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Competition of information channels in the spreading of innovations
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We study the spreading of information on technological developments in socioeconomic systems where the
social contacts of agents are represented by a network of connections. In the model, agents get informed about the
existence and advantages of new innovations through advertising activities of producers, which are then followed
by an interagent information transfer. Computer simulations revealed that varying the strength of external driving
and of interagent coupling, furthermore, the topology of social contacts, the model presents a complex behavior
with interesting novel features: On the macrolevel the system exhibits logistic behavior typical for the diffusion of
innovations. The time evolution can be described analytically by an integral equation that captures the nucleation
and growth of clusters of informed agents. On the microlevel, small clusters are found to be compact with a
crossover to fractal structures with increasing size. The distribution of cluster sizes has a power-law behavior
with a crossover to a higher exponent when long-range social contacts are present in the system. Based on
computer simulations we construct an approximate phase diagram of the model on a regular square lattice of
agents.
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I. INTRODUCTION

Technological evolution of socioeconomic systems has
two major components [1–4]: (1) Innovation—New products,
ideas, and paradigms emerge as a result of innovations, which
are then tested by the market. (2) Spreading—Successful
technologies spread over the system, resulting in an overall
technological progress. The understanding of the technological
progress of socioeconomic systems requires the analysis of
the complex dynamics of several levels from the interaction
of firms investing in research and doing production [5–7],
through the emergence of new ideas captured by the network
of patents [8], down to the level of individuals that use the
newly developed products [9–12]. A crucial element of the
diffusion of technological advancements is the spreading of
information about the existence and advantages of the newly
developed technology. This process is usually initiated by
the advertising activities of producers and providers of the
new product, resulting in a vertical information flow into
the system. Next, information is transmitted laterally through
the communication of individuals.

The effect of word-of-mouth communication on the spread-
ing of information in socioeconomic systems has recently been
studied to explain the emergence of extreme market shares.
This phenomenon means that in certain markets either hits or
failures of newly introduced products appear [13,14]. It was
shown that social percolation occurring due to information
transmission through social contacts and to quality adjustment
of producers can be responsible for extreme market shares.
Such systems were found to evolve toward self-organized
criticality in the vicinity of the percolation threshold [14].
The model of social percolation was further extended by
considering the effect of mass media that acts as an external
information source, however, only at the beginning of the
spreading process [15]. Diffusion of innovations also involves
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components analogous to opinion spreading and consensus
formation [9–12,16–27]. As an example, telecommunica-
tion technologies can be mentioned, where the usage of
a technology assumes that the communication partners are
approximately at the same technological level [1,9–12,19,20].

In the present paper we focus on the spreading of infor-
mation in socioeconomic systems about the availability and
advantages of new products investigating the competition
of the vertical and horizontal information channels. The
system is modeled as a collection of agents whose social
contacts have a complex network topology. Compared to
other modeling approaches of technological progress [1–8],
here agents represent individuals that are potential users of
newly developed technologies. The behavior of agents is
captured by two parameters that characterize their response
to the external driving due to advertising activities, and to
the word-of-mouth communication with their social partners.
Analytic calculations and computer simulations revealed a
rich spectrum of novel behaviors varying the parameters of
the model and the underlying network topology of agents’
social contacts. Agents who got informed through external
advertising serve as nucleation centers from which clusters of
informed agents grow. The gradual nucleation and growth of
clusters lead to merging, which in turn results in the appearance
of a macroscopic cluster connecting nearly all informed agents.
We show that on the macroscale, the time evolution of the
fraction of informed agents is characterized by an integral
equation. On the microscale, simulations revealed that at the
critical time tc of the emergence of a spanning cluster, the size
distribution of clusters becomes a power law. The exponent τ

depends both on the strength of interaction of agents and on
the topology of their social contacts: On a square lattice the
exponent is τ = 1/2 when the word-of-mouth communication
dominates, while it converges to a higher value τ = 1.75
as the external driving gets stronger. Introducing long-range
contacts, a crossover occurs to τ = 2.5 for large cluster sizes.
The critical time tc decreases logarithmically with increasing
rewiring probability.
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II. VERTICAL AND HORIZONTAL
INFORMATION CHANNELS

In our model the socioeconomic system is represented by a
set of agents that have a complex topology of social contacts.
The state of agents during the time evolution of the system is
characterized by an integer variable Si , which can have two
distinct values

Si =
{

1, if agent i is uninformed,

0, if agent i is informed.
(1)

When a new innovation is going to be introduced on the market,
initially all agents are in the state Si = 1, i = 1, . . . ,N0, where
N0 denotes the total number of agents.

