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Abstract. In this paper, we provide a complete analysis of second-order admissible variations
to inequality-type constraints, which are given in terms of measurable set-valued functions whose
images are closed convex sets with nonempty interior. As an application, we consider optimization
problems where such constraints are present, and we deduce second-order necessary conditions for
optimality.
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1. Introduction. Consider the following optimization problem:

(P) Minimize F0(z) subject to E(z) = 0, F (z) ≤ 0, G(z) ∈ Q,

where F0 : D → R, E : D → Y , F : D → R
p, G : D → X, and X, Y , Z are

Banach spaces, D ⊂ Z is nonempty and open, and Q ⊂ X is a closed convex set with
nonempty interior.

The prototype of such problems arises, for instance, in optimal control theory
with control constraints in the inclusion form x(t) ∈ Q(t) (for all t ∈ Ω), where Q
is a measurable set-valued map with closed convex nonempty interior images on the
complete finite measure space (Ω,A, µ).

Better understanding of optimality conditions is an ongoing research program
for several researchers. This question is of great value in theory and in applications.
Usually, such conditions must be given in terms of the original data of the problem
and, in the context of necessity, are expected to be as strong as they can be.

In 1988, Kawasaki [11], [12] discovered, for the problem (P), where Q is a cone,
second-order necessary conditions that contain an extra term manifesting the presence
of infinitely many inequalities in the constraint G(z) ∈ Q. This phenomenon is known
as the “envelope-like effect.” Such result was generalized by Cominetti in [4]. Both
results assumed a Mangasarian–Fromovitz-type condition.

In [18] the authors have generalized the previous results in [11], [12], and [4]
to the nondifferentiable case without assuming a Mangasarian–Fromowitz condition.
The second-order admissible variation set used therein (defined first by Dubovitskii
and Milyutin in [7], [8]) is described in the following definition.

Definition. Let X be a normed space, Q ⊂ X, x ∈ Q, and d ∈ X. A vector
v ∈ X is called a second-order admissible variation of Q at x in the direction d if
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there exists ε > 0 such that

x+ εd+ ε2(v + w) ∈ Q for all 0 < ε < ε, ||w|| < ε, w ∈ X.

The set of all such variations is denoted by V (x, d|Q). It follows directly from the
definition that V (x, d|Q) is an open set. If Q is also convex, then V (x, d|Q) is convex
as well. Results related to those in [18] were obtained by Maruyama [14, Theorem
3.2], where Neustadt’s derivative was used to handle the nonsmoothness of data.

In order to derive meaningful second-order optimality conditions, it is imperative
to choose directions d that guarantee the nonemptiness of V (x, d|Q). Such directions
d ∈ X are labeled as the critical directions of Q at x and form a set called critical
direction cone to Q at x. Throughout this paper, this cone will be denoted by C(x|Q).
It can be easily seen that C(x|Q) is a convex set such that

cone(Q− x) ⊂ C(x|Q) ⊂ cone(Q− x).

In order to recall the first- and second-order necessary conditions for (P), obtained
in [18, Corollary 2], we need to introduce the following notation and notions.

• A point ẑ ∈ D is called an admissible point for (P) if E(ẑ) = 0, F (ẑ) ≤ 0,
and G(ẑ) ∈ Q hold. A point ẑ ∈ D is a solution (local minimum) of the
problem if it is admissible and there exists a neighborhood U of ẑ such that
F0(z) ≥ F0(ẑ) for all admissible points z ∈ U .

• A point ẑ ∈ D is called a regular point for (P) if
(R1) F0, F = (F1, . . . , Fp) are locally Lipschitz at ẑ;
(R2) G is strictly Fréchet differentiable at ẑ;
(R3) E is strictly Fréchet differentiable at ẑ and the range of the linear oper-

ator E′(ẑ) is a closed subspace of Y .
If Fi (i = 0, . . . , p) is locally Lipschitz at ẑ, then the expression

F o
i (ẑ; y) := lim sup

(z,ε)→(ẑ,0+)

Fi(z + εy)− Fi(z)

ε

is finite and will be called Clarke’s generalized directional derivative in the direction
y. The corresponding generalized gradient ∂Fi(ẑ) is defined by

∂Fi(ẑ) := {z∗ ∈ Z∗ : 〈z∗, z〉 ≤ F o
i (ẑ; z) for all z ∈ Z}.

For properties of these notions, see [2].
Let ẑ be an admissible regular point for (P) and d ∈ Z.
• A vector y ∈ Z is called a critical direction at ẑ for (P) if
(C1) F o

i (ẑ; y) ≤ 0 for all i = 0, . . . , p;
(C2) G′(ẑ)y ∈ C(G(ẑ)|Q);
(C3) E′(ẑ)y = 0.

• A vector y ∈ Z is called a regular direction at ẑ for (P) if
(R4) for all i = 0, . . . , p,

F o′
i (ẑ, y) := lim sup

ε→0+
2
Fi(ẑ + εy)− Fi(ẑ)− εF o

i (ẑ; y)

ε2

is finite;
(R5) the second-order directional derivative of L := (G,E)
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L′′(ẑ, y) := lim
ε→0+

2
L(ẑ + εy)− L(ẑ)− εL′(ẑ)y

ε2

exists.
Clearly, the zero vector is always a regular critical direction at ẑ for (P).

Now we are ready to state the result of [18, Corollary 2].
Theorem 1.1. Let ẑ be a regular local solution of the above problem (P). Then,

for all regular critical directions y, there correspond Lagrange multipliers λi ≥ 0 (i =
0, . . . , p), x∗ ∈ X∗, and y∗ ∈ Y ∗ which depend on y, such that at least one of them is
different from zero and the following relations hold:

λiFi(ẑ) = 0 for all i = 1, . . . , p and x∗ ∈ N(G(ẑ)|Q),(1.1)

p∑
i=0

λiF
o
i (ẑ; z) + 〈x∗, G′(ẑ)z〉+ 〈y∗, E′(ẑ)z〉 ≥ 0 for z ∈ Z,(1.2)

and

p∑
i=0

λiF
o′(ẑ, y) + 〈x∗, G′′(ẑ, y)〉+ 〈y∗, E′′(ẑ, y)〉 ≥ 2δ∗

(
x∗

∣∣∣V (G(ẑ), G′(ẑ)y|Q)
)
.

