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Abstract

We solve some cases of a conjecture of Pomerance concerning reduced residue sys-
tems modulo k consisting of the first φ(k) primes not dividing k. We cover the case
when k is a prime, thus giving a complete solution to a problem of Recaman.

Key words: the problem of Recaman, the problem of Pomerance, Jacobsthal
function, primes in residue classes
PACS: 11N13

Dedicated to Professor K. Győry on the occasion of his 70th birthday

1 Introduction

Let k > 1 be an integer and denote by φ(k) Euler’s totient function. We say
that k is a P -integer if the first φ(k) primes coprime to k form a reduced
residue system modulo k. Note that a prime p is a P -integer if and only if the
first p primes form a complete residue system modulo p. In 1980, Pomerance [3]
showed that there are only finitely many P -integers. Thereby he qualitatively
solved the problem of finitely many prime P -integers which was raised earlier
in 1978 by Recaman [4]. In his paper Pomerance conjectured that the largest
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P -integer is k = 30. It is easy to check that the only P -integers less than or
equal to 30 are k = 2, 4, 6, 12, 18, 30.

In this paper we prove the conjecture of Pomerance in two “opposite” ex-
tremal cases: when k is composed of “large” prime factors (i.e. when all the
prime divisors of k are above log(k)), and when k is composed of “small”
prime factors (i.e. k is the product of all primes ≤ x for some x). As a trivial
consequence of the first result we get a complete quantitative solution for the
problem of Recaman. Further, we verify the conjecture of Pomerance for all
k < 5.5 · 105. We note that Pomerance’s finiteness result for P -integers [3] in
principle can be made effective: one can possibly get an explicit upper bound
for P -integers k. However, according to our calculations, this bound is rather
huge, and it seems that to cover the remaining gap some additional (theoreti-
cal and/or computational) arguments are needed. So the complete resolution
of the problem of Pomerance still remains an open quest; we plan to attack it
in a future paper.

The proofs of our results depend on some properties of the Jacobsthal function
g(m) as in [3]. Among others we use the exact values of g(m) when m is the
product of first h ≤ 46 primes, which were recently obtained by Hagedorn [1].
Further, we apply several formulas of Rosser and Schoenfeld [5], concerning
various functions involving primes.

2 Main results

Our first result solves Recaman’s problem completely.

Theorem 1 The only prime P -integer is 2.

In fact Theorem 1 is a trivial consequence of the following much more general
result. For k > 1 let ℓ(k) be the least prime divisor of k.

Theorem 2 Let k > 1 be an integer with ℓ(k) > log(k). Then k is a P -integer
if and only if k ∈ {2, 4, 6}.

For fixed positive integer r and positive real X write

Nr := {n | ω(n) = r} and Nr(X) := {n ∈ Nr | n ≤ X},

where ω(n) denotes the number of distinct prime divisors of n. Further, for any
positive real x, we let log1(x) = log(x) and for t ≥ 2, logt(x) = log(logt−1(x)).
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By a result of Landau it is known that

|Nr(X)| ∼ X(log2(X))r−1

log(X)(r − 1)!

(see Theorem 437, p. 368 of [2]). Let N ′
r(X) denote the set of integers n

in Nr(X) with ℓ(n) ≤ log(n). Then for any n ∈ N ′
r(X) we have ℓ(n) ≤

log(X) and n/ℓ(n) ∈ Nr−1(X/ℓ(n)). Applying Landau’s result to Nr−1(X/p)

for every p ≤ log(X), and noting that (log2(x))
r−2

log(x)
is a decreasing function of x

for sufficiently large x, we find that

|N ′
r(X)| ≤ c1

∑
p≤log(X)

X
p

(
log2

(
X
p

))r−2

log
(
X
p

)
(r − 2)!

≤ c2
X(log2(X))r−2

log(X)(r − 2)!

∑
p≤log(X)

1

p
≤

≤ c3
X(log2(X))r−2

log(X)(r − 2)!
log3(X)

where c1, c2 and c3 are absolute constants. Thus we see that almost all integers
in Nr has ℓ(n) > log(n). In particular, k is not a P -integer whenever k is the
product of twin primes.

