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Clusterization in the shape isomers of the 56Ni nucleus
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The interrelation of the quadrupole deformation and clusterization is investigated in the example of the 56Ni
nucleus. The shape isomers, including superdeformed and hyperdeformed states, are obtained as stability regions
of the quasidynamical U(3) symmetry based on a Nilsson calculation. Their possible binary clusterizations are
investigated by considering both the consequences of the Pauli exclusion principle and the energetic preference.
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I. INTRODUCTION

Clusterization is an important phenomenon both in light
and in heavy nuclei. The two basic natural laws governing the
clusterization (just like the composition of nuclei from nucle-
ons) are the energy-minimum principle and the Pauli exclusion
principle. In a fully microscopic description of clusterization
both aspects are taken into account. This treatment is, however,
rather limited, being applicable mainly to light nuclei, due to
the large calculational difficulties.

Many interesting aspects of the clusterization, such as,
e.g., the appearance of exotic cluster configurations, show
up only in heavy nuclei. Phenomenological approaches are
applied both to light and to heavy nuclei, on an equal footing,
but these models do not really incorporate the effects of the
antisymmetrization or allow control of what aspects of the
exclusion principle are incorporated.

In this paper we apply a method which involves both
the energetic preference and the exclusion principle [1,2].
We investigate the possible binary clusterizations of the
shape isomers of the 56Ni nucleus. The recent experimental
discoveries of superdeformed bands in the N = Z nuclei
give special importance to this kind of question. Molecular
resonances in light heavy-ion reactions can also populate
some shape isomers, and here we pay special attention to
clusterizations observed experimentally (e.g., 28Si + 28Si and
32S + 24Mg).

In the next section we review briefly the shape isomers
of the 56Ni nucleus known in the literature, both from
the experimental and from the theoretical side. Then we
present our own results concerning the elongated states,
being especially important from the viewpoint of cluster-
ization. This includes superdeformed and hyperdeformed
shapes as well as triaxial states related to molecular
resonances.

Both in the determination of the shape isomers and in
the investigation of their possible clusterizations symmetry
considerations play an important role. In particular, the

quasidynamical (or effective) U(3) symmetry is used [3]. It
is a generalization of the concept of the real U(3) symmetry,
known to be approximately valid in light nuclei [4]. The
quasidynamical symmetry is more general in the following
sense. The Hamiltonian breaks the symmetry in such a
way that the U(3) quantum numbers are not valid for its
eigenvectors either [contrary to the case of the real U(3)
dynamical symmetry]. In other words, the operator is not
symmetric [i.e., it is not a U(3) scalar] nor are its eigenvectors
(i.e., they do not transform according to a single irreducible
representation) [5]. Yet, the symmetry is present is some
sense.

An asymptotic Nilsson state serves as an intrinsic state for
the quasidynamical SU(3) representation. Thus the effective
quantum numbers are determined by the Nilsson states in the
regime of large deformation [6]. When the deformation is
not large enough, then we can expand the Nilsson states in the
asymptotic basis, and calculate the effective quantum numbers
based on this expansion [7].

The SU(3) quantum numbers uniquely determine the
quadrupole shape of the nucleus [8], and thus we obtain the
shape isomers from them. In particular, a self-consistency
calculation is performed with respect to the quadrupole
shape of the nucleus. It is based on the application of the
quasidynamical U(3) quantum numbers [9], and in those cases
when a detailed comparison can be made with the more
traditional energy-minimum calculations, the results are very
similar [9–11].

Once the shape isomers have been found, the next question
is how they are related to cluster configurations. To find
their connection we use the Harvey prescription and the U(3)
selection rule [11]. They can incorporate the effects of the
exclusion principle, only in an approximate way, of course.
But it is a well-defined way, and its validity can be checked by
making a comparison with the results of the fully microscopic
description, where they are available. In geometrical terms the
U(3) selection rule expresses the similarity of the quadrupole
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deformation of the cluster configuration and the shell-model
(or collective model) state.

Energetic preference represents a complementary view-
point for the selection of clusterization. We incorporate it in
three different ways: (i) by applying simple binding-energy
arguments [12], (ii) via the application of the extended
collective model [13], and (iii) by performing double-folding
calculations, according to the dinuclear system model [14,15].

II. SHAPE ISOMERS

A. Previous studies

Two deformed bands were observed in [16], with even
(2–12) and odd (9–17) angular momenta, respectively, from
a heavy-ion fusion experiment of 28Si(36Ar,2α), using the
Gammasphere combined with charged particle and neutron
ancilliary detectors. The band with even angular momenta
could be described by both a p-f shell-model calculation,
having a dominant 4p-4h character, and by mean-field (cranked
Hartree-Fock, Hartree-Fock-Bogolyubov) calculations [16].
In these descriptions the bands of odd angular momenta states
have different structure. It is remarkable that the energies of
the states (from both bands) follow, to some approximation,
that of a rotation sequence. The calculated moments of inertia
of the two bands have also very similar values. These bands
were considered later on [17] as examples of superdeformed
bands.

The molecular resonances of the 28Si + 28Si and other
heavy-ion systems exhibit another important section of the
experimental investigations since the first observation in [18].
The correlation between the intermediate-width resonances
in the 28Si + 28Si and 40Ca + 16O reactions has been realized
in [19]. Recent data and a review of the previous experiments
are presented in [20].

Ternary cluster decay was reported in [21] from a
32S + 24Mg experiment, in which the incident energy was
chosen to correspond to a broad resonance in the 28Si + 28Si
channel. The quasibound state is thought to correspond to the
hyperdeformed shape isomer of 56Ni.