(1.3)

(Here δ∗ stands for the support function and N(x|Q) denotes the adjoint cone of
T (x|Q), that is, the cone of outward normals to the set Q at the point x [24].)

We note that, using the Hahn–Banach theorem, the first-order condition (1.2)
can also be expressed as an equality: There exist linear functionals z∗i ∈ ∂Fi(ẑ)
(i = 0, . . . , p) such that

p∑
i=0

λiz
∗
i + x∗ ◦G′(ẑ) + y∗ ◦ E′(ẑ) = 0.

Throughout this paper the term to the right-hand side of inequality (1.3) will be
referred to as the extra term in the second-order condition.

Results along the line of Theorem 1.1 were obtained by Ioffe [10] and Penot [23]
for the differentiable case and in the presence of a certain qualification condition.

Two important questions naturally surface from Theorem 1.1:
(i) How can we check the nonemptiness of V (x, d|Q), that is, how can the critical

cone C(x|Q) be characterized, since otherwise the second-order optimality
conditions would be satisfied trivially?

(ii) How can we evaluate the support function of V (x, d|Q)?
In order that d be in C(x|Q), it is only necessary that Q have a nonempty interior

and that d belong to cone(Q−x) = T (x|Q), which is the tangent cone toQ at x. If d ∈
cone(Q−x), then V (x, d|Q) is nonempty and V (x, d|Q) = cone(cone(intQ−x)−d) (cf.
[18, Theorem 4]). In this case the right-hand side in the second-order condition (1.3)
vanishes. However, examples are provided by Kawasaki [11] in order to show that the
necessary conditions with extra term, that is, when d ∈ cone(Q−x), handle situations
that cannot be handled with previous results where d is taken from cone(Q − x).
Thus, one has to consider also directions d ∈ T (x|Q) \ cone(Q − x). In this case
the description of V (x, d|Q) and the characterization of its nonemptiness are far from
being trivial.
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A significant setting is the case when Q is a subset of C(T,Rr) defined by

Q = σC(Q) =: {x ∈ C(T,Rr) | x(t) ∈ Q(t) for all t ∈ T},(1.4)

where Q is a lower semicontinuous set-valued map whose images are closed, convex
sets with nonempty interior, and T is a compact Hausdorff space. The importance
of this type of constraints stems from control problems with state constraints. This
problem has been studied and a satisfactory answer to questions (i) and (ii) above
have been provided in a recent paper by the authors [22].

Another case of great interest is when Q is a subset of L∞(Ω,Rm) defined by

Q = σ∞(Q) := {x ∈ L∞(Ω,Rm) | x(t) ∈ Q(t) for almost every (a.e.) t ∈ Ω},(1.5)

where Q is a measurable set-valued map whose images are closed and have nonempty
interior, and (Ω,A, µ) is a complete finite measure space. This type of constraint is
typical for control constraints in control problems. The main goal of this paper is to
investigate this type of constraint and to obtain satisfactory necessary conditions for
the corresponding optimization problem.

In the case when Q := σ∞(Q), the two questions (i) and (ii) stated above are still
open. They can now be rephrased as follows:

(*) Characterize the critical cone C(x|σ∞(Q)). Furthermore, evaluate the sup-
port functional of V (x, d|σ∞(Q)) in terms of the images Q(t) and their sup-
port functionals δ∗(·|Q(t)).

Note that, by [20] and [21], the set σ∞(Q) defined by (1.5) is decomposable, that is,

χAx+ χΩ\Ay ∈ σ∞(Q) for all x, y ∈ σ∞(Q), A ∈ A.
(Here χA denotes the characteristic function of the set A.) Thus, V (x, d|σ∞(Q)) is
also decomposable. Therefore, the L1-closure of V (x, d|σ∞(Q)) can be identified with
a measurable set-valued function V : Ω → 2R

m

whose images are nonempty closed
sets.

The aim of this paper is to answer positively the open questions in (*) when
the values of Q are also convex sets. In section 2, the elements of C(x|σ∞(Q)) are
characterized in Theorem 2.5 by a certain boundedness condition (2.15). Furthermore,
the support function of V (x, d|σ∞(Q)) is evaluated in Theorem 2.2 and Corollaries
2.3 and 2.7 via the evaluation of the support functions associated with the pointwise
sets of second-order admissible directions

V(t) := V (x(t), d(t)|Q(t)) (t ∈ Ω).(1.6)

The results of this section differ from their counterparts established in [19] for the case
when Q = σC(Q) (defined in (1.4)). This distinction is mainly due to the continuity
requirement on the selections. In fact, the nonemptiness condition for V (x, d|σC(Q) in
[19] was also phrased in terms of a boundedness below of a lower semicontinuous map
(see [19, Theorem 3.5]). On the other hand, the pointwise sets V(t), defined above,
play no role whatsoever in the evaluation of the support function of V (x, d|σC(Q))
(see [19, Theorem 3.10]).

In section 3, we apply the results of section 2 to the abstract optimization problem
(P∗) (see section 3), where two types of parametric constraints are present, namely,

g(t, z) ∈ Q(t) for a.e. t ∈ Ω,
h(t, z) = 0 for a.e. t ∈ Ω,

(1.7)
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where Q is as required in (1.5). The main result is given in Theorem 3.1, where
the hypotheses and conditions of Theorem 1.1 are phrased in terms of t-pointwise
conditions. In particular, condition (C2) is given in terms of the pointwise tangent
cone to Q(t) (see condition (C∗

2 )) given in Theorem 2.5. The extra term

δ∗
(
x∗

∣∣∣V (G(ẑ), G′(ẑ)y|Q)
)

appearing in the second-order optimality condition is phrased as an integral of a
function associated with the set of pointwise second-order admissible variations of
Q(t). Another contribution of Theorem 3.1 lies in finding reasonably general condi-
tions (R∗

2)–(R
∗
4) which guarantee that the multipliers associated with the parametric

constraints (1.7) are in fact represented via integrable functions.