Our third theorem verifies the conjecture of Pomerance for integers k being
the products of the first few primes.

Theorem 3 Let k be the product of the primes ≤ x for some x ≥ 2. Then k
is a P -integer if and only if k ∈ {2, 6, 30}.

Finally, we formulate a statement concerning the solution of the problem of
Pomerance for “small” values of k. Our main motivation of doing so is that
this result will be very useful in the proof of Theorem 2.

Proposition 4 Suppose that 1 < k < 5.5 · 105. Then k is a P -integer if and
only if k ∈ {2, 4, 6, 12, 18, 30}.

3 Lemmas

We need many lemmas of different types to prove our theorems. We shall
make use of several estimates of Rosser and Schoenfeld [5] concerning various
functions related to prime numbers. Further, we need certain results due to
Stevens [6] and Hagedorn [1] about the Jacobsthal function. Finally, we need
a theorem of Pomerance about primes in residue classes modulo m.
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3.1 Lemmas concerning functions involving primes

The following four lemmas are estimates from Rosser and Schoenfeld [5] which
we need later on.

Lemma 5 Let pn denote the n-th prime. Then
(i) pn > n(log(n) + log2(n)− 3

2
) for n > 1;

(ii) pn < n(log(n) + log2(n)) for n ≥ 6.

Lemma 6 For any x ≥ 59 we have

x

log(x)

(
1 +

1

2 log(x)

)
< π(x) <

x

log(x)

(
1 +

3

2 log(x)

)
.

Lemma 7 For x ≥ 2 write ϑ(x) =
∑
p≤x

log(p). For any x ≥ 563 we have

x

(
1− 1

2 log(x)

)
< ϑ(x) < x

(
1 +

1

2 log(x)

)
.

Lemma 8 For any x > 1 we have

∏
p≤x

(
1− 1

p

)
<

0.56146

log(x)

(
1 +

1

2 log2(x)

)
.

Note that here 0.56146 could be replaced by any number exceeding e−γ, where
γ is Euler’s constant.

3.2 Lemmas about the Jacobsthal function

For n ≥ 1 the Jacobsthal function g(n) is defined as the smallest integer such
that any sequence of g(n) consecutive integers contains an element which is
coprime to n. This function has been studied by many authors, and good
lower as well as upper bounds are known (see e.g. [6], [3] and [1] for history).
Further, the exact values of g(n) when n is the product of the first h < 50
primes is given in Table 1 of [1].

It was observed by Jacobsthal that for integers k with ℓ(k) > log(k) we have
g(k) = ω(k) + 1. Further, g(k) ≥ ω(k) + 1 is obviously valid for any k. We
shall use these assertions throughout the paper without any further reference.

Our first lemma concerning the Jacobsthal function is a reformulation of the
Theorem of Stevens [6].
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Lemma 9 We have g(k) ≤ 2ω(k)2+2e log(ω(k)) for all k > 1.

The next lemma is Proposition 1.1 of Hagedorn [1].

Lemma 10 We have

g

(
h∏

i=1

pi

)
≥ 2ph−1 for h > 2.

3.3 A result of Pomerance

Let k and l be positive integers with gcd(k, l) = 1. Denote by p(k, l) the least
prime p ≡ l (mod k). We write P (k) for the maximal value of p(k, l) for all
l. Observe that k is a P -integer if and only if P (k) equals the φ(k)-th prime
not dividing k. Since the number of primes dividing k is ω(k), we get that if
k is a P -integer then

pφ(k) ≤ P (k) ≤ pφ(k)+ω(k)

holds. Note also that since φ(k) + ω(k) ≤ k, we have P (k) ≤ pk whenever k
is a P -integer.

To prove the finiteness of k’s which are P -integers, Pomerance [3] derived a
lower bound for P (k) which (for large k) turns to be larger than standard
upper bounds for pφ(k)+ω(k), obtained by using estimates from [5]. This lower
bound of Pomerance is based upon the following result from [3].

Lemma 11 Let k and m be integers with 0 < m ≤ k
1+g(k)

and gcd(m, k) = 1.