Nilsson-model calculations have been performed in [22]
in order to obtain the potential energies of doubly even
p-f shell nuclei, and in [23] for a general discussion of
superdeformation.

The stability of the equator-to-equator configuration of
two oblate 28Si has been shown by calculations of molecular
models [24,25] and has been associated with the 28Si + 28Si
resonances.

In [26] α-cluster model calculations showed superde-
formed, triaxial, and hyperdeformed states of 56Ni, cor-
responding to 4h̄ω, 16h̄ω, and 32h̄ω shell-model excita-
tions, respectively. They were associated with 40Ca + 16O,
28Si(o) + 28Si(o) equator-to-equator, and 28Si(p) + 28Si(p)
cluster configurations (where o and p refer to oblate and
prolate, respectively).

Mean-field calculations showed the appearance of α-
nucleus-like cluster structure in the hyperdeformed state in
[27].

B. Present investigations

We investigate the stability of the nuclear deformation in
terms of U(3) symmetries, as mentioned in Sec. I. The effective
or quasidynamical U(3) symmetry may survive even for heavy
nuclei, in spite of the strong symmetry-breaking interactions
[3]. Then the energy eigenstates are

ψαKJM = �ξλμCαξλμKφξλμKJM, (1)

where φξλμKJM is a basis vector for an SU(3) irreducible repre-
sentation (irrep), and ξ stands for all the quantum numbers not
belonging to the SU(3) group [6]. The CαξλμK coefficients of
the linear combination are independent of JM , i.e., within a
band the contribution of different SU(3) basis states is the
same. When calculating the matrix elements of the SU(3)
generators between these states the result may approximate
the matrix elements of an exact representation. In such a case
we speak about an approximate embedded representation and,
related to it, about an approximate quasidynamical or effective
SU(3) symmetry.

The concept of effective symmetry is applicable also to
light nuclei, and when the simple leading representation
approximation is valid, the real and effective U(3) quantum
numbers usually coincide [7].

In [6] a method was developed for the determination of
the effective U(3) quantum numbers of the heavy nuclei,
based on the occupation of the asymptotic Nilsson orbits. The
procedure, which was originally invented for the large prolate
deformation, was extended in [7] for the oblate shape and small
deformations as well, based on the expansion of single-particle
orbitals in terms of asymptotic Nilsson states.

Therefore, the quasidynamical U(3) quantum numbers
are obtained from Nilsson calculations [6,7], and a sort
of self-consistency calculation can be performed to obtain
the possible shape isomers of a given nucleus. It consists
in the continuous variation of the quadrupole deformation
(βin), as an input for the Nilsson model, and determination
of the effective U(3) quantum numbers or, from them, the
corresponding βout quadrupole deformation. This method for
the determination of the shape isomers is an alternative of the
usual energy-minimum calculation. For lighter nuclei, such
as 24Mg and 28Si, where more detailed comparison could be
made, the results of this kind of calculation are in very good
agreement with that of the traditional method [9–11].

The results for the stable elongated shapes of the 56Ni
nucleus, which is relevant for clusterization, are shown in
Fig. 1. They also listed in Table I, together with some similar
states from other considerations. In this figure it is not the
minima, rather the horizontal plateaus, which correspond to
the stable shapes. (They are insensitive to small changes
of the input parameter. Furthermore, these deformations fulfill
the self-consistency argument between the input and output
deformation parameters to some approximation.)

As is seen from the figure, the triaxial ground state (for
which the experimental deformation is β2 = 0.173) is followed
by a prolate-like deformed state of 0h̄ω excitation. The next
region of stability corresponds to the superdeformed shape.
This state represents -nucleon excitation, being very much in
line with [16,26]. Then appears an even more deformed state
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FIG. 1. Quadrupole deformation of the 56Ni nucleus from the
Nilsson model with the effective U(3) quantum numbers and
schematic illustrations of the shape at the plateaus. For the explanation
of βin and βout see the text.

with triaxial shape and two pronounced hyperdeformed shapes
close to each other.

Figure 1 and Table I show the results of the calculation with
γin = 0◦ (apart from a single exception for the triaxial state,
where in addition a γin = 16◦ result is also presented, marked
by ∗). The calculations were performed with several other
γin values as well. For small β values (cca � 1.0) the results
are in complete coincidence up to cca γin = 30◦, showing the
stability of the (symmetry and the) shape. For the triaxial state

TABLE I. Shape isomers in the 56Ni nucleus. γ is given in degrees.
(e) stands for effective, (c) for cylindrical, (h) for simple harmonic
oscillator configuration; (al) means α-cluster calculation, and (eq)
indicates equator-to-equator (completely parallel) configuration of
two oblate 28Si clusters. The last column shows the ratio of the major
axes.

State U(3) β2 γ h̄ω Ratio

ground(e) [40,38,30] 0.15 49.1 0 1.3:1.1:1
ground(c) [40,40,28] 0.20 60 0 1.2:1.2:1
ground(h) [40,36,32] 0.12 30 0 1.1:1.1:1

deformed(e) [50,31,27] 0.35 9.4 0 1.4:1.1:1
deformed(c) [52,28,28] 0.40 0 0 1.4:1:1
deformed(h) [52,32,24] 0.42 16.1 0 1.5:1.2:1

superdeformed(e) [62,26,24] 0.6 2.7 4 1.7:1.0:1
superdeformed(c,al) [64,24,24] 0.65 0 4 1.8:1:1

triaxial(e) [74,25,21] 0.80 3.9 12 2.1:1.1:1
triaxial(e*) [71,28,22] 0.72 6.4 13 2.0:1.1:1
triaxial(h) [72,28,20] 0.76 8.2 12 2.1:1.2:1
triaxial(al) [80,32,12] 0.93 16.6 16 2.7:1.5:1
triaxial(eq) [92,32,8] 1.11 16.1 24 3.3:1.7:1

hyperdeformed(e1) [94,21,17] 1.11 2.6 24 2.7:1.1:1
hyperdeformed(c) [108,16,16] 1.31 0 32 3.1:1:1
hyperdeformed(e2) [118,16,14] 1.42 1.0 40 3.5:1.0:1

we show the result also with γin = 16◦. It is a little different
from that of γin = 0◦. For the hyperdeformed states also slight
differences can be observed for the different γ values. In these
cases we take the values which fulfill the self-consistency
requirement between γin, and γout to a better approximation.
For the triaxial state it is the γin = 16◦ value, while for the
hyperdeformed ones the γin = 0◦ value turn out to be the best
approximation.