2. Second-order admissible variations. Let X = L∞
m := L∞(Ω,Rm), where

(Ω,A, µ) is a complete finite measure space, and let Q : Ω → 2R
m

be a measurable
set-valued function whose images are closed sets with nonempty interior. Define the
set σ∞(Q) ⊂ L∞

m by (1.5). Let x ∈ σ∞(Q), d ∈ L∞
m , and V := V (x, d|σ∞(Q)). In

order that V be nonempty, it is necessary that intσ∞(Q) be nonempty. This latter
condition is equivalent (by [21, Theorem 3]; see also [20]) to assuming that Q satisfies

∃r ≥ ρ > 0 and, for a.e. t ∈ Ω, ∃xt ∈ R
m such that Bρ(xt) ⊂ Q(t) ∩Br(2.1)

(where Bε(x) denotes the ball in R
m of radius ε centered at x; if x = 0, then x may

be omitted).
A preliminary characterization of V is given in the following result.
Lemma 2.1. Let v ∈ L∞

m . Then v ∈ V if and only if there exist ε > 0 and a set
A ∈ A of full measure such that, for all 0 < ε ≤ ε, u ∈ Bε ⊂ R

m, and t ∈ A,

x(t) + εd(t) + ε2(v(t) + u) ∈ Q(t).(2.2)

Proof. Let v ∈ V. Then, by definition, there exists an ε > 0 such that for all
0 < ε ≤ ε, w ∈ L∞

m with ‖w‖ ≤ ε, there exists a set A = Aε,w of full measure that

x(t) + εd(t) + ε2(v(t) + w(t)) ∈ Q(t) for all t ∈ Aε,w.(2.3)

Let {(εn, un)|n ∈ N} be a dense subset of [0, ε] × Bε. Then defining the measurable
functions wn by wn(t) := un, we get from (2.3) that for all n ∈ N,

x(t) + εnd(t) + ε2n(v(t) + un) ∈ Q(t) for all t ∈
∞⋂

n=1

Aεn,wn
.

Using the fact that {(εn, un)} is dense and that Q(t) is closed, we obtain that (2.2)
is valid for ε ≤ ε, u ∈ Bε, and t ∈ A :=

⋂∞
n=1 Aεn,wn

.
Conversely, let v ∈ L∞

m and assume that there exists ε > 0 and A ∈ A of full
measure such that (2.2) is valid for all 0 < ε ≤ ε, u ∈ Bε, and t ∈ A. Let w ∈ L∞

m such
that ‖w‖ ≤ ε. Then there exists a set Aw ∈ A of full measure such that |w(t)| ≤ ε for
all t ∈ Aw. Hence, by (2.2), we have (2.3) with Aε,w = A ∩Aw. Therefore, v belongs
to V.

An immediate consequence of this lemma is that if v ∈ V, then

v(t) ∈ V (x(t), d(t)|Q(t)) for a.e. t ∈ Ω.(2.4)
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This inclusion motivates the study of the relationship between V and the measurable
set-valued map V defined by (1.6). Note that the measurability of V follows from
standard arguments.

It is worth noting that (2.4) remains valid when, in V, Q = σ∞(Q) is replaced
by the set defined in (1.4). In this case, the relationship between V and V is not
direct, as shown in [20], [21]. However, for the L∞ setting, a direct connection will
be established.

We recall now the notions of L1-closedness and L1-closure from [21]. A subset Q
of L∞

m is called L1-closed if whenever xn ∈ Q for n ∈ N, x ∈ L∞, and

lim
n→∞ ||xn − x||1 = 0,

then x ∈ Q. The L1-closure of a set in L∞ is the smallest L1-closed set containing it.
Another important type of closedness can be defined in the following way: A

subset Q of L∞
m is called Π-closed (closed in with respect to the so-called Pontryagin

(Π-)convergence) if whenever there exists a sequence xn ∈ Q such that

sup ||xn||∞ < ∞ and lim
n→∞ ||xn − x||1 = 0,

then x has to belong to Q. The Π-closure of a set is the intersection of all Π-closed
sets containing it. Obviously, the class of L1-closed sets forms a proper subclass of the
class of Π-closed sets. However these two notions coincide in the class of decomposable
sets as shown by [21, Theorem 1] (see also [20]). The concept of Π-convergence can
also be used to define the notion of the Pontryagin (Π-)minimum; see, e.g., [5], [6],
[13], [16], [17], and the book by Milyutin and Osmolovskii [15], where necessary and
sufficient conditions for this type of minimum are investigated.

Analogously, we can speak about Π-continuity of real-valued functions defined on
a subset of L∞

m , and also about (Π,Π)-continuity of maps from L∞
m to L∞

n .
The L1-closed and decomposable set cl1 V is known (by [21, Theorem 2]) to be

represented via a measurable set-valued map. As we shall see, this set-valued map is
in fact V, that is, the set-valued map whose images are V(t) (i.e., the closure of V(t)).

Theorem 2.2. If V �= ∅, then
cl1 V = σ∞(V).(2.5)

Proof. The proof of the “⊂” inclusion is obvious since if v ∈ V, then, from (2.4),
we have v ∈ σ∞(V) ⊂ σ∞(V). Hence V ⊂ σ∞(V).

The right-hand side of this inclusion is an L1-closed set (see [20], [21]); therefore
cl1 V is also contained in it.

To prove the reversed inclusion in (2.5), assume that v0 ∈ σ∞(V). Then, for all
n ∈ N and for a.e. t ∈ Ω, the open ball U1/n(v0(t)) intersects V(t). Hence, by known
selection theorems for measurable set-valued maps (see [3]), there is a measurable
selection vn of the measurable open set-valued map

t �→ V(t) ∩ U1/n(v0(t)).