Then P (k) > (g(m)− 1)k.

4 Proofs

Since in the proof of Theorem 2 we use Proposition 4, we start with the proof
of the latter result.

Proof of Proposition 4. Let k be arbitrary with 1 < k < 5.5 · 105. Let q1 <
q2 < q3 < . . . be the primes > tk with t = 1 if k is even and t = 2 if k is odd,
respectively. We find the first index i such that qi − tk is a prime. For all k in
the considered interval we found i ≤ 34. If k+2 is a prime then let q = k+2,
otherwise set q = qi with the above defined index i. A calculation with Maple
based upon Lemma 5 ensures that for k > 210 we have q ≤ pφ(k). Thus there
exist two primes ≤ pφ(k) being coprime to k in the same residue class modulo
k, which proves that k is not a P -integer in this case. Finally, for k ≤ 210 we
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check by Maple the first φ(k) primes not dividing k to get the assertion of the
proposition. 2

Proof of Theorem 2. Let k be a P -integer with ℓ(k) > log k. Assume first that
k ≥ 1090. We split the proof of this case into two parts. Suppose first that
k < (ω(k)+2)20. Then, since we know that ω(k) log(ℓ(k)) ≤ log(k), we obtain

ω(k) ≤ log(k)

log2(k)
.

Hence using our assumption for k we get

k <

(
log(k)

log2(k)
+ 2

)20

.

This implies that k < 1090, which is a contradiction, and the statement follows
in this case. Suppose next that we have k ≥ (ω(k) + 2)20. Let

h =

⌊
0.92 log(k)

log2(k)

⌋
+ 1.

Then

h <
0.946 log(k)

log2(k)
< log(k).

Hence by Lemma 5 (ii)

ph < 0.946 log(k) < log(k).

Let m be the product of the first h primes coprime to k. Since ph < log(k) <
ℓ(k), by assumption, we see that m is indeed the product of all the first h
primes. Hence

m < phh < e0.946 log(k) <
k

ω(k) + 2

since we assumed ω(k) + 2 ≤ k
1
20 . Thus by Lemmas 10 and 11, we have

P (k) > (g(m)− 1)k ≥ (2ph−1 − 1)k.

Now

h− 1 ≥ 0.92
log(k)

log2(k)
− 1 > 0.894

log(k)

log2(k)
.

Hence by Lemma 5 (i)

ph−1 ≥ X
(
log(X) + log2(X)− 3

2

)
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where X = 0.894 log(k)
log2(k)

. Let

F (k) = 2X
(
log(X) + log2(X)− 3

2

)
k − k log(k)− k log2(k)− k.

Then F (k) = k log(k)f(k) with

f(k) :=
1.788

log2(k)

(
log(X) + log2(X)− 3

2

)
− 1− log2(k)

log(k)
− 1

log(k)
.

Observe that f(k) is an increasing function of k and hence f(k) ≥ f(1090),
since k ≥ 1090. As f(1090) ≥ 0.0803, we find that F (k) > 0 which implies that
P (k) > k log(k)+k log2(k) > pk ≥ pφ(k)+ω(k). Hence k is not a P -integer. This
contradiction proves the theorem for k ≥ 1090 with ℓ(k) > log(k).

Assume now that k < 1090. By Proposition 4 we may suppose that 5.5 · 105 ≤
k < 1090. We divide the interval [5.5 · 105, 1090) into sub-intervals and assign
a value h to each interval as follows. Let v0 = 1090. The largest integer h
such that ph < log(1090) is 46. We set our initial sub-interval as [u0, v0) =
[1087, 1090), α0 = 87 and h0 = h = 46. For any k with ℓ(k) > log(k) in this
interval we have g(k) = ω(k) + 1 < log(k) + 1 < 209. We check that

m0 :=
46∏
j=1

pj <
1087

210
≤ k

g(k) + 1
.