It is remarkable that superdeformed, triaxial, and hyper-
deformed states appear both in the α-cluster-model calcula-
tion [26] and in our (Nilsson-model-based) quasidynamical
symmetry consideration. The superdeformed states seem to
correspond to each other exactly, both of them being a 4h̄ω

excitation. Then we observe a largely deformed triaxial state
with 12h̄ω, which is not completely identical, but similar to
that of the α-cluster model (with 16h̄ω). This latter state is
considered to be a candidate for the 28Si + 28Si molecular
resonances, in which the two oblate 28Si are thought to
have an equator-to-equator position. For comparison we have
also indicated the state which corresponds exactly to this
configuration. (The one from the α-cluster study or from
the present result contains the 28Si clusters in a slightly bent
position, as will be discussed in the next section.) The α-cluster
model gives also a hyperdeformed state, and our calculations
have two candidates for that. Based on their possible cluster
structure the lower-lying one seems to be very similar to that
found in Ref. [26].

III. CLUSTERIZATION

A. Microscopic structure considerations

For a binary cluster configuration the U(3) selection rule
reads

[n1, n2, n3] = [
n

(1)
1 , n

(1)
2 , n

(1)
3

] ⊗ [
n

(2)
1 , n

(2)
2 , n

(2)
3

] ⊗ [n(R), 0, 0],

(2)

where [n1, n2, n3] is the set of U(3) quantum numbers of the
parent nucleus, the superscript (i) stands for the ith cluster,
and (R) indicates relative motion.

Characterizing the nuclei (clusters) by their U(3) symmetry
means that they are supposed to be in their ground intrinsic
states, but collective excitations (belonging to the same irre-
ducible representation) are incorporated. The only exception
we take is the case of the 28Si nucleus, being exactly at the
middle of the sd shell, which has a coexisting prolate and
oblate shape in the low-energy region. In this case we take into
account both shapes.

To the extent the leading U(3) approximation is valid in
light nuclei this rule can be applied for the selection of the
Pauli-allowed subspace of the cluster model.

It should be mentioned that the U(3) selection rule, which
deals with the space symmetry of the states, is always
accompanied by a similar UST (4) [28] selection rule for the
spin-isospin degrees of freedom.

Applying the U(3) quantum numbers of the free nucleus
for the description of the corresponding cluster means that the
quadrupole shape of the cluster is taken into account, without
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any simplifying assumption. It can be spherical, prolate, oblate,
or triaxial. No constraint is applied for their relative orientation
either. The quadrupole consistency of the (mostly) prolate (or
oblate) shape isomer of the 56Ni nucleus and the seemingly
different cluster configuration are due to the effect of the
antisymmetrization, which can easily wash out the difference
between the contradictory (naive) geometrical pictures.

In addition to the U(3) selection rule, there is another simple
recipe, which is also based on the microscopic picture, yet it
is easy to apply systematically. This is Harvey’s prescription
[29]. Both of them apply the harmonic oscillator basis, and thus
there is a considerable similarity between them. However, they
are not identical; rather, they are complementary to each other
in a sense. Therefore, they should be applied in a combined
way [11].

When the real U(3) symmetry is no longer valid, then the
effective U(3) can still provide us with effective (or average)
U(3) quantum numbers, and based on that a selection rule can
be formulated. Due to the average nature of these quantum
numbers, however, the effect of the selection rule is different
from that of the real U(3) selection rule. It gives information
on the matching, or mismatching, of the average nucleon
distributions in the cluster configuration and in the shell-model
state. Therefore, it acts like a self-consistency check of the
quadrupole deformation and the clusterization.

The fact that for light nuclei the quasidynamical and real
U(3) coincide [7] gives a straightforward way for the extension
of the simple selection rule consideration.

When a cluster configuration is forbidden, we can char-
acterize its forbiddenness quantitatively in the following
way [30]. The distance between a U(3) reaction chan-
nel and the irrep of the parent nucleus is defined as
min(

√
(�n1)2 + (�n2)2 + (�n3)2), where �ni = |ni − nc

i,k|.
Here ni refers to the U(3) representation of the parent nucleus,
while nc

i,k stands for the U(3) representation of channel c,
obtained from the right-hand side of Eq. (2), with the k index
distinguishing the different product representations. Based on
this quantity we determine, for reasons of convenience, the
reciprocal forbiddenness S in such a way that 0 � S � 1:

S = 1

1 + min(
√

(�n1)2 + (�n2)2 + (�n3)2)
. (3)

Then S ≈ 0 and S ≈ 1 correspond to completely forbidden
and allowed clusterizations, respectively.

Figures 2–6 show the reciprocal forbiddennes for the sates
of Table I, while Fig. 7 illustrates those binary α-like cluster
configurations of the shape isomers, in which the main axes
of the clusters are parallel and perpendicular to the molecular
axis.