Clearly, vn ∈ σ∞(V) and ‖vn − v0‖∞ ≤ 1/n. Therefore, in order to prove that
v0 ∈ cl1 V, it is sufficient to show that vn ∈ cl1 V. Thus the proof will be completed
if we prove

σ∞(V) ⊂ cl1 V.(2.6)
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Let v ∈ σ∞(V). Then there exists a set A ∈ A of full measure such that v(t) ∈
V(t) = V (x(t), d(t)|Q(t)) for all t ∈ A. Then, for all t ∈ A, there exists εt > 0 such
that for all 0 < ε ≤ εt, u ∈ Bεt ,

x(t) + εd(t) + ε2(v(t) + u) ∈ Q(t).

Define, for (ε, u) ∈ (0,∞)× R
m,

Aε,u := {t ∈ A | x(t) + εd(t) + ε2(v(t) + u) ∈ Q(t)}.

Clearly, Aε,u is measurable. Let n ∈ N be fixed, and let {(εi, ui)|i ∈ N} be a dense
subset of [0, 1/n] × B1/n. Then

⋂∞
i=1 Aεi,ui

is measurable, and by the closedness of
Q(t) we have

An :=

∞⋂
i=1

Aεi,ui

=
{
t ∈ A | x(t) + εd(t) + ε2(v(t) + u) ∈ Q(t) : for all ε ∈ [0, 1/n], for allu ∈ B1/n

}
.

For all t ∈ A, there exists n ∈ N such that εt > 1/n; hence
⋃∞

n=1 An = A. Thus
µ(An) → µ(Ω) as n → ∞.

Let v̄ be a fixed element of V (which exists by the assumption V �= ∅), and define
the sequence of functions v̄n by

v̄n(t) :=

{
v(t) if t ∈ An,
v̄(t) if t �∈ An.

Since v̄ ∈ V, and using Lemma 2.1, there exist a positive ε and a set Ā ∈ A of full
measure such that

x(t) + εd(t) + ε2(v̄(t) + u) ∈ Q(t)

for all ε ∈ [0, ε], u ∈ Bε, and t ∈ A0. Taking εn = min(ε, 1/n), we get that

x(t) + εd(t) + ε2(v̄n(t) + u) ∈ Q(t)

if ε ∈ [0, εn], u ∈ Bεn , and t ∈ A ∩ Ā. It follows from Lemma 2.1 that v̄n ∈ V. On
the other hand, the sequence v̄n converges to v in the L1-norm (since µ(An) → µ(Ω)
as n → ∞). Hence, we obtain that v ∈ cl1 V, which completes the proof.

Remark 2.1. We already know from (2.4) that

V ⊂ σ∞(V).

It is natural to investigate whether V and σ∞(V) are also related through the reverse
inclusion. In Theorem 2.2 we have shown that, by using the L1-closure of V,

σ∞(V) ⊂ cl1(V).

However, one may ask whether another relation of this type exists by using the L∞-
closure of V. As we shall show in the example below, (2.5) is the only possible such
connection. In fact, we shall show that for this example

σ∞(V) �⊂ cl∞V,
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and thus also σ∞(V) �⊂ cl∞V. Hence (2.5) fails to hold when instead of the L1-closure
we use the L∞-closure.

Example 2.1. For t ∈ Ω := (0, 1], let

Q(t) := {(x1, x2) ∈ R
2 | 0 ≤ x2, x1 ≤ √

tx2}.
Then the values of Q are closed convex sets; furthermore, Q = σ∞(Q) has nonempty
interior because, for all t ∈ Ω,

{(x1, x2) ∈ R
2 | x1 ≤ 0, x2 ≥ 0} ⊂ Q(t).

It is obvious that x ≡ 0 ∈ Q. Define d ∈ L∞(Ω) by d(t) = (
√
t, 0). Then, d ∈ T (0|Q),

since with

dn(t) := (
√
t, εn) (t ∈ Ω, n ∈ N)

(where εn → 0+), we have that

‖d− dn‖∞ = εn and x(t) + εndn(t) = (εn
√
t, ε2n) ∈ Q(t) (t ∈ Ω, n ∈ N).

Now we show that, for all t ∈ Ω,

V (x(t), d(t)|Q(t)) = {(v1, v2) ∈ R
2 | v2 > 1}.

Let t ∈ Ω be fixed. Then (v1, v2) belongs to V (x(t), d(t)|Q(t)) if and only if there
exists ε > 0 such that, for all 0 < ε < ε, |(u1, u2)| < ε,(

ε
√
t+ ε2(v1 + u1), ε

2(v2 + u2)
)
∈ Q(t),

that is,

0 ≤ v2 + u2 and 1 +
ε(v1 + u1)√

t
≤ √

v2 + u2.(2.7)

Taking the limit ε → 0, it follows that v2 + u2 ≥ 1 if |u2| < ε. Hence v2 > 1 is a
necessary condition.

Conversely, if v2 > 1 and v1 ∈ R, then there exists a constant c > 0 such that

1 ≤ v2 − c, 1 + c(v1 + c) ≤ √
v2 − c.

Then, for |ui| ≤ c, we get

1 ≤ √
v2 + u2, 1 + c(v1 + u1) ≤

√
v2 + u2.

Multiplying the first inequality by 1 − ε/(c
√
t), the second by ε/(c

√
t), and adding

the two inequalities so obtained, we get that (2.7) holds for 0 < ε ≤ c
√
t, |u1| ≤ c,

|u2| ≤ c. Hence, (v1, v2) ∈ V (x(t), d(t)|Q(t)).
Thus, all the constant functions v(t) = (v1, v2), where v2 > 1, belong to σ∞(V).

Now, we prove that v �∈ cl∞V for v1 > 0.
We argue by contradiction. Assume that v1 > 0, v2 > 1, and v ≡ (v1, v2) ∈ cl∞V.