In the model the primary source of information on the
availability of new innovations or products in the market
is the advertisement, which is mainly done in the media
such as television, radio, the Internet, and newspapers. This
information channel is available for all agents, and that is
why we assume that it acts as a homogeneous external
driving field on the system with field strength E. The value
of E characterizes the intensity of advertising activities,
which could be quantified by the advertising expenditure of
the producer. In spite of the homogeneity of the external
information field, agents can have different reactions to it,
simply due to their different personalities. In order to simplify
the problem, we represent the sensitivity of agents to the
external information field by a single parameter 0 � β, which
has the same value for all agents.

In a socioeconomic system information can be transmitted
between interacting agents by word-of-mouth communication
resulting in a horizontal flow of information. The strength
of coupling of an agent to its interacting partners would in
principle be different for each social contact. For simplicity, we
assume that the coupling of agents to their social environment
is characterized by a single parameter 0 � α, which has the
same value for all the connections.

We cast the total amount of information Ii agent i receives
through the external information field E (vertically) and
through its social contacts (horizontally) in the following form:

Ii = αSi

ni∑
j=1

(1 − Sj ) + βSiE, (2)

where ni denotes the number of social contacts of agent
i. It can be seen that the first term simply counts the
number of those social partners of agent i that are already
aware of the innovation, since only agents with state variable
Sj = 0 contribute to the sum. The second term ensures the
coupling of agents to the external information field. Agents
that have enough information may become aware of the
innovation. The awareness occurs with a certain probability A,
which is a monotonically increasing function of the available
information Ii :

A(Ii) = 1 − e−Ii/λ, (3)

where λ is a scale parameter. Note that Ii is the total amount of
new information received by agent i. Hence, when the agent
is already aware of the availability of the innovation, its state
variable is set to Si = 0 implying that Ii becomes immediately

zero. Since the surroundings of a selected agent changes due
to the agents that have become aware of the innovation, the
total amount of new information Ii and the resulting awareness
probability A(Ii) are both functions of time.

In this paper we present a detailed study of the model
varying the values of α and β in a broad range while other
parameters of the model are fixed, E = 1, λ = 1. In order
to control the topology of the social contacts, agents are
considered on a square lattice that is then rewired according to
the Watts-Strogatz method [28]: Assuming periodic boundary
conditions on a square lattice in both directions, each bond
of the lattice is removed with a probability p, which is
then reestablished between two randomly chosen nodes. The
rewiring process introduces long-range connections between
agents so that varying the value of the rewiring probability
p, the interaction of agents can be tuned from completely
short-range p = 0, through long range with small-world
properties, to Erdös-Rényi graphs, p = 1 [28–31]. To ensure
good statistics of the numerical data, simulations were carried
out starting from a square lattice of size L = 2001, which
provides N0 ≈ 4 × 106 agents.

Analytic calculations and computer simulations revealed
that the competition of the vertical and horizontal information
channels controlled by the coupling constants α and β results
in a complex time evolution of the system. In the following we
present the behavior of the system on the macroscale together
with the underlying microscopic dynamics and structural
features.