B. Energetic preference

1. Binding energies

The criterion of maximal stability [12] requires the largest
value of the summed differences of the measured binding
energies and the corresponding liquid drop values:

D(1, 2) = [B(1) − BL(1)] + [B(2) − BL(2)], (4)

0 4 8 12 16 20 24 28
A

0

0.2

0.4

0.6

0.8

1

S

[40,38,30](e)
[40,40,28](c)
[40,36,32](h)

GS

FIG. 2. Reciprocal forbiddenness as a function of the mass
number of the lighter cluster for the ground state of the 56Ni nucleus.
The lines are just to guide the eye.

where B(i) is the experimental binding energy of the ith cluster
[31], while BL(i) stands for the liquid drop value.

In the generalized version of the method, as we apply it here,
a further condition, called the dipole constraint [12], is also
taken into account. It is based on the observation that electric
dipole transitions are very weak; therefore, the decomposition
AT → A1 + A2 (where T stands for total) is expected to be
close to satisfying the constraint

Z1

A1
≈ ZT

AT

≈ Z2

A2
. (5)

The α-like clusterizations turn out to be more stable than
the others. Their numerical values are given in Tables IV
and V.

2. Extended liquid drop model

Within a generalized liquid drop model the 56Ni nucleus
is thought to evolve in a quasimolecular shape valley, as
illustrated by Fig. 8. Its stability is governed by angular
momentum (L) dependent potential barriers, which have been

0 4 8 12 16 20 24 28
A

0

0.2

0.4

0.6

0.8

1

S

[50,31,27](e)
[52,28,28](c)
[52,32,24](h) D

FIG. 3. The same as Fig. 2, but for the deformed state. The
multiple appearance at A = 28 is due to the prolate and oblate states
of the 28Si cluster.
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0 4 8 12 16 20 24 28
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0

0.2

0.4

0.6

0.8

1

S

[62,26,24](e)
[64,24,24](c,al)SD

FIG. 4. The same as Figs. 2 and 3, but for the superdeformed state.

determined in Refs. [21,32,33]. In this model, the energy of a
deformed nucleus is obtained as

E = EV + ES + EC + ERot + EProx. (6)

For one-body shapes the volume and surface energies are (in
MeV)

EV = −15.494(1 − 1.8ι2)A, (7)

ES = 17.9439(1 − 2.6ι2)A2/3(S/4πR2
0), (8)

where ι is the relative neutron excess: ι = (N − Z)/A. The
Coulomb energy is

EC = 0.6e2(Z2/R0) × 0.5
∫

[V (θ )/V0[R(θ )/R0]3 sin θ dθ.

(9)

Here S is the surface of the one-body deformed nucleus, R0

is the radius of the spherical nucleus, V (θ ) is the electrostatic
potential at the surface, and V0 is the surface potential of the
sphere.

For two-body shapes the volume and surface energies
are the sum of the contributions of each fragment, while
the Coulomb energy has contributions from one-body and
two-body terms.

0 4 8 12 16 20 24 28
A

0

0.2

0.4

0.6

0.8

1

S

[74,25,21](e)
[71,28,22](e*)
[72,28,20](h)
[80,32,12](al)
[92,32,8](eq)

Tri

FIG. 5. The same as Figs. 2–4, but for the largely deformed
triaxial state.

0 4 8 12 16 20 24 28
A

0

0.2

0.4

0.6

0.8

1

S

[94,21,17](e1)
[108,16,16](c)
[118,16,14](e2)

HD

FIG. 6. The same as Figs. 2–5, but for the hyperdeformed state.

The rotational energy is determined within the rigid-body
ansatz:

ERot = h̄2L(L + 1)

2I⊥
, (10)

FIG. 7. Shape isomers of the 56Ni nucleus from Nilsson-model
calculations and their amalgamation from two clusters. The central
part shows the shell-model results for the deformed (at the bottom),
superdeformed, triaxial, and hyperdeformed (at the top) states.
The left column corresponds to the 24Mg + 32S clusterization. The
right side illustrates the 52Fe + 4He, 20Ne + 36Ar, 28Si(p) + 28Si(o),
20Ne + 36Ar, 40Ca + 16O, 28Si(o) + 28Si(o), and 28Si(p) + 28Si(p) con-
figurations (from the bottom), respectively.
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TABLE II. Characteristics of the L-dependent energy minimum and maximum in the 28Si + 28Si quasimolecular deformation valley from
the generalized liquid drop model. R (in fm) is the distance between the two halves of the nuclear system. E (in MeV) is the energy relative
to the ground-state energy at L = 0. I (in h̄2 MeV−1) is the perpendicular moment of inertia, β is the deformation parameter, and Q (in e b) is
the electric quadrupole moment.

L(h̄) Rmin Emin Imin βmin Qmin Rmax Emax Imax βmax Qmax

25 4.8 30.2 14.2 0.62 2.9 8.7 49.2 32.3 1.15 10.7
30 5.3 39.5 15.9 0.75 3.8 8.6 53.6 31.4 1.14 10.4
40 6.2 59.6 19.3 0.91 5.3 8.6 65.3 29.4 1.12 9.6
45 6.5 70.4 20.6 0.94 5.9 8.0 72.8 28 1.10 8.9

where I⊥ is the moment of inertia for the rotational axis [13].
The surface energy results from the effects of the surface
tension forces in a half-space. When there are nucleons in
a neck or there is a gap between separated fragments an
additional proximity energy must be added in order to take
into account the effects of the nuclear forces between the close
surfaces. This term is essential to describe smooth transition
from the one-body to two-body shape, as well as to obtain
reasonable fusion and α decay barriers. It can be calculated as

EProx(r) = 2γ

∫ hmax

hmin

� [D(r, h)/b] 2πh dh, (11)

where h is the distance varying from the neck radius or zero
to the height of the neck border, D is the distance between
the surfaces, b = 0.99 fm is the surface width, and � is the
proximity function. The surface parameter γ is the geometric
mean between the surface parameters of the two nuclei or
fragments [13].