Then there exists a sequence wn ∈ V with ‖wn − v‖∞ → 0. By Lemma 2.1, wn ∈ V
means that there exist 0 < εn ≤ 1 and An ⊂ Ω of full measure such that, for all
0 < ε ≤ εn, u ∈ Bεn ⊂ R

2, and t ∈ An,

0 ≤ wn,2(t) + u2, 1 +
ε√
t
(wn,1(t) + u1) ≤

√
wn,2(t) + u2.
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Hence, by taking u1 = u2 = 0 and ε = εn, we have for all n ∈ N and t ∈ A :=
⋂∞

n=1 An,

1 +
εn√
t
wn,1(t) ≤

√
wn,2(t).

Thus, due to the L∞-convergence of wn to v ≡ (v1, v2), we have for some n0 ∈ N and
Ā ⊂ Ω of full measure that wn,1(t) > v1/2 and wn,2(t) < 2v2 if t ∈ Ā and n ≥ n0.
Hence,

1 +
εnv1

2
√
t
≤ √

2v2, that is, εn ≤ 2
√
t

√
2v2 − 1

v1

for t ∈ A ∩ Ā and for n ≥ n0. Therefore, εn = 0 for n ≥ n0, contradicting εn > 0.
It is worth noting that in the above example the boundary of the set Q(t) has at

(0, 0) a curvature of order 1/t, and hence it is not bounded above on Ω.
An essential result follows from Theorem 2.2 that shows how to express the sup-

port function of V in terms of that of V(t).
Corollary 2.3. Assume that V �= ∅. Then, for ϕ ∈ L1

m,

δ∗(ϕ|V) =

∫
Ω

δ∗(ϕ(t)|V(t)) dµ(t).(2.8)

Proof. Applying the previous theorem and [21, Lemma 4 and Theorem 6], which
employ results from [25], [26] and [9], we have that

δ∗(ϕ|V) = δ∗(ϕ| cl1 V) = δ∗(ϕ|σ∞(V))
=

∫
Ω

δ∗(ϕ(t)|V(t)) dµ(t) =
∫

Ω

δ∗(ϕ(t)|V(t)) dµ(t).

The above results bring up the questions of studying
(i) the characterization of the nonemptiness of V, and
(ii) the calculation of the support function of the images V(t).
If the images of the set-valued map Q are convex, then σ∞(Q) is also convex. In

this case, Theorem 2.5 below offers an important characterization for the nonempti-
ness of V. This result is based on the following characterization of the elements of V
that is more useful in this case than that given by Lemma 2.1.

To state these results concisely, we introduce the following functions. For t ∈ Ω
and ξ ∈ R

m, denote

a(t, ξ) := δ∗(ξ|Q(t))− 〈ξ, x(t)〉 , b(t, ξ) := 〈ξ, d(t)〉 .(2.9)

Lemma 2.4. Let x ∈ σ∞(Q) and d ∈ L∞
m . v ∈ V = V (x, d|σ∞(Q)) if and only if

d(t) ∈ T (x(t)|Q(t))(2.10)

for a.e. t ∈ Ω, and there exists ε > 0 such that, for a.e. t ∈ Ω,

〈ξ, v(t)〉 ≤




−ε|ξ| − [b(t, ξ)]2

4a(t, ξ)
if εb(t, ξ) > 2a(t, ξ),

−ε|ξ|+ a(t, ξ)− εb(t, ξ)

ε2
if εb(t, ξ) ≤ 2a(t, ξ)

(2.11)

for all ξ ∈ R
m \ {0}.
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Proof. Let v ∈ V. Then V is nonempty; hence d ∈ T (x|Q). Then, it follows from
[21, Theorem 4] that (2.10) is valid for a.e. t ∈ Ω.

To prove (2.11), note that for almost all t ∈ Ω, in the first domain, that is, in the
set

{ξ ∈ R
m | εb(t, ξ) > 2a(t, ξ)},

we have a(t, ξ) > 0. This implies that the function defined in the right-hand side
of the above inequality is well defined. Indeed, by (2.10), the equality a(t, ξ) =
δ∗(ξ|σ∞(Q))− 〈ξ, x(t)〉 = 0 yields b(t, ξ) = 0, contradicting εb(t, ξ) > 2a(t, ξ) = 0.

By Lemma 2.1, there exist ε > 0 and a set A ∈ A of full measure such that (2.2)
holds for all 0 < ε ≤ ε, u ∈ Bε ⊂ R

m, and t ∈ A. Therefore, for all ξ ∈ R
m, we have

〈ξ, x(t)〉+ ε 〈ξ, d(t)〉+ ε2 〈ξ, v(t) + u〉 ≤ δ∗(ξ|Q(t)),(2.12)

that is,

εb(t, ξ) + ε2 〈ξ, v(t) + u〉 ≤ a(t, ξ).

Putting u = εξ/|ξ|, we deduce

εb(t, ξ) + ε2(〈ξ, v(t)〉+ ε|ξ|) ≤ a(t, ξ)(2.13)

for all 0 < ε ≤ ε, t ∈ A, and ξ ∈ R
m \ {0}. Hence,

〈ξ, v(t)〉 ≤ −ε|ξ|+ inf
0<ε≤ε

a(t, ξ)− εb(t, ξ)

ε2
.(2.14)

Computing the infimum on the right-hand side, we get that (2.11) is valid for all t ∈ A
and ξ ∈ R

m \ {0}.
Conversely, if v ∈ L∞

m , (2.10) is valid, and there exists ε > 0 and a set A ∈ A of
full measure such that v satisfies (2.11) for all ξ ∈ (Rm \ {0}), then (2.14) and (2.13)
are also valid. Thus (2.12) holds for all u ∈ Bε. The set Q(t) being convex, this latter
inequality implies (2.2). Hence, by Lemma 2.1 again, v belongs to V.

Thus we have proved Lemma 2.4.
Remark 2.2. An interesting consequence of Lemma 2.4 is that if (2.10) is valid

and (2.11) also holds on the domain indicated, then d ∈ T (x|σ∞(Q)). The condition
(2.10) alone is only a necessary condition for d to be in the tangent cone of σ∞(Q)
at x (see [21]). If the images of Q are not convex, then (2.10) and (2.11) are only
necessary for v to be in V.