III. MACROSCOPIC TIME EVOLUTION

The macroscopic time evolution of the system is charac-
terized by the fraction of agents q(t) = N (t)/N0, which are
aware of the new technology and by the fraction of new
adoptions δq(t), which is the derivative of the cumulative
fraction δq(t) = dq(t)/dt . Here N (t) denotes the total number
of agents already aware of the innovation at time t . Figure 1
presents q(t) and δq(t) as a function of time t for several
values of the rewiring probability p obtained by computer
simulations. It can be observed that q(t) is a monotonically
increasing function of time for any topologies with a well-
defined inflexion point. It is important to emphasize that
the overall shape of the adoption curve q(t) always has the
typical logistic feature observed for spreading phenomena in
socioeconomic systems [1–3]. The fraction of new adoptions
δq(t) has a maximum whose position tm coincides with the
inflexion point of the total fraction of adoptions q(t). It is
interesting to note that increasing the rewiring probability
p, the spreading process gets faster; i.e., the position of the
maximum tm of δq(t) shifts to the left and q(t) saturates
faster. Due to the connectivity of the social network, the total
fraction of adoptions q(t) has to converge to 1 with increasing
time. (The effect of the network topology on the efficiency
of spreading will be quantified in Sec. V together with the
effect of the microstructure.) Our results on the effect of the
Watts-Strogatz rewiring parability p in the macroscopic time
evolution of the system are in qualitative agreement with the
generic results of Watts on spreading phenomena occurring on
graphs [4].
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FIG. 1. (Color online) Macroscopic time evolution of the system
characterized by the total fraction of agents, q(t) = N (t)/N0, which
are already aware of the innovation, and by the fraction of new
adoption, δq(t) = dq(t)/dt , for several values of the rewiring
probability p. The coupling constants are α = 0.1 and β = 0.01.

In order to obtain an analytical understanding of the macro-
scopic time evolution we have to investigate the microscopic
dynamics of the system. Initially all agents are uninformed
about the new technology. As time elapses, a small fraction of
agents becomes aware of the innovation due to the external
driving. These early adoptions serve as nucleation centers
from which clusters of informed agents grow due to the
interagent coupling. The finite value of δq at t = 0 in Fig. 1
arises due to these initial nucleations. Since nucleation is
an uncorrelated process, growing clusters are spread all over
the network homogeneously distributed at random locations.
The time evolution of the microstructure of the system is
presented in Fig. 2 on a square lattice (p = 0). In order to
make structural details more visible, we intentionally chose
a relatively small system size L = 100. It can be observed

FIG. 2. (Color online) Time evolution of the system on a square
lattice p = 0 of size L = 100 for the parameter values α = 0.1
and β = 0.01. It can be observed that clusters nucleate at random
positions (a,b), then they grow due to the interagent communication
(c,d,e). (f ) A giant cluster can be observed due to the merging of
smaller ones. Randomly selected colors are assigned to clusters of
different sizes.

that at the beginning of the process nucleation of new clusters
dominates [Figs. 2(a) and 2(b)]. As time elapses, growing
clusters cover an increasing fraction of the lattice so that
nucleation slows and lateral spreading through interagent
contacts rules the evolution of the system [Figs. 2(c) and 2(d)].
It can be observed that the size of clusters S spreads over a
rather broad interval: Due to the new nucleations there are
clusters of single agents S = 1 at any time, while those clusters
that nucleated at the beginning of the process could reach
rather large sizes due to growing. As clusters grow they can
also merge, which results in further increase of the cluster size.

The size S of growing clusters, i.e., the number of informed
agents in the cluster, can simply be obtained analytically as a
function of time t when merging is neglected. Clusters grow
due to the outflow of information through the cluster boundary;
hence, the rate of cluster growth is proportional to the cluster
perimeter

dS

dt
∼

√
S, (4)

from which the size S of a cluster at time t that was nucleated
at time t ′ < t follows as

S(t,t ′) = C(t − t ′)2. (5)

The multiplication factor C depends on both α and β. At
an arbitrary time new adoptions occur in the system due to
two reasons: (1) Nucleation of new informed agents appears
with a probability pn = 1 − exp(−βE/λ). (2) Along the
boundary of clusters, agents get informed by word-of-mouth
communication with the probability pg = 1 − exp(−2α/λ). It
can be seen in Fig. 2 that the number of informed neighbors of
the perimeter sites of clusters depends on the growth stage; i.e.,
for very small clusters the number of neighbors is one, while
for intermediate and large clusters that have a high degree of
compactness and a smooth surface, two neighbors are typical.
At locations where the cluster surface is highly ramified three
informed neighbors can also be present. The statistics of the
number of informed neighbors showed that two neighbors are
the most typical. This is captured in the expression of pg by
the factor 2α. Based on the above arguments the fraction of
new adoptions δq(t) characterizing the macroscopic evolution
of the system can be obtained analytically as