The specific feature of the selected deformation channel
is that the neck between the fragments is very deep and,
consequently, the surfaces are very close to each other.
Therefore, the proximity forces between the nucleons at the
surfaces play a main role. In this generalized liquid drop
model the integration of the proximity function is effectively
done in the neck, and the proximity energy depends explicitly
on the shape sequence. As a consequence, the top of the
L-dependent deformation barrier corresponds always to two
separated spheres maintained in an unstable equilibrium by
the balance between the repulsive Coulomb forces and the
attractive nuclear proximity forces. With increasing angular
momenta the minimum in the deformation barrier moves from
the spherical shape to super- and hyperdeformed (but always
to one-body) shapes.

The characteristic quantities of these minima and of the
saddle points are as follows: the distance between the centers

FIG. 8. Quasimolecular shape sequence within the extended
liquid drop model from the fusion point of view.

of mass of the two halves of the system, the energy relative to
the ground-state energy at L = 0, the perpendicular moment
of inertia, the β deformation parameter, and the electric
quadrupole moment. They are given in Tables II and III for
symmetric and asymmetric binary configurations, respectively.
The minimum evolves toward more deformed shapes with
increasing angular momenta. For a given angular momentum,
the energy of this minimum varies only slightly with the
mass asymmetry of the clusters, while the moment of inertia
decreases strongly. The behavior of the potential barrier for
the symmetric system is illustrated in Fig. 9, where the shell
effects, treated by Strutinsky’s method and the two-center shell
model, have been added. These effects do not change strongly
the macroscopic picture at high angular momenta. For the
details and applications of the two-center shell model we refer
to Refs. [34–36].

3. Double-folding calculations

A more microscopic calculation of the energetic prefer-
ence can be carried out within the dinuclear system model

TABLE III. Same as Table II but for asymmetric configurations.

Reaction L(h̄) Rmin Emin Imin Rmax Emax Imax

4He + 52Fe 30 5.0 39.0 12.7 7.5 47.6 14.1
4He + 52Fe 40 5.2 66.5 13.0 6.9 73.5 13.2
4He + 52Fe 45 5.3 83.0 13.1 6.1 91.0 12.3

8Be + 48Cr 30 4.4 42.5 12.1 7.9 54.9 18.0
8Be + 48Cr 40 5.6 69.9 14.4 7.3 75.4 16.5
8Be + 48Cr 45 5.8 84.7 14.5 6.4 89.8 14.7

12C + 44Ti 30 4.3 42.8 12.1 8.2 55.8 22.2
12C + 44Ti 40 5.8 67.3 15.7 7.6 72.5 20.4
12C + 44Ti 45 6.0 80.8 16.1 6.6 84.0 17.1

16O + 40Ca 30 5.3 42.0 15.1 8.4 54.9 26.0
16O + 40Ca 40 5.9 64.0 17.1 8.0 69.1 24.0
16O + 40Ca 45 6.2 76.3 17.8 7.6 78.3 22.4

20Ne + 36Ar 30 5.1 42.9 14.8 8.5 58.3 28.8
20Ne + 36Ar 40 5.9 64.7 17.6 8.1 71.0 26.9
20Ne + 36Ar 45 6.2 76.5 18.8 7.8 79.3 25.5

24Mg + 32S 30 5.2 41.3 15.3 8.6 56.4 30.8
24Mg + 32S 40 6.0 62.2 18.7 8.2 68.3 28.8
24Mg + 32S 45 6.3 73.3 19.8 7.9 76.0 27.2
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FIG. 9. Potential barrier for the symmetric fusion or fission from
the extended liquid drop model.

(DNS). According to this description the clusterization process
involves the motions in charge ηZ = (Z1 − Z2)/(Z1 + Z2)
and mass η = (A1 − A2)/(A1 + A2) asymmetry coordinates,
where Z1 (A1) and Z2 (A2) are the charge (mass) numbers
of the heavy and light nuclei of the dinuclear system [14,37]
formed by two touching nuclei or clusters, and in the relative
separation coordinate R between the centers of mass of
clusters. The charge (mass) asymmetry ηZ (η) is the relevant
collective variable describing the partition of nucleons among
the nuclei forming the DNS. The wave function in ηZ can be
thought as a superposition of the mononucleus configuration
with |ηZ| = 1 and different cluster-type configurations. The
relative contribution of each cluster component to the total
wave function is ruled by the potential U (ηZ), which is the
DNS potential energy for |ηZ| < 1 [38–41]:

U (ηZ) = V (R = Rm, ηZ) + B1(ηZ) + B2(ηZ) − B. (12)

The internuclear distance of Rm = Rt + 0.5 fm corresponds
to the minimum of the nucleus-nucleus potential V . Here Rt

is the touching distance between the clusters, which depends
on their relative orientation. The quantities B1 and B2, which
are negative, are the binding energies of the clusters forming
the DNS at a given η, and B is the binding energy of the
parent nucleus. The experimental ground-state masses and
quadrupole deformation parameters [31,42] are used in the
present calculations. Since the values in Eq. (12) are given
with respect to B, U (|ηZ| = 1) = 0.

For zero angular momentum the nucleus-nucleus potential
[41]

V (R, ηZ) = VC(R, ηZ) + VN (R, ηZ) (13)

consists of the Coulomb VC and nuclear interaction VN

potentials. The nuclear part VN (R) of the nucleus-nucleus

potential is taken in the double-folding form:

VN (R, ηZ) =
∫

ρ1(r1)ρ2(R − r2)F (r1 − r2) dr1dr2.

