
Hardware Implemented Neural Networks used for
Hand Gestures Recognition

S. Oniga*, I.Orha**
*University of Debrecen/Informatics Systems and Networks, Debrecen, Hungary, oniga.istvan@inf.unideb.hu

** North University of Baia Mare/Electronic and Computer Engineering, Baia Mare, Romania, ioan.orha@ubm.ro

Abstract— This paper presents hardware implementation of
Artificial Neural Networks (ANN) that are used for human
hand’s natural gestures recognition. Main goal of this
project is to implement a recognition system that recognizes
data gathered from various sensors placed on a bracelet.
This easy to use interface can be used even by elderly or
impaired people to control electronic/electric devices only
with hand gestures.

Keywords: Neural networks, FPGA, Gesture recognition.

I. INTRODUCTION

Today's user interfaces it seems to be not enough
natural, because of the lack of adaptation and learning
capabilities. That’s why the main goal of this project is to
implement an easy to use interface that can be used even
by elderly or impaired people. The data gathered from
various sensors placed on a bracelet is sent in raw form,
via radio waves to the control unit based on field
programmable gate arrays (FPGA).

The use of neural networks to add learning and adaptive
behavior is essential and the FPGA implementation is an
easy an attractive way for hardware implementation.

This paper presents the successful implementation in
FPGAs of some FF-BP neural networks with neuron
parallelism used in pattern recognition tasks.

The network design was carried out using the System
Generator tool for Simulink, developed by Xilinx Inc.,
which is also used to generate the hardware Description
Language (HDL) code for the network.

The presented interface can be used in medical
applications or in ambient assisted applications. Among
possible applications are:

• smart devices with embedded and hidden
intelligence, for the prosthetic, automotive,
“domotic” and automation field where the trend
is to produce easy-to-use devices

• intelligent computer peripherals enabling people
with any kind of handicap to use computer and
communicate,

any kind of industrial or domestic device with learning
and adaptive capabilities.

II. GESTURE BASED CONTROL SYSTEM

This paper presents a part of a larger project that offers
a solution under the form of a universal HMI: a bracelet.
The gestures based control system is composed by two
subsystems that communicated via radio waves (Figure 1).

Figure 1. Gesture based control system

The first subsystem is a bracelet (Fig. 2) that captures
the movement of the hand using accelerometers. The
accelerometer chosen for implementation is ADXL345
from Analog Devices due to its 13 bits resolution and the
ability to measure acceleration up to 16 g. These data is
transmitted to the second subsystem via radio waves
(communication range easily covers a house). The data are
sent in raw form, data processing being done on the
second subsystem. The bracelet is equipped with an
Atmega168 microcontroller that receives data from the
accelerometer and relays these data to the control box
subsystem using an At86RF212 radio transceiver.

The second subsystem is the control box on which the
data processing takes places. The data received by radio
waves are processed using artificial neural networks in
order to recognize hand gestures. These hand movements
allow the user to navigate into a menu displayed onto a
computer screen or a TV. The menu entries are real world
actions that can control electronic devices directly through
relays or through X10 network (existing power lines).
These menu entries are highly configurable and easy to
change because are stored on a SD card.

The control box is built around a Spartan 3E FPGA
board (Nexys 2 from Digilent Inc). This assures easy
upgrade and a cheap yet powerful platform for data
processing and ANN hardware implementation. Also it
can be successfully used as glue logic between the
different types of input and output protocols.

Figure 2. The bracelet

The FPGA board has a VGA output that is used for

displaying the menu on any VGA compatible monitor or
using an external converter even on a TV set. SPI protocol
is used to access the SD card. The FPGA board has a
build in serial port that is used for communicating with an
X10 controller (CM11 from Marmitek). The controller
transmits commands through power lines to any X10
compatible receivers in order to control household
appliances.

III. HAND GESTURE

The number of gestures that need to be recognized
depends on the field of the application:

 To manipulate in a 3D virtual space, 3 gestures
are normally sufficient: grab, start, stop,

 In more complex systems, 5 to 10 gestures need
to be recognized,

 In order to recognize the sign language 26 to 51
gestures must be taken into consideration.