δq(t) = [1 − q(t)]pn

+ [1 − q(t)]
∫ t

0

dS(t,t ′)
dt

[1 − q(t ′)]pn dt ′. (6)

The first term of Eq. (6) is the fraction of new nucleations
at time t taking into account the decreasing fraction of
uninformed agents 1 − q(t). The second term describes the
growth of clusters, where the integration is carried out over
the nucleation time t ′ of the clusters’ seeds. The expression of
S(t,t ′) has to be substituted from Eq. (5). Since δq(t) depends
on the present and past values of q(t), Eq. (6) can be solved only
numerically. It can be expected that Eq. (6) provides a good
description of the macroscopic time evolution of the system if
cluster growth dominates over nucleation pn � pg . Figure 3
presents that for the parameter values α = 10 and β = 0.01 the
numerical solution of Eq. (6) has a very good agreement with
the results of computer simulations. Stronger deviations from
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FIG. 3. Comparison of the numerical solution of the analytic
expression Eq. (6) and of the results of computer simulations for q(t)
and δq(t). High-quality agreement is obtained for both quantities with
the parameter values α = 10, β = 0.01, L = 2001, and p = 0.

the analytical description with Eq. (6) are usually observed for
the parameter regime pg < pn.

IV. MICROSTRUCTURE OF THE SYSTEM

It can be observed in Fig. 2 that at a given time t clusters of
widely different sizes are present in the system: The smallest
one has size S = 1 just nucleated due to the external driving,
while, neglecting the merging of clusters, the largest one has
a size Smax = Ct2 because it was nucleated right in the initial
state. At low enough nucleation rate pn � pg the density of
clusters on the social network remains low over considerable
times, allowing for the dominance of lateral spreading. Under
such conditions the variations of cluster sizes are solely
caused by the different nucleation time t ′ of the clusters’
seeds in the expression Eq. (6) of S(t,t ′). (We note that for
the parameter setting E = 1, λ = 1 used in our study the
nucleation probability can be estimated as pn ≈ β, for β � 1.)

A. Cluster size distribution

The number of clusters dN nucleated in an infinitezimal
time interval dt ′ at time t ′ can be obtained as dN = [N0 −
N (t ′)]pn dt ′. Neglecting the presence of already informed
agents N (t) � N0 and taking into account the growth law
Eq. (5) of clusters, the size distribution of clusters Pt (S) at
time t can be obtained analytically as

Pt (S) � pnN0

2C1/2S
1/2
max

S−1/2, (7)

where t dependence occurs only in the upper limit of cluster
sizes 1 < S < Smax(t). Figure 4(a) presents the cluster size
distribution at different times in an evolving system. Note
that the parameters α = 10−1 and β = 10−7 are intentionally
chosen such that growth dominates over a considerable time
without too many merging events. Good agreement is obtained
with the analytical prediction verifying the validity of our
assumptions. As time elapses, deviations from Eq. (7) occur
due to two mechanisms that are not captured by the above
analysis: (1) The increasing number of informed agents
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FIG. 4. (Color online) (a) Size distribution of clusters on a square
lattice of size L = 2001 for the parameters α = 10−1 and β = 10−7.
At early times a good agreement can be observed with the analytical
prediction Eq. (7); however, as time elapses the deviations become
more and more apparent. (b) Average cluster size 〈S〉 as a function of
time for several values of the rewiring probability p for α = 0.1 and
β = 0.01. A sharp maximum appears that indicates the formation of
a dominating cluster of informed agents.

reduces the available space for the new nucleations, which
suppresses the fraction of small clusters. (2) Merging of
growing clusters increases the cluster size and decreases
their frequency of appearance. Computer simulations revealed
that as time elapses the cluster size distributions undergo an
evolution where the exponent of the power-law regime tends
to a limit value.