The well-known two-parameter Woods-Saxon function for
nuclear densities,

ρ1,2(r) = ρ00

1 + exp(|r − R1,2|/a01,2 )
,

is used, where R1,2 is the radius vector of the nuclear surface
in the direction of r. Here, ρ00 = 0.17 fm−3 is the saturation
nucleon density of the nucleus, r01,2 = 1.15 fm (apart from the α

particle, where r0 = 1.0 fm) are nuclear radius parameters, and
a01,2 denotes the diffuseness depending on the mass number
of the nucleus, as in Ref. [38]. In our calculations, we use
a0 = 0.48, 0.52, and 0.55 fm for α particles, Be nuclei, and
nuclei with Z � 6, respectively. The simplified Skyrme-type
nucleon-nucleon forces,

F (r1 − r2) = C0

[
Fin

ρ0(r1)

ρ00

+Fex

(
1 − ρ0(r1)

ρ00

)]
δ(r1 − r2),

Fin,ex = ζin,ex + ζ ′
in,ex

A1 − 2Z1

A1

A2 − 2Z2

A2
,

depend on the density of nuclei because ρ0(r1) = ρ1(r1) +
ρ2(R − r2). We used the following constants: ζin = 0.09,
ζex = −2.59, ζ ′

in = 0.42, ζ ′
ex = 0.54, and C0 = 300 MeV fm3

from Ref. [43] where they were tested for nuclear structure
purposes. The Coulomb potential for two deformed nuclei,
VC , is calculated as in Ref. [41].

The DNS potential energy as a function of ηZ (η) has
minima corresponding to some clusterizations of the system.

The energetic preference in the dinuclear system model
was calculated in two ways (Tables IV and V). The difference
between them lies in the geometrical configuration. First a
simple pole-to-pole (pp) configuration was supposed for each
clusterization (as is usual in this kind of calculation), then a
more complicated geometrical arrangement was considered,
which corresponds approximately to the result of the mi-
croscopic consideration (m). (In the DNS considerations the
clusters are supposed to have an axial symmetry.)

The energetic calculation of the DNS model is performed
for a binary cluster configuration, which has a geometrical
picture different from those of the shape isomers of 56Ni.
The quadrupole shapes (of the deformed state and the
cluster configuration) are, however, consistent with each other,
as discussed beforehand, in relation with the microscopic
selection rule. Furthermore, in the DNS the neck is formed
by the overlap of the tails of the nucleon densities of the two
nuclei. Therefore, the nuclear shape is rather smooth [44].

IV. DISCUSSION

In this section we discuss the results of the microscopic
structure calculations together with those of the energy
preferences by different methods.
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TABLE IV. Energetic preferences of α-cluster-like configurations
in 56Ni. Here D(1, 2) stands for the binding-energy difference, and
thus the larger value corresponds to more probable appearance.
U means potential energy, calculated from the dinuclear system
model; therefore, smaller values correspond to more stable cluster
configurations. pp indicates the pole-to-pole configuration, typical
in DNS calculations with axial symmetry, while m stands for the
orientation corresponding to the microscopic consideration. (It is
usually more compact than the pp configuration.) All values are in
MeV. See Table I for the notation of the states. GS, ground state; D,
deformed, SD, superdeformed, Tri, triaxial; HD, hyperdeformed.

C1 + C2 D(1,2) U (pp) U (m)

4He + 52Fe 10.88 −0.17 0.1 GS(e)
−0.1 GS(c)
−0.1 D(e)
−0.1 D(c)

8Be + 48Cr 3.61 9.8 6.4 D(e)
6.7 D(c)
6.7 D(h)

9.7 SD(e)
10.0 SD(al)
6.4 Tri(e*)

12C + 44Ti 2.11 11.8 9.5 D(h)
14.5 SD(e)

14.5 SD(al)
10.9 Tri(e)

13.5 Tri(e*)
14.3 Tri(h)

16O + 40Ca 2.57 17.0 16.4 SD(al)
20Ne + 36Ar −1.11 20.4 19.0 D(h)

20.0 SD(e)
21.2 SD(al)
22.6 Tri(e)

21.5 Tri(e*)
22.0 Tri(h)

24Mg + 32S 0.65 19.2 16.3 D(e)
21.0 D(c)
18.3 D(h)

21.0 SD(e)
19.8 SD(al)
20.4 Tri(e)

18.4 HD(e1)
20.6 Tri(e*)
18.6 Tri(h)
17.9 Tri(al)

The connection between the shape isomers found in
the Nilsson model and the possible cluster configurations
is established via the selection rule. The relation between
these microscopically found cluster configurations and the
energy considerations are as follows. The binding energy
consideration depends only on the fragmentation; it is not
applicable to the different geometrical arrangements of the
clusters. The states from the generalized liquid drop model can
be associated with some of the shape isomers (from the Nilsson
model and from cluster configurations from the selection rule),
but the relation is not very well defined, as we will show
below. The double-folding calculation on the other hand can

TABLE V. Energetic preferences of α-cluster-like configurations
in 56Ni. This is a continuation of the previous table, with the same
notation.

