Region management toolkit for atlas-space image processing

T. Spisák¹, M. Koselák¹, G. Opposits¹, S. A. Kis¹, L. Trón¹, A. Jakab², E. Berényi², M. Emri¹;

¹Department of Nuclear Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary,

²Department of Biomedical Laboratory and Imaging Science, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.

Purpose of the software: Digital brain atlases offer a prominent solution for the anatomical localization of the physiological characteristics and pathological disorders of the brain investigated by MRI studies. The choice of the appropriate region system is a cardinal issue in various image processing tasks emerging by studies on relationships of brain structure, function or connectomes. The purpose of the presented software package is to afford a complex region management toolkit and provide the opportunity of constructing special, easily exportable region systems based on the regions of multiple brain atlases.

Methods/Implementations/Hardware Requirements: Using the multi-atlas framework developed in our institute, regions of various brain atlases can be collected and used simultanously. To merge these and optionally other user-defined regions to a uniform region system adaptable for arbitrary atlas-space image processing tasks some general and more specific set operations were implemented. The software is built upon the MultiModal Medical Imaging software library system (www.minipetct.hu) and runs on Windows 7 and Windows Xp operation systems and various Linux distributions. The hardware requirements of the application match the current average PC configurations used in medical image analysis.

Features illustrated at the exhibit: Our institutional brain connectivity research project is highly promoted by the presented system. At the exhibit the features of the software are presented by constructing multi-atlas based bilateralized region systems specially adaptable for brain connectivity analysis based on resting state fMRI and DTI data.