Theorem 2.5. Let Q : Ω → 2R
m

be a measurable set-valued map whose images
are closed convex sets and satisfy (2.1). Let x ∈ σ∞(Q) and let d ∈ L∞

m . Then the
set of second-order admissible variations V = V (x, d|σ∞(Q)) is nonempty if and only
if there exists a constant M > 0 such that, for a.e. t ∈ Ω, the following condition is
valid:

[b(t, ξ)]2 ≤ M |ξ|a(t, ξ) whenever ξ ∈ R
m and b(t, ξ) > 0(2.15)

(where the functions a and b are defined in (2.9)).
Remark 2.3. From Theorem 2.5 it readily follows that, for a.e. t, V(t) =

V (x(t), d(t)|Q(t)) is nonempty (that is, d(t) ∈ C(x(t)|Q(t))) if and only if (2.15)
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holds for some Mt > 0 on the domain indicated. Therefore, Theorem 2.5 can be
rephrased as

d ∈ C(x|σ∞(Q)) ⇐⇒
{

d(t) ∈ C(x(t)|Q(t)) for a.e. t ∈ Ω uniformly, i.e.,
∃Mt, ∃M > 0 :Mt satisfies (2.15),Mt ≤ M for a.e. t ∈ Ω.

Proof. Assume that v ∈ V. Then, by Lemma 2.4, there exist ε > 0, a set A ∈ A
of full measure such that (2.11) is true for all t ∈ A and ξ ∈ R

m \ {0}.
Let t ∈ A and ξ ∈ R

m such that b(t, ξ) > 0. Then, as we have seen in the proof
of Lemma 2.4, a(t, ξ) > 0. We distinguish two cases: If εb(t, ξ) > 2a(t, ξ) > 0, then,
by the first inequality in (2.11), we have

[b(t, ξ)]2

a(t, ξ)
≤ −4 〈ξ, v(t)〉 − 4ε|ξ| ≤ 4|ξ|(‖v‖ − ε).

In the other case, i.e., if εb(t, ξ) ≤ 2a(t, ξ) is valid, we have

[b(t, ξ)]2

a(t, ξ)
≤ 2b(t, ξ)

ε
=

2 〈ξ, d(t)〉
ε

≤ 2|ξ|‖d‖
ε

.

Hence with the constant M defined as

M := max

(
4(‖v‖ − ε),

2‖d‖
ε

)

we get that (2.15) holds on the indicated domain.
Conversely, assume that (2.15) is valid. Then (2.10) holds, because, if d(t) �∈

T (x(t)|Q(t)), then there exists ξ ∈ N(x(t)|Q(t)) such that 〈ξ, d(t)〉 > 0. This yields
that a(t, ξ) = 0 and, by (2.15), b(t, ξ) = 〈ξ, d(t)〉 = 0, leading to a contradiction.

Now we show that there exist w ∈ intσ∞(Q) and ε > 0 such that v ∈ L∞
m defined

by

v =
w − x− εd

ε2
(2.16)

belongs to V.
As we have noted above, by [21, Theorem 3], the condition in (2.1) yields that

σ∞(Q) has nonempty interior. Moreover the centers xt in (2.1) can be chosen in a
measurable way. Define the measurable function w by w(t) = xt. Then, from (2.1) it
results that there exists a set A of full measure such that, for all t ∈ A, we have that
w(t) +Bρ ⊂ Q(t). Hence,

〈ξ, w(t)〉+ ρ|ξ| ≤ δ∗(ξ|Q(t)) for all t ∈ A, ξ ∈ R
m.

Let M be the constant that validates (2.15). Choose ε > 0 so that ε2(ε+M/4) ≤ ρ.
Thus, we have

〈ξ, w(t)〉+ ε2(ε+M/4)|ξ| ≤ δ∗(ξ|Q(t)) for all t ∈ A, ξ ∈ R
m.

To complete the proof of the theorem, we need to show that the function v defined in
(2.16) satisfies (2.11) with this ε.

Substituting v = (w − x− εd)/ε2 into this condition, it remains to prove that

〈ξ, w(t)〉 ≤



−ε3|ξ| − ε2
[b(t, ξ)]2

4a(t, ξ)
+ 〈ξ, x(t)〉+ εb(t, ξ) if εb(t, ξ) > 2a(t, ξ),

−ε3|ξ|+ δ∗(ξ|Q(t)) if εb(t, ξ) ≤ 2a(t, ξ)



MEASURABLE SET-VALUED CONSTRAINTS 437

for all t ∈ A, ξ ∈ (Rm \ {0}).
By the choice of ε, we have that ε3 ≤ ρ, and hence

〈ξ, w(t)〉+ ε3|ξ| ≤ δ∗(ξ|Q(t)) for all t ∈ A, ξ ∈ R
m,

that is, the second inequality above holds.
It remains to show that the first inequality holds on its domain.
If (t, ξ) belongs to this domain, then

εb(t, ξ) > 2a(t, ξ) > a(t, ξ) > 0.(2.17)

Thus, by our assumption, there exists a positive constant M such that (2.15) is valid.
Combining these inequalities, we obtain

〈ξ, w(t)〉 ≤ δ∗(ξ|Q(t))− ε2(ε+M/4)|ξ|
= a(t, ξ) + 〈ξ, x(t)〉 − ε2(ε+M/4)|ξ|
< εb(t, ξ) + 〈ξ, x(t)〉 − ε3|ξ| − ε2M |ξ|/4
≤ εb(t, ξ) + 〈ξ, x(t)〉 − ε3|ξ| − ε2

[b(t, ξ)]2

4a(t, ξ)

for all (t, ξ) satisfying εb(t, ξ) > 2a(t, ξ), that is, the needed first inequality above is
proved, and hence v is in V. Thus the nonemptiness of V is proved and the proof of
Theorem 2.5 is complete.

Remark 2.4. It follows from Theorem 2.5 that if there exists a constant M such
that (2.15) is satisfied on the domain indicated, then d ∈ T (x|σ∞(Q)).