C1 + C2 D(1,2) U (pp) U (m)

28Si(p) + 28Si(p) 3.37 16.0 16.4 D(c)
14.5 D(h)

17.5 SD(e)
18.1 SD(al)
16.6 Tri(e)

16.1 Tri(e*)
16.1 Tri(h)

17.0 HD(e1)
16.0 HD(c)

28Si(o) + 28Si(o) 3.37 13.3 15.3 D(e)
17.4 D(c)
15.7 D(h)

14.7 SD(e)
15.7 SD(al)
18.0 Tri(e)

16.0 Tri(e*)
17.0 Tri(h)
14.8 Tri(al)
16.0 Tri(eq)

28Si(o) + 28Si(p) 3.37 16.1 15.0 D(h)
17.4 SD(e)

16.1 SD(al)
18.5 Tri(e)

16.0 Tri(e*)
16.8 Tri(h)
15.1 Tri(al)

be performed directly for the cluster configurations, which are
obtained microscopically, although they are usually different
from the simple pole-to-pole configurations.

The α-like cluster configurations (N = Z = 2n) are more
deeply bound than the others. It is also remarkable that
from different energy calculations 4He is the most favored,
much more so than 8Be, which is followed by the group of
12C, 28Si, and 16O. The sequence of these three for binding
energy (28Si > 12C > 16O) differ from the DNS sequence
(12C > 28Si > 16O), but with not much difference in between.
24Mg and 20Ne turn out to be the least-preferred α-like clusters.

When we try to find the correspondence between the
liquid drop model configurations and the shape isomers found
in Nilsson-calculations, the best guide is provided by the
deformation (β) parameter. In this way it seems that for
symmetric clusterization a connection can be established.
Comparing Table I and Table II, one gets the impression that
the Si + Si quasimolecular state corresponds approximately to
the SD, triaxial, and/or HD states. This seems to be very much
in line with the general understanding of the phenomenon,
based on other studies, and our general physical intuition.

As for the correspondence between the asymmetric molec-
ular states and the shape isomers, the situation seems to be
more complicated. In this case the (perpendicular) moment of
inertia can help in the comparison.

The approximate values of the moment of inertia for the
states indicated in Table I are as follows: GS: 11–12, D: 13,
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TABLE VI. Corresponding cluster configurations and shape
isomers from the extended liquid drop model and microscopic
selection rules. The parentheses indicate less certain connection, as
follows. In the collective model the uncertainty indicates that only
low L or Imax allows the clusteriztion, but Imin does not. In case of the
microscopic considerations it means that some candidates allow the
configuration, but not the majority of them.

Clusters General liquid drop Microscopic

Fe + He GS + (D) GS + D
Cr + Be (GS) + D + (SD) D + SD + (Tri)
Ti + C (GS) + (D) + SD + (Tri) (D) + SD + (Tri)
Ca + O SD + (Tri) + (HD) SD
Ar + Ne (SD) + Tri + (HD) (D) + SD + Tri
S + Mg (SD) + Tri + (HD) D + SD + Tri + HD
Si + Si (SD) + Tri + (HD) D + SD + Tri + HD

SD: 15, Tri: 17–18, and HD: 23+. (There is a small change
depending on whether one uses effective quantum numbers or
simple shell-model configurations, etc.)

The first observation one can make here is that the
symmetric Si + Si configuration again seems to correspond
to the SD, triaxial, and HD shape isomers. This case serves
as a self-consistency check, because here also the quadrupole
deformation is available, and the two results are in line with
each other.

For the asymmetric configurations the comparison, based
on the moment of inertia, looks as it is shown in Table VI.

In addition to some disagreements, remarkable similarities
can also be detected, in spite of the fact that the two methods are
rather different. In short, the comparison between the two sets
of results could be summarized as follows. For a configuration
of open-shell clusters the microscopic viewpoint with exclu-
sion principle, ground-state-like deformations, and arbitrary
orientations but without intrinsic excitations on the one side
and the collective model energetics with spherical colliding
nuclei, a cylindrically symmetric reaction picture, and neck
formation on the other side give somewhat similar results.
For the 40Ca + 16O system, which consists of two closed-shell
clusters, both methods indicate the correspondence to the
SD isomer, but for the other states the conclusions are not
unequivocal. The collective model allows also more deformed
states, such as Tri and HD, while the microscopic method does
not. This is obviously a consequence of the fact that the neck
formation involves internal cluster excitations, which are not
included in our microscopic approach. If we include them, then
Tri and HD states can also have a 40Ca + 16O clusterization.

As far the cluster configurations of the selection rule and
the dinuclear system model are concerned, they are in a
one-to-one correspondence with each other. Based on their
joined conclusions the following can be said on the possible
clusterizations of the shape isomers.

In the ground state the 52Fe + 4He clusterization is the only
α-like cluster configuration which is allowed (as long as both
clusters are in their ground intrinsic state), and this one is,
of course, favorable from the viewpoint of the energetics. In
the deformed state, in addition to 4He clusters, also 8Be, 28Si,
and 24Mg clusters can show up, with this energetic preference.

(A similar simple harmonic oscillator shell-model state would
allow 12C and 20Ne, as well.) Two oblate silicon can definitely
build up this state, but the simplified harmonic oscillator
configuration is available for prolate ones, too. Their relative
orientation is neither parallel nor rectangular.

In the superdeformed state 52Fe + 4He clusterization is not
allowed if the clusters are in their ground intrinsic states.
(With a properly excited 52Fe cluster it becomes allowed, of
course.) The reason is very simple and understandable from a
geometrical basis. The ground-state-like 52Fe is so thick that
it does not fit into the narrower superdeformed 56Ni state. In
fact, it is not the α cluster which is forbidden; rather, it is the
52Fe(GS) cluster. All other α-like clusters are allowed (except
for 40Ca + 16O, which, however, becomes also allowed for a
somewhat simplified cylindrical configuration). Energetically
8Be is somewhat preferred, and 12C and 28Si are fairly similar.
This state can be built up both from prolate and from oblate
silicon. Their orientation with respect to each other and the
molecular axis is not trivial again.