The navigation in the menu is done with different hand

movements: front, back, left, right. These movements can
be replaces by inclining the bracelet, especially for those
impaired. The purpose of this work is to create a system
capable of recognizing 5 gestures used to navigate through
a menu which is displayed on a screen.

 horizontal = idle
 front (up) = enter in submenu or activate the

attached command
 back (down) = exits from current menu and go

back to the parent menu
 left, right = navigate within the menu left/right

The menu consists of different entries that can have an

external action attached, meaning that different electronic
devices can be controlled by accessing the menu and
select the appropriate action, eg: the light is turn on by
selecting the TURN LIGHT ON option from the menu.
The front movement of the hand enters a submenu of the
current menu or activates an external action (if attached);
the back movement exits from a menu to the parent menu,
the left and right movements navigate within the menu
left/right.

Sample of data representing different types of gesture
provided by the bracelet are shown in Table 1.

IV. GESTURE RECOGNITION METHODS

From amongst the known methods of recognition, the
solution that utilizes neural network was chosen, because
it offers the best results regarding the functioning
precision.

There are several methods used to recognize gestures,
including angle filtering, statistical methods, principal
component analysis, neural networks, testing pattern
proximity, etc. These methods can be divided into two
large groups: those that can learn to recognize simple
gestures and those that cannot.

Well known for their success in the recognition of
patterns, the neural networks are being used in numerous
gesture recognition systems. There are multiple
advantages that the neural networks have to offer.
Training based on examples, recognizing gestures even if
noise is present or the data is incomplete, and last but not
least the generalization. This last characteristic plays a
crucial role in the systems performance due to the fact that
not even the same user will reproduce its gestures
accurately.

It is difficult to compare the recognition methods
because the implemented systems do not work with the
same gestures and were not tested in the same way, etc.
Even so, it is obvious that the recognition method that
uses neural networks offers the best recognition rate.

V. NEURAL NETWORK DESIGN

The neural networks used to recognize gestures are
different depending on the gestures that had to be
recognized

The desired network architecture is simulated using
Neural Network Toolbox, the neural network weights are
saved in a file and will be loaded automatically from
Matlab workspace to weight (ROM) memory of the
hardware model represented in Simulink. Many networks
architecture trained with different methods could be
simulated and the network that is best performing for
given application is chosen for hardware implementation.

The design and implementation of the hardware model
is made using System Generator and Xilinx ISE.

A. Neural Network Model in Simulink
In order to choose a NN capable to recognize as

accurately as possible the gestures of a hand, several types
of NN were simulated, as well as combination of these.
Finaly we have chosen a feedforward with 2 layers
architecture:

 First layer has 20 neurons and sigmoid activation
function

 The second layer has 5 neurons purelin activation
function.

The software (Simulink) model of the neural network
designed, trained and simulated using Neural Network
Toolbox is presented in Fig. 3.

y{1}1

Input 1

x{1}1

purel innetsum1

netsum logsig

bias

b{2}

bias

b{1}

a y

Process Output 1

x p

Process Input 1 weight

LW{2,1}

weight

IW{1,1}

Figure 3. Software model of the ANN used to recognize hand gestures

TABLE I.
DATA SAMPLES

Horizontal Right Left Front Back

Sensor 1 26 3600 12784 15 16383

Sensor 2 13 16367 38 3600 12784

Sensor 3 47 4118 12198 26 16215

Sensor 4 23 16354 67 4183 12246

Sensor 5 6178 9203 38 3612 12876

1 2 3 4 5 6

1

2

3

4

5

Figure 4. Simulation results of the neural network

Training of the NN was made using TRAINLM
Levenberg-Marquardt backpropagation training function
and a data set consisting in 1500x5 vectors.

Fig. 4 shows the simulation results of the NN used for
gestures recognition. Simulation of the network was made
using 6x5 vectors data set. It could be seen that for each
applied set of vectors (from 1 to 6 on horizontal) only one
neuron output is active. Number of neuron represents the
number of the gestures that was recognized. For the first
set, gesture 5 for the second gesture 4, and so on. For the
last set of vectors once again gesture number 5 was
recognized.

B. Hardware Implementation
The designed neuron model in System Generator (Fig.

5) is equivalent with the well know McCulloch-Pitts
model and implement (1).

 



N

1i
ii)xw(f)a(f)x(y  . (1)

The model was implemented using blocks from Xilinx
Blockset library and user created blocks. Among the
blocks created can be mentioned:

 Weights memory (ROM)
 MAC block (weighted sum)
 Bias block
 Activation function block.

The activation function block is common to all the
neurons and is implemented using look-up tables.

Using this model for a neuron we have implemented in
hardware the model presented in Fig. 3. The complete
model of the ANN used for gesture recognition is
presented in Fig. 6.