In order to characterize the growth of clusters and the
evolution of their size distribution, we determined the average
cluster size 〈S〉 as a function of time t . 〈S〉 is defined as the ratio
of the second and first moments of the cluster size distribution

〈S〉(t) =
∑

i S
2
i∑

i Si

, (8)

where Si denotes the size of cluster i in a snapshot at time
t . In the evaluation the largest cluster is always excluded. It
can be seen in Fig. 4(b) that 〈S〉(t) has a sharp maximum,
which indicates the emergence of a giant cluster on the
complex network of social contacts as a consequence of
merging of growing clusters. The position of the maximum
determines the critical point tc of the system. The presence of a
single dominating cluster means that for t > tc a macroscopic
fraction of agents is already aware of the innovation. It is
interesting to note that the qualitative shape of the 〈S〉(t)
curve is the same for all rewiring probabilities; however, with
increasing p the growth process gets faster, indicated by the
decreasing value of tc.

As to the next we evaluated the size distribution of cluster
Pt (S) at different times t approaching tc. Figure 5(a) presents
cluster size distributions on a square lattice of agents p = 0
at different time values t up to the critical time tc for the
parameters α = 0.1 and β = 0.01. At these values of the
coupling constants the initial power-law regime with exponent
1/2 is hardly visible (compare Fig. 4), as time elapses
the distribution becomes a steeper power law followed by
an exponential cutoff. It can be observed in Fig. 5(a) that
approaching the critical point tc, the distribution function spans
a broader range of cluster sizes, and finally at t = tc it becomes
a high-quality power law

Pt (S) ∼ S−τ , (9)
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FIG. 5. (Color online) Size distribution of clusters on a square
lattice (a) and on complex networks (b) for the parameters α = 0.1
and β = 0.01. Approaching tc on a square lattice in (a) a power-
law form is obtained with the exponent τ = 1.75. When long-range
connections are present, for large cluster sizes a crossover is obtained
to a higher exponent τ = 2.5.

where the value of the exponent was obtained numerically as
τ = 1.75 ± 0.05.

It is an important question how the network topology influ-
ences the functional form of the cluster size distributions Pt (S)
and the value of the exponent τ . Figure 5(b) presents Ptc (S)
determined at the critical point t = tc varying the topology of
the network of agents with the rewiring probability. It can be
observed in Figure 5(b) that the presence of long-range social
contact primarily affects the regime of large clusters of the
size distribution. As the rewiring probability p is increased
from zero, for small clusters the exponent obtained on the
regular square lattice prevails τ = 1.75 ± 0.05; however, for
large cluster sizes a crossover occurs to a higher exponent,
τ = 2.5 ± 0.07. The crossover cluster size separating the
regimes of different exponents is a decreasing function of the
rewiring probability p. It is important to note that the cluster
size exponent τ of the spreading process obtained on the square
lattice is considerably lower than the one of percolation in
two dimensions, τp ≈ 2.05 [32]. However, when long-range
connections appear in the system, the value of τ coincides
with that of site percolation on small-world and random graph
topologies, τp = 5/2 [29–31].

B. Geometrical structure of clusters

It can be observed in Fig. 2 that on the square lattice
small clusters are compact while the large ones are very
disordered having holes inside and an irregular surface. In
order to quantify the geometrical structure of clusters on a
square lattice, we calculated the radius of gyration Rg of
clusters with the definition

R2
g = 1

S(S − 1)

S∑
i 
=j=1

(�ri − �rj )2, (10)

where �ri denotes the position of agent i inside the cluster. In
Fig. 6 the size of clusters S is presented as a function of the
radius of gyration Rg . It is interesting to note that on a double
logarithmic plot the functional form of S(Rg) is composed of
two power-law regimes with different exponents

S ∼ RD
g . (11)
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FIG. 6. (Color online) The size of clusters S as a function of
the linear extension Rg . Power-law behavior is evidenced with a
crossover from a compact space-filling form to a fractal structure
with increasing cluster size. The value of β increases from top to
bottom in the range of large β values. Inset: The crossover cluster
size Sc has a power-law dependence on the value of β.

Since small clusters are compact, they are described by D = 2;
however, due to the ramified structure of large clusters a
crossover occurs to a significantly lower fractal dimension
D ≈ 5/3. The crossover between the compact and fractal
cluster structures occurs at a characteristic cluster size Sc,
which solely depends on the nucleation rate β. At low
nucleation rate β � α clusters can grow large before merging;
hence, the crossover can be observed only for the largest
clusters. It can be seen in Fig. 6 that increasing β the
crossover cluster size Sc decreases while the fractal dimension
D gets larger. The reason is that at higher values of β

nucleation dominates the time evolution of the system; i.e.,
within a few time steps the random nucleation leads to
percolation, leaving hardly any role for the growth of clusters.
Consequently, Sc decreases while the value of D increases
to the fractal dimension of percolation clusters, D = 91/48
(see Fig. 6) [32].