The rest of this section is devoted to answering the question pertaining the cal-
culation of the support function of the images of V(t) in terms of x(t), d(t), and Q(t).
Thus, for fixed t, we need to calculate δ∗(ξ|V (x(t), d(t)|Q(t))). For this reason, we
recall a special case of the result derived in [22] that describes the set V (x, d|Q), for
x ∈ R

m, d ∈ T (x|Q), and Q a convex set in R
m with nonempty interior, in terms of

its support functional.
Denote

d⊥ := {ξ ∈ R
m | 〈ξ, d〉 = 0}, d> := {ξ ∈ R

m | 〈ξ, d〉 > 0},

and define from R
m to the extended reals the function

σ(x, d|Q)(ξ) :=




lim inf
ζ → ξ
ζ ∈ d>

[〈ζ, d〉]2
4[〈ζ, x〉 − δ∗(ζ|Q)] if ξ ∈ N(x|Q) ∩ d⊥,

+∞ otherwise.

(2.18)

One can see that σ(x, d|Q)(·) is a positively homogeneous function and also lower
semicontinuous on R

m \ {0}.
Define the convex regularization coσ(x, d|Q)(·) to be the largest lower semicon-

tinuous convex function below σ(x, d|Q), that is,

coσ(x, d|Q)(ξ) = sup{ϕ(ξ) | ϕ : R
m → [−∞,∞] is convex and lower semicontinuous,

ϕ(ζ) ≤ σ(x, d|Q)(ζ) for all ζ ∈ R
m \ {0}}.

It results that coσ(x, d|Q)(·) is also sublinear.
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Theorem 2.6. Let Q ⊂ R
m be closed convex with nonempty interior, let x ∈ Q,

d ∈ C(x|Q). Then a vector v ∈ R
m belongs to V (x, d|Q) if and only if

〈ξ, v〉 < coσ(x, d|Q)(ξ) for all ξ ∈ R
m \ {0}.

Furthermore, for all ξ ∈ R
m,

δ∗(ξ|V (x, d|Q)) = coσ(x, d|Q)(ξ).
The following result offers an evaluation of the support function of the set V =

V (x, d|σ∞(Q)) at linear functionals that can be represented in terms of integrable
functions.

Corollary 2.7. Let Q be a measurable set-valued map on Ω whose images are
closed convex sets that satisfy condition (2.1), let x ∈ σ∞(Q) and d ∈ C(x, d|σ∞(Q)),
and let ϕ ∈ L1(Ω,Rm). Then

δ∗(ϕ|V) =

∫
Ω

coσ
(
x(t), d(t)|Q(t)

)
(ϕ(t)) dµ(t).(2.19)

3. Applications to optimization theory. In this section we make a specifi-
cation of the optimization problem (P) and Theorem 1.1. Let Y,Z be Banach spaces,
D ⊂ Z nonempty and open, Fi : D → R (i = 0, . . . , p), and K : D → Y be given. Let
(Ω,A, µ) be a finite complete measure space, g : Ω×D → R

m, h : Ω×D → R
n, and

Q : Ω → 2R
m

be a measurable set-valued map whose values are closed convex sets and
the condition (2.1) is satisfied. Then, as stated in the previous section, σ∞(Q) ⊂ L∞

m

has nonempty interior.
We consider the following optimization problem:

(P∗) Minimize F0(z) subject to




F (z) ≤ 0,
g(t, z) ∈ Q(t) for a.e. t ∈ Ω,
h(t, z) = 0 for a.e. t ∈ Ω,
K(z) = 0.

Introduce the functions H : D → L∞
n and G : D → L∞

m by

H(z)(t) = h(t, z) and G(z)(t) = g(t, z).(3.1)

Then, with E := (H,K) and F := (F1, . . . , Fp), the problem (P∗) reduces to (P)
described in the introduction.

The main focus of this section is to apply Theorem 1.1 to the problem (P∗) in
such a way that all of the hypotheses assumed and all the results obtained will be
phrased explicitly in terms of the data F0, F , g, Q, h, and K.

Now we define the notions of a solution, admissible and regular points, and critical
and regular directions.

• A point ẑ ∈ D is admissible for (P∗) if F (ẑ) ≤ 0, g(t, ẑ) ∈ Q(t), h(t, ẑ) = 0
for a.e. t ∈ Ω and K(ẑ) = 0. A point ẑ ∈ D is a solution (local minimum) for
this problem if there exists a neighborhood U of ẑ such that F0(z) ≥ F0(ẑ)
for all admissible point z ∈ U .

• The regularity of an admissible solution ẑ means that the assumption (R1) is
valid and, in addition, we have (R∗

1)–(R
∗
4) below.

(R∗
1) The map l(t, ·) := (g, h)(t, ·) is L∞-uniformly strictly Fréchet differen-

tiable at ẑ for a.e. t ∈ Ω, that is,

lim
z1,z2→ẑ

|l(t, z1)− l(t, z2)− l′(t, ẑ)(z1 − z2)|
||z1 − z2|| = 0



MEASURABLE SET-VALUED CONSTRAINTS 439

holds L∞-uniformly for t ∈ Ω. (Then the maps G, H defined by (3.1)
are strictly Fréchet differentiable at ẑ.)

(R∗
2) There exist a mapping A : L∞

m → Z and a bounded linear operator
B : L∞

n → Z such that A(0) = 0,

H ′(ẑ)B = I, H ′(ẑ) ◦A = 0,

and

G′(ẑ)
(
A(w)

)
− w ∈ T

(
G(ẑ)|σ∞(Q)

)
for all w ∈ L∞

m .

Moreover, the operator G′(ẑ) ◦ B is a (Π,Π)-continuous map at zero
from L∞

n to L∞
m .

(R∗
3) F0 and F are locally Lipschitz at ẑ and the functions F ◦

i (ẑ, A(·)) and
F ◦
i (ẑ, B(·)) are Π-continuous at zero for all i = 0, . . . , p.