The A NN is composed of following blocks:
• Control blocks
• Input layer
• Preprocessing (normalization)
• Hidden layer (20 neurons)
• Activation function block,
• Output layer (5 neurons)

Figure 5. The hardware implemented neuron model

Figure 6. Neural network model in System Generator

a) Outputs of the neurons from the output layer

b) Detail on the computation for the gesture No. 3

Figure 7. Simulation of the hardware model of the ANN

VI. RESULTS

A. Simulations
The results obtained simulating the hardware model of

ANN are presented in Fig. 7. Fig. 7a. presents the outputs
of neurons from second (output) layer. For a given input
only one output is active, those corresponding to the
recognized gesture. Fig. 7b. presents a details on the
computation for gesture nr. 3.

B. Resources
The estimated resources used for the implementation of

a neuron using full precision of the multipliers and
accumulators are presented in Fig. 8.

Figure 8. Resource estimation for implementation of a neuron

The resources depend in a grate measure on the number
of bits used to represent data and weights. The shown data
are for 14 bits representation of data and 16 bits used for
weights. The multiply-accumulate operation is the
bottleneck of NNs implementation in FPGA, because
requires a large amount of logic blocks. Using various
techniques presented in [8] regarding the reduction of
number of bits that the multiplier and the accumulator use,
the resource needed for the implementation of a neuron
could be as low as 12-22 slices.

The resources needed to implement the 25 neurons FF-
BP ANN with neuron parallelism using full precision in a
Spartan 3E XC3S500E are presented in the Fig. 9.

Figure 9.

In a bigger device having some hundreds to 2128 DSP
blocks and BRAMs we can implement hundreds and even
some thousands of neurons with neuron parallelism

VII. CONCLUSIONS

This paper presented the successful implementation of
some simple FF-BP neural networks with neuron
parallelism used in model classification tasks.

The implemented network has as many processing
blocks as neurons are within the network, and only one
activation function block per layer.

This network correctly recognizes all the training and
test vectors supplied.

The maximum number of competitive neurons that can
be implemented into a Spartan 3E device could be from
some tens to some hundreds.

For larger networks and higher working frequencies,
lager FPGA devices with higher working frequencies can
be used.

For example, the Virtex 6 family contains over 2000
DSP blocks and over 74000 slices, which would allow the
implementation of over 2000 neurons.

REFERENCES
[1] L. Marchese, “Digital neural network based smart devices”,

Project proposal, FP7 European Research Program,
http://www.synaptics.org, December 2006, unpublished.

[2] S. Oniga, A. Tisan, C. Lung, A. Buchman, I. Orha, Adaptive
hardware-software co-design platform for fast prototyping of
embedded systems, Optimization of Electrical and Electronic
Equipment (OPTIM), 2010 12th International Conference on,
2010 , Brasov, Romania, pp: 1004 – 1009.

[3] S. Oniga, A. Tisan, D. Mic, C. Lung, I. Orha, A. Buchman, A.
Vida-Ratiu, “FPGA Implementation of Feed-Forward Neural
Networks for Smart Devices Development”, Proceedings of the
ISSCS 2009 International Symposium on Signals, Circuits and
Systems, July 9-10, 2009, Iasi, Romania, pp. 401-404

[4] A. Tisan, S. Oniga, A. Buchman, C. Gavrincea, “Architecture and
Algorithms for Synthesizable Neural Networks with On-Chip
Learning”, International Symposium on Signals, Circuits and
Systems, ISSCS 2007, July 12-13, 2007, Iasi, Romania, vol.1, pp
265 – 268.

[5] J. Torresen, Sh.Tomita, „A Review of Implementation of
Backpropagation Neural Networks”, Chapter 2 in the book by N.
Sundararajan and P. Saratchandran (editors): Parallel
Architectures for Artificial Neural Networks, IEEE CS Press,
1998. ISBN 0-8186-8399-6

[6] J. Zhu, P. Sutton, „FPGA Implementations of Neural Networks – a
Survey of a Decade of Progress”, Proceedings of 13th
International Conference on Field Programmable Logic and
Applications (FPL 2003), Lisbon, Sep 2003

[7] S. Dragici, “On the capabilities of neural networks using limited
precision weights”, Neural networks, Volume 15 , Issue 3, April
2002 pp. 395-414

[8] S. Oniga, A. Tisan, D. Mic, A. Buchman, A. Vida-Ratiu,
“Optimizing FPGA implementation of feed-forward neural
networks”,, Proceedings of the 11th International Conference on
Optimization of Electrical and Electronic Equipment OPTIM
2008, 2008, Brasov, Romania, May 22-23, pp. 31-36.