The largely deformed triaxial state can be built up from
two 28Si clusters. Oblate-oblate, oblate-prolate, and prolate-
prolate configurations are allowed in the states with effective
U(3) symmetries, the first two in the α-cluster state, while the
exactly parallel equator-equator configuration does not match
with any prolate 28Si cluster. 24Mg + 32S clusterization is also
allowed (except for the simple “equator” state), as well as 8Be,
12C, and 20Ne clusters in the “effective” state. Their energetic
preference is in the following order: 8Be, 12C, 28Si, 24Mg,
and 20Ne.

In the first “effective” and in the α-cluster hyperdeformed
states the pole-to-pole prolate 28Si + 28Si configuration is
allowed. The previous one contains the 24Mg + 32S configura-
tion, as well. From the energetic point of view their preference
is comparable, the 28Si + 28Si being slightly more deeply
bound.

The second hyperdeformed candidate from our Nilsson
calculation is not relevant from the viewpoint of clusterization,
since no binary configuration can build it up with ground
intrinsic-state clusters. Therefore, it is not possible to populate
it as a resonance in a reaction with ground-state target and
ground-state bombarding nuclei.

V. SUMMARY AND CONCLUSIONS

In this paper we have considered the elongated shape
isomers of the 56Ni nucleus and their possible binary clusteriza-
tions. Both in finding the stable shapes and in determining their
relations to cluster configurations symmetry considerations
were applied extensively.

We have determined the shape isomers from the quasidy-
namical U(3) symmetry, obtained from Nilsson calculations.
It was found that in addition to the triaxial ground state
a prolate shape appears with small deformation, as a 0h̄ω

excitation. In the region of larger deformation we have found
a superdeformed state, a triaxial state, and a hyperdeformed
state, in close similarity with the results of α-cluster studies
[26]. The superdeformed state turned out to be dominantly a
4h̄ω configuration, in complete agreement with shell-model
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and mean-field calculations, as well, which explained the
experimentally observed SD band [16].

In searching for the possible binary clusterizations of the
shape isomers we have taken into account both natural laws
which govern the building up of a nucleus from smaller
constituents. The exclusion principle was taken into account
by applying a selection rule (in combination with Harvey’s
prescription), based on the microscopic configuration asso-
ciated with the quasidynamical U(3) symmetry. In this way
the Pauli principle is incorporated only in an approximate
way, of course. But it is done in a well-defined procedure,
which can be checked in simple systems by comparing with
exact results. This approximation can be illustrated in simple
geometrical terms, in spite of its abstract algebraic content:
it measures how similar the quadrupole deformations are in
the cluster configuration and in the shell-model (or collective
model) state.

The clusters were considered to have a deformation like
the corresponding free nuclei (spherical, prolate, oblate, or
triaxial), and no constraints were applied for their relative
orientation.

We have found that the ground state of 56Ni prefers
asymmetric cluster configurations; from among the α-like
clusterization only 4He + 52Fe is allowed. The deformed,
superdeformed, and largely deformed triaxial states match
with several clusterizations. Structure considerations sug-
gest that the correlated 28Si + 28Si and 40Ca + 16O res-
onances correspond to the superdeformed state of 56Ni,
but not to the hyperdeformed one. In the latter case the
40Ca + 16O configuration has a strong structural forbidden-
ness [1]. The 24Mg + 32S cluster configuration on the other
hand, which is determined by the entrance channel of the
ternary fission experiment, matches both with the SD and
HD states and with the largely deformed triaxial state in
between.

The triaxial state is of special interest because it is thought to
be related to the molecular resonances of two ground-state-like
(oblate) 28Si clusters in their equator-to-equator configuration.
This configuration is allowed in the triaxial state from all cited
studies. If the equator-to-equator configuration is not exactly
parallel, then other α-like binary clusterizations, such as, e.g.,
24Mg + 32S, are also possible.

The hyperdeformed state both from the α-cluster and
from our Nilsson calculation prefers a binary configuration
of prolate 28Si clusters with a pole-to-pole configuration.
The state from our quasidynamical considerations allows

24Mg + 32S as well (again close to the position in which
the longest major axes of both nuclei are parallel with the
molecular axis). The HD state from α-cluster studies does not
contain this configuration.

It is an interesting finding that different states can be built up
from the same two clusters, such as, e.g., two oblate (ground-
state-like) 28Si resulting in 0h̄ω prolate deformed states, a
superdeformed state with 4h̄ω excitation, as well as a largely-
deformed triaxial state with many particle-hole excitations.
The difference in these cases is the relative orientation of the
two deformed clusters. This observation is a consequence of
the fact that the Pauli principle was taken into account, and no
simplifying assumptions were made on the shapes and relative
orientations of the clusters.

The energetic preferences of the cluster configurations
were obtained from binding-energy arguments [12], from the
generalized liquid drop model [13], and from calculations
based on the dinuclear system model [14]. The latter ones
were performed both for the pole-to-pole configurations and
for the ones derived from microscopic considerations. The
4He + core configuration turned out to be the most preferred
one, followed by the 8Be + core one. Then comes a group of
the 12C, 28Si, and 16O clusters, with close-lying values, but
in different order from different calculations. 24Mg and 20Ne
turned out to be the least-preferred α-like clusters.

The methods we applied here seem to be applicable in
heavier nuclei, too. Symmetry considerations can be helpful
in studying both the shape isomers of nuclei and their
clusterizations. As far this latter problem is concerned we think
that the preferred cluster configurations are those which are
favo red by the energetics, and which are Pauli-allowed. From
the viewpoint of the application to heavier systems we consider
it a promising sign that the results of the present method [45]
are very similar to the ones from ab initio calculations for the
case of the 40Ca nucleus [46], where the fully microscopic
treatment was also applied.
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