible. If k is a so called Mersenne-prime, the
search for a proper Q(x) is more simple. Let = 2k − 1 .
Step 2.

Calculate the polynomial

T. Herendi / Carpathian Journal of Electronic and Computer Engineering 4 (2011) 55-58 57

ISSN 18474 – 9689

Figure 2. The LRS generator un+d=ad-1un+d-1+…+a0un

P(x) = xk+2 − pk+1xk+1 − ⋯− p0
by the relation

P(x) ≡ (x + 1)2Q(x) mod 2 ,
where the coefficients p0, … , pk+1 ∈ {0,1} and let

P′(x) ≡ (x + 1)Q(x) mod 2 .
Further, let

 P1(x) = P(x),
 P2(x) = P(x) − 2,
 P3(x) = P(x) − 2x,
 P4(x) = P(x) − 2x − 2.

Step 3.
Calculate the companion matrices M(i) corresponding to

the characteristic polynomial Pi(x). Check for which i the
relation M(i)1� ≡ 1� mod 4 holds. Keep the two matrices
which satisfy the congruence and denote them by M1 and
M2 .
Step 4.

Compute the matrix (M1)2ρ mod 4. If (M1)2ρ ≡
E mod 4, where E is the unit matrix, then the sequence we
are looking for is the LRS given by the recurrence relation
corresponding to M2, otherwise it is the LRS given by the
recurrence relation corresponding to M1.

Remark

The proofs of the theorems and correctness of the
algorithms and the detailed construction of LRSs can be
found in [2].

Remark

The most time consuming part of the algorithm is the
computation of (𝑀𝑀1)2𝜌𝜌 mod 4. If the value of 𝑘𝑘 is around
1000, then we have to multiply 1000 times matrices of the
size 1000𝑥𝑥1000.

V. IMPLEMENTATION
The practical use of LRSs as PRN generators rise two

issues. First, one has to find the parameters of a suitable
LRS. Second, if one has the parameters of a proper LRS,
it is still question how to compute the members of the
sequence.

To find the coefficients of a good generator, as it was
mentioned before, is a time consuming task. At the present
state of technology, using a single processor (single core)
computer one can check the UD property of a given LRS
within a reasonable time (i.e. in a few weeks) for about
𝑘𝑘 = 10000. However, [3] describes a construction for an
FPGA which increases the speed of the computations by a
factor around 1000. The design developed in the paper
uses tiny processors for computing dot product of vectors
of small integers. 400 of the mentioned processors are
connected to a network to compute row-column
combinations of matrices. Since the storage capacity of
an FPGA is rather limited, the most difficult problem
during the execution is to move a large amount of data to
the processing units in time. Organizing the order of
computation of partial products and data flow, however,
make it possible that all important units can work
continuously. It makes the design very effective, which

yields, that either the running time can be reduced to some
hours or the size of the recurrence can be increased to
30000, which provides already an extremely huge PRN
generator with period length more than 230000 .

Theoretically and finally in practice, we are able to
calculate parameters of large LRSs for PRN generator
purposes. Although the computation of the members of a
LRS is a very simple as an algorithmic problem, the
length of the core of the generator causes the reduction of
the speed of the calculation. For example, if we want to
use a recurrence of order 10000 for integers with 1024
bits, we have to store 10000 numbers of 128 bytes and
determining the next member of the sequence, depending
on the properties of the coefficients, we have to apply
approximately 5000 addition on numbers of the given
size. The amount and structure of operations one have to
execute during computation of the sequence immediately
bring the possibility of parallelization into sight.
Furthermore, since the applied operations are quite simple,
one feels that the abilities of a complex processor are
unexploited. If one could produce small reduced
instruction set processors, the efficiency will increase and
the space occupied by one unit decreases. Using an FPGA
is ideal for these requirements.

In the case of LFSRs, it is well known, that
reorganizing the connections of the structure can
considerably decrease the number of necessary clock
cycles. If one implements them directly by the definition
the result is the so called external LFSR representation.
The speed of this representation strongly depends on the
speed of the applied operation (in this case it is the XOR).
The efficiency of the external representation can be
increased by the use of operation networks. Furthermore,
the internal representation of an LFSR reduces the
operational time to one clock cycle.

Implementation of general LRS generators
The general LRS generators can have similar physical

structure as the LFSRs, substituting the flip-flops by
storage registers and the XOR gates by operational
components. However, here some extra unit should be
added for the realization of multiplications. Fig. 2 shows
the flow chart of the generator, corresponding to the
recurrence relation

𝑢𝑢𝑛𝑛+𝑑𝑑 = 𝑎𝑎𝑑𝑑−1𝑢𝑢𝑛𝑛+𝑑𝑑−1 + ⋯+ 𝑎𝑎0𝑢𝑢𝑛𝑛 .