Now we proceed inductively. Let i ≥ 1 and take hi = h0 − i. We define the
sub-interval [ui, vi) as [10

αi , 10αi−1) satisfying the following properties:

phi
< αi log(10) (1)

and

mi :=
h0−i∏
j=1

pj <
10αi

(αi−1 log(10) + 2)
. (2)

Let k ∈ [ui, vi) with ℓ(k) > log(k). Then phi
< log(k) and hence by the

assumption on k, mi is the product of the first hi primes, and gcd(mi, k) = 1.
Suppose that

g(mi)− 1− αi−1 log(10)− log(αi−1 log(10)) > 0. (3)

Then, since k ≤ 10αi−1 , we find by Lemma 11 and Lemma 5 (ii) that

P (k) > k log(k) + k log2(k) > pk ≥ pφ(k)+ω(k)

and hence k ∈ [ui, vi) is not a P -integer.

In Table 1 we give the values hi = h, αi = α, and the exact value of g(m)
with m = mi from Table 1 of [4]. For these values, we check that (1), (2)
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and (3) are satisfied and hence we conclude that k < 108. Now consider k in

Table 1

h 7 8 9 10 11 12 13 14 15 16

g(m) 26 34 40 46 58 66 74 90 100 106

α 8 9 10 13 14 17 18 19 21 24

h 17 18 19 20 21 22 23 24 25 26

g(m) 118 132 152 174 190 200 216 234 258 264

α 26 27 30 31 32 35 37 39 43 44

h 27 28 29 30 31 32 33 34 35 36

g(m) 282 300 312 330 354 378 388 414 432 450

α 45 47 48 55 56 57 60 61 65 66

h 37 38 39 40 41 42 43 44 45 46

g(m) 476 492 510 538 550 574 600 616 642 660

α 69 71 73 76 78 79 83 84 86 87

the intervals [3 · 107, 108) with h = 7 and [5.5 · 105, 3 · 107) with h = 6 and
g(m) = 22, respectively. Then conditions (1), (2) and (3) are satisfied again,
showing that k is not a P -integer. Hence the statement follows. 2

Proof of Theorem 3. Assume first that x ≥ 1000 and put k =
∏
p≤x

p. Set

m :=
∏

x<p≤y
p with y = 1.777x. First we show that by these choices we have

m ≤ k/(1 + g(k)). This inequality can be rewritten as

1 + g(k) ≤ exp(2ϑ(x))

exp(ϑ(y))
.

Using Lemma 9, it is sufficient to show that

1 + 2π(x)2+2e log(π(x)) ≤ exp(2ϑ(x)− ϑ(1.777x)).

With the help of Maple, by Lemmas 6 and 7 this can be seen to be true
whenever x ≥ 12000. For 1000 ≤ x < 12000 the assertion can be checked by
calculating the exact values of the functions π(x) and ϑ(x).

Now we show that (still with x ≥ 1000) we have (g(m) − 1)k ≥ pφ(k)+ω(k).
By Lemma 11 this implies the statement. To prove this, observe that g(m) >
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ω(m) = π(y)− π(x). Hence using Lemma 5 (ii) it is sufficient to check that

π(1.777x)− π(x) ≥

∏
p≤x

(
1− 1

p

)
+

π(x)∏
p≤x

p

 (ϑ(x) + log(ϑ(x)))

for x ≥ 1000. Again, by the help of Lemmas 6, 7 and 8 this inequality can
be verified for x ≥ 12000 with Maple. Further, for 1000 ≤ x < 12000 the
assertion can be proved by calculating the exact values of the expressions
involved. Hence the statement is valid when x ≥ 1000.

Assume now that x < 1000. Then we check the values of k one by one. For k
given, let q1 = pπ(k)+1 and q2 = pπ(k)+2. A calculation by Maple shows that for
k > 30 we have q2 ≤ pφ(k)+ω(k), and also that one of q1 − k, q2 − k is a prime.
Finally, as k = 2, 6, 30 are P -integers indeed, the statement follows. 2

5 Acknowledgement

The authors thank the referee for the useful and helpful remarks and sugges-
tions. The authors are grateful to Professor C. Pomerance for drawing their
attention to his paper [3] where the problems considered in this paper are
posed. The second author also thanks Professor K. Győry for his kind hospi-
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