The inset of Fig. 6 presents the crossover cluster size Sc as
a function of β. A power-law dependence is obtained:

Sc ∼ β−κ , (12)

where the exponent κ = 1/2 proved to be independent of the
value of interagent coupling α. The crossover from compact to
fractal clusters marks the point where merging of clusters starts
dominating, which affects also the global time evolution of the
system: Merging has the consequence that the total cluster
surface starts to decrease, which implies the slowing down
of new adoptions δq(t) and leading finally to the maximum
of δq(t).

V. THE EFFECT OF CLUSTER STRUCTURE
ON THE TIME SCALE OF SPREADING

When the coupling to the external field has a low strength
pn � pg , the information reaches most of the agents through
their social contacts. In this case the cluster structure of
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FIG. 7. (Color online) The critical time tc and the position tm of
the maximum of the curve of new adoptions δq(t) as a function of
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As β increases, tm becomes independent of p while tc decreases
logarithmically.

informed agents may have a strong effect on the efficiency of
information transfer to the uninformed agents. The question
naturally arises how the appearance of the dominating cluster
at the critical point tc affects the spreading process. To
obtain a quantitative answer, in Fig. 7 we show the value
of the critical time tc, i.e., the position of the maximum
of the average cluster size 〈S〉, and the position tm of the
maximum of the new adoptions δq(t) as a function of
the rewiring probability for several values of β in the range
β � α. It can be seen in the figure that on the square lattice
(p = 0) the values of tm and tc always coincide. The reason
is that the main source of spreading is the interagent com-
munication, which mainly occurs along the boundaries of the
clusters. Hence, when the giant cluster appears, the free cluster
surface drops down, which results in a decrease of δq(t). At
finite rewiring probabilities 0 < p, however, the giant cluster
appears before δq(t) reaches its maximum; more specifically,
with increasing p the value of the critical time tc decreases,
while the value of tm hardly changes. Increasing the nucleation
probability β the value of tm becomes more and more indepen-
dent of p. When long-range connections are present in the sys-
tem, the appearance of a dominating cluster does not imply the
decrease of the fraction of new adoptions. On the contrary, the
spreading efficiency characterized by δq(t) can still increase.
Note that the nearly linear behavior of tc on the semilogarith-
mic plot of Fig. 7 implies the logarithmic dependence

tc ∼ ln p−1 (13)

on the rewiring probability.

VI. DISCUSSION

We investigated the competition of external driving and
of word-of-mouth communication in a social system where
information is spreading about some products newly intro-
duced in the market. The external source of information is
the producers’ advertising activity, which induces the initial
market penetration through the most sensitive agents. Parallel

to the external driving, information spreads laterally through
the social contacts of individuals. Compared to models of
social percolation, in our system the effect of the external
field is not restricted to the beginning of the information
transfer; instead it acts continuously during the entire time
evolution of the system. Furthermore, we do not consider the
opinion of agents about the product, just the fact that they are
aware of its advantages. Varying the relative importance of
the vertical and horizontal information channels, we studied
both the macroscopic time evolution and the microstructure
of the system. On the macrolevel the system is characterized
by the fraction of informed agents and by the fraction of new
adoptions. Informed agents form clusters that grow and merge,
covering eventually the entire social network.

Computer simulations showed that the total fraction of
informed agents has the logistic shape usually observed in
the diffusion of innovations [2]. Based on the microscopic
mechanism of nucleation and growth of clusters, the macro-
scopic time evolution can be described by an integral equation,
which provides satisfactory results when growth dominates the
spreading process.