If the additive operation has associative and
commutative properties (as the usual addition and modular
addition have) we can redraw again the structure to an
operation network. (See Fig. 3) Such a network provides
the result of operations in logarithmic time in the best
case, compared to the sequential execution. In general, the
construction of an operation network would require more
space than the serial one, but thanks to the special
algebraic properties, in our case there are no increase in
the area used by the components. One has to be careful,

T. Herendi / Carpathian Journal of Electronic and Computer Engineering 4 (2011) 55-58 58

ISSN 18474 – 9689

Figure 4. Internal representation of a LRS generator

un+d=ad-1un+d-1+…+a0un

Figure 3. Network of associative and commutative operations

however, with the increasing amount of interconnections.
Further improvement can be achieved by generalization

of the internal representation of LFSRs to the universal
case.

Theorem 3

Let 𝑢𝑢 be a LRS generated by the recurrence relation
 𝑢𝑢𝑛𝑛+𝑑𝑑 = 𝑎𝑎𝑑𝑑−1𝑢𝑢𝑛𝑛+𝑑𝑑−1 + ⋯+ 𝑎𝑎0𝑢𝑢𝑛𝑛 (1)

and let the vector sequence 𝑣𝑣 be defined by the
following

 𝑣𝑣0
𝑛𝑛 = 𝑎𝑎0𝑢𝑢𝑛𝑛−1

 𝑣𝑣1
𝑛𝑛 = 𝑎𝑎0𝑢𝑢𝑛𝑛−2 + 𝑎𝑎1𝑢𝑢𝑛𝑛−1

…
 𝑣𝑣𝑑𝑑−2

𝑛𝑛 = 𝑎𝑎0𝑢𝑢𝑛𝑛−𝑑𝑑+1 + ⋯+ 𝑎𝑎𝑑𝑑−2𝑢𝑢𝑛𝑛−1
 𝑣𝑣𝑑𝑑−1

𝑛𝑛 = 𝑎𝑎0𝑢𝑢𝑛𝑛−𝑑𝑑 + ⋯+ 𝑎𝑎𝑑𝑑−2𝑢𝑢𝑛𝑛−2 + 𝑎𝑎𝑑𝑑−1𝑢𝑢𝑛𝑛−1 .
Then

 𝑢𝑢𝑛𝑛 = 𝑣𝑣𝑑𝑑−1
𝑛𝑛 (2)

and
 𝑣𝑣𝑖𝑖𝑛𝑛 = 𝑣𝑣𝑖𝑖−1

𝑛𝑛 + 𝑎𝑎𝑖𝑖𝑢𝑢𝑛𝑛−1 . (3)

Proof.

Substituting 𝑛𝑛 − 𝑑𝑑 for 𝑛𝑛 in (1) we obtain
 𝑢𝑢𝑛𝑛 = 𝑎𝑎𝑑𝑑−1𝑢𝑢𝑛𝑛−1 + ⋯+ 𝑎𝑎0𝑢𝑢𝑛𝑛−𝑑𝑑 . (4)

The right hand side of this equation is just the definition of
𝑣𝑣𝑑𝑑−1

𝑛𝑛 , which proves (2).
Let fix 𝑖𝑖. Substituting the definition of 𝑣𝑣𝑖𝑖−1

𝑛𝑛 in (3) we get
the equation of the definition of 𝑣𝑣𝑖𝑖𝑛𝑛 , which proves (3).

The corollary of Theorem 3 is that the internal

representation of LFSRs can be generalized to arbitrary
LRS. This gives the possibility of implementation of a
LRS as it is shown on Fig. 4.

The physical realization of a LRS generator on FPGA

still has some limitations. If we want to produce a
sequence of 1024-bit integers, we have to place on the
device 1024-bit adders. The space on even the largest
FPGAs enables only a few of such an adder to implement.
The solution to this problem is that we execute only a
segment of the addition at once and then shift the
sequence to the adder chain again. The result is an
approximately 100 times faster generator than one can
create on a conventional computer.

Finding special recurrences with sparse coefficients
decrease the need for additions and hence increase the
speed of computations of the next members of the
sequence.

ACKNOWLEDGMENTS
Research supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-
0007 project and TARIPAR3 project grant Nr. TECH 08-A2/2-
2008-0086

REFERENCES
[1] T. Herendi “Uniform distribution of linear recurring sequences

modulo prime powers”, Journal of Finite Fields and Applications,
vol.10, 2004, pp. 1–23

[2] T. Herendi “Construction of uniformly distributed linear recurring
sequences modulo powers of 2”, in press

[3] T. Herendi and S.R. Major “Modular exponentiation of matrices
on FPGA-s”, in press

[4] D.E. Knuth, The art of computer programming, Addison-
Wesley,1973

[5] R. Lidl, H. Niederreiter, Introduction to finite fields and their
applications, Cambridge University Press, 1986

[6] H. Niederreiter, J.S.Shiue “Equidistribution of linear recurring
sequences in finite fields”, Indag. Math., vol. 39, 1977 pp. 397--
405

[7] H. Niederreiter, J.S.Shiue “Equidistribution of linear recurring
sequences in finite fields II”, Acta Arith., vol. 38, 1980, pp. 197—
207

	Introduction
	Basic definitions and properties
	Theoretical background
	Algorithm
	Implementation
	Implementation of general LRS generators
	Acknowledgments
	References