The microstructure of the system characterized by the size
distribution of clusters and by the geometrical structure of
individual clusters strongly depends on the competition of
the two information channels, which can be characterized
by the ratio of the probabilities of nucleation and cluster
growth. In order to provide a clear overview of the structure
and dynamics we constructed an approximate phase diagram
of a square lattice of agents on the α − β plane, which is
presented in Fig. 8. When the growth of clusters dominates
over nucleation, i.e., below the dashed line of pn/pg ≈
5 × 10−5, the size distribution of clusters has a power-law
behavior with an exponent τ = 1/2. The clusters are compact
characterized by D = 2 with a crossover to a lower fractal
dimension D = 5/3 when merging starts. When nucleation,
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FIG. 8. (Color online) Phase diagram of the system on the
α-β plane. The color code represents the value of the ratio of
the probabilities of nucleation and growth pn/pg . The dashed and
continuous lines indicate the parameters satisfying the conditions
pn/pg = 5 × 10−5 and pn/pg = 0.1, respectively. In the percolation
phase the critical state of the system where the spanning cluster
is formed is practically identical with that of percolation in two
dimensions on a square lattice. Outside the line of fast saturation
the spanning cluster appears already in the first time step.
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growth, and merging have a more-or-less balanced role, i.e.,
between the continuous line of pn/pg ≈ 0.1 and the dashed
line of pn/pg ≈ 5 × 10−5, the size distribution remains a
power law; however, the exponent τ becomes significantly
higher, τ ≈ 1.75. Simulations revealed that the topology of
the social contacts of agents has a very strong effect on
the cluster structure: Increasing the fraction of long-range
contacts a crossover occurs between two power-law regimes;
i.e., for small cluster sizes the exponent characterizing regular
lattices prevails, τ ≈ 1.75; however, for large clusters a second
power-law regime emerges with a higher exponent, τ ≈ 2.5.
When nucleation dominates the time evolution, the fraction
of informed agents reaches the percolation threshold within
a few time steps, and the behavior of the system becomes
similar to the one of percolation lattices. Outside the curve of
fast saturation on the parameter plane of Fig. 8 the percolation
threshold is passed already in the second iteration step.

We demonstrated that the cluster structure of the system
has an effect also on the macroscopic time evolution and on
the speed of adoptions: When word-of-mouth communication
dominates, the merging of clusters reduces the free cluster
surface where communication mainly occurs. It has the
consequence that on regular lattices whenever a giant cluster
appears, the spreading process slows. It implies that a stronger
advertising activity is required from the producer of the
technology in order to keep the spreading process advancing

[1,2]. However, on a realistic complex network of individuals
the formation of a macroscopic connected cluster of informed
agents does not imply the drop down of spreading. Realistic
complex networks of individuals are more efficient because
long-range connections contribute to nucleation, reducing the
need for extra advertising efforts (as seen in Sec. V). The
critical time tc when the macroscopic cluster appears has a
logarithmic dependence on the rewiring probability.

Our study was restricted to the information spreading
without considering the purchase of the new product. An
interesting next step of the investigations is to complement the
model with a stochastic rule to capture the typical customer
behavior of informed agents, allowing also for the variation of
the coupling constants α and β.
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[8] S. Valverde, R. V. Solé, M. A. Bedau, and N. Packard, Phys.

Rev. E 76, 056118 (2007).
[9] F. Kun, G. Kocsis, and J. Farkas, Physica A 383, 660

(2007).
[10] G. Kocsis and F. Kun, J. Stat. Mech. (2008) P10014.
[11] R. M. Ruiz, E. Albuquerque, L. C. Ribeiro, and A. T. Bernardes,

AIP Conf. Proc. 779, 162 (2005).
[12] D. Helbing, M. Treiber, and N. J. Saam, Phys. Rev. E 71, 067101

(2005).
[13] C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys. 81,

591 (2009).
[14] S. Solomon, G. Weisbuch, L. de Arcangelis, N. Jan, and

D. Stauffer, Physica A 277, 239 (2000).

[15] A. Proykova and D. Stauffer, Physica A 312, 300 (2002).
[16] K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C 11, 1157

(2000).
[17] K. Sznajd-Weron and R. Weron, Int. J. Mod. Phys. C 13, 115

(2002).
[18] W. Duan, Z. Chen, Z. Liu, and W. Jin, Phys. Rev. E 72, 026133

(2005).
[19] A. Arenas, A. Dı́az-Guilera, C. J. Pérez, and F. Vega-Redondo,
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