(R∗
4) K is strictly Fréchet differentiable at ẑ, K ′(ẑ) ◦ A and K ′(ẑ) ◦ B are

weakly Π-continuous, and K ′(ẑ)◦ (IZ −B ◦H ′(ẑ)) : Z → Y has a closed
range (where IZ is the identity on Z).

• A direction y ∈ Z is critical for (P∗) at an admissible regular point ẑ if (C1)
is valid, and
(C∗

2 ) g′(t, ẑ)(y) ∈ C(g(t, ẑ)|Q(t)) for a.e. t ∈ Ω uniformly, that is, there exists
a constant M such that for a.e. t ∈ Ω,

[〈ξ, g′(t, ẑ)(y)〉]2 ≤ M |ξ|
(
δ∗(ξ|Q(t))− 〈ξ, g(t, ẑ)〉

)

for all ξ ∈ R
m such that 〈ξ, g′(t, ẑ)(y)〉 > 0.

(C∗
3 ) h′(t, ẑ)(y) = 0 for a.e. t ∈ Ω and K ′(ẑ)(y) = 0.

• The vector y is a regular direction if (R4) and the following hold:
(R∗

5) The following second-order directional derivative exists for the function
l := (g, h) for a.e. t ∈ Ω,

l′′(t, ẑ, y) := lim
ε→0+

2
l(t, ẑ + εy)− l(t, ẑ)− εl′(t, ẑ)y

ε2
,

and the limit is L∞-uniform in t; furthermore, K satisfies the same
assumption as the function E in (R5).

The main result of the section is the following theorem. Its proof employs the results
derived in section 2 and Theorem 1.1.

Theorem 3.1. Let ẑ be a regular solution of the above problem (P∗). Then, for all
regular critical directions y, there correspond Lagrange multipliers λ0, λ1, . . . , λp ≥ 0,
ϕ ∈ L1

m, ψ ∈ L1
n, and y∗ ∈ Y ∗ (depending on y) that do not vanish simultaneously,

and the following relations hold:

λiFi(ẑ) = 0 (i = 1, . . . , p), λiF
o
i (ẑ; y) = 0 (i = 0, . . . , p)(3.2)

for a.e. t ∈ Ω,

ϕ(t) ∈ N(g(t, ẑ)|Q(t)), 〈ϕ(t), g′(t, ẑ)(y)〉 = 0,(3.3)

p∑
i=0

λiF
o
i (ẑ; z) + 〈y∗,K ′(ẑ)(z)〉(3.4)

+

∫
Ω

[
〈ϕ(t), g′(t, ẑ)(z)〉+ 〈ψ(t), h′(t, ẑ)(z)〉

]
dµ(t) ≥ 0 for z ∈ Z,



440 ZSOLT PÁLES AND VERA ZEIDAN

and

p∑
i=0

λiF
o′
i (ẑ; y) + 〈y∗,K ′′(ẑ)(y)〉(3.5)

+

∫
Ω

[
〈ϕ(t), g′′(t, ẑ)(y)〉+ 〈ψ(t), h′′(t, ẑ)(y)〉

]
dµ(t),≥ 2

∫
Ω

γ(t, ϕ(t)) dµ(t),

where γ(t, ξ) := coσ
(
g(t, ẑ), g′(t, ẑ)y|Q(t))(ξ).

Observe that, using the Hahn–Banach theorem, the first-order condition (3.4) can
be written as an equality: There exist linear functionals z∗i ∈ ∂Fi(ẑ) (i = 0, . . . , p)
such that

p∑
i=0

λi 〈z∗i , z〉+ 〈y∗,K ′(ẑ)(z)〉

+

∫
Ω

[
〈ϕ(t), g′(t, ẑ)(z)〉+ 〈ψ(t), h′(t, ẑ)(z)〉

]
dµ(t) = 0 for z ∈ Z.

Proof. We intend to apply Theorem 1.1 to our problem (P∗). First we verify
that all the hypotheses of Theorem 1.1 concerning ẑ and the critical direction y are
satisfied.

From (R∗
1), it follows that G and H are strictly Fréchet differentiable at ẑ. Thus,

(R1)–(R3) will be satisfied if we show that, for E := (H,K), the operator E′(ẑ) has
a closed range in L∞

n × Y .
From (R∗

2) we have the surjectivity of H ′(ẑ). Then, by [1, Lemma 2.1.6], the
result follows if we show that K ′(ẑ)

(
KerH ′(ẑ)

)
is a closed subspace. By (R∗

2), B is
the right inverse of H ′(ẑ). Then the image of IZ −B ◦H ′(ẑ) is KerH ′(ẑ) and hence
(R∗

4) yields the closedness of the image of E′(ẑ).
The criticality condition (C2) follows from (C∗

2 ) and Theorem 2.5.
Conditions (R4) and (R5) are immediate. Hence, Theorem 1.1 applied to (P)∗

yields the existence of nontrivial multipliers λi ≥ 0 (i = 0, . . . , p), w∗ ∈ (L∞
m )∗,

v∗ ∈ (L∞
n )∗, and y∗ ∈ Y ∗ such that the first equation of (3.2) holds and

w∗ ∈ N
(
G(ẑ)|σ∞(Q)

)
,(3.6)

p∑
i=0

λiF
o
i (ẑ; z) + 〈y∗,K ′(ẑ)z〉+ 〈w∗, G′(ẑ)z〉+ 〈v∗, H ′(ẑ)z〉 ≥ 0 for z ∈ Z(3.7)

and

p∑
i=0

λiF
o′
i (ẑ; y) + 〈y∗,K ′′(ẑ)(y)〉(3.8)

+ 〈w∗, G′′(ẑ)(y)〉+ 〈v∗, H ′′(ẑ)(y)〉 ≥ 2δ∗
(
w∗

∣∣∣V (G(ẑ), G′(ẑ)y|σ∞(Q))
)
.

First we shall show that w∗ and v∗ are in fact represented in terms of integrable
functions.

Let (v, w) ∈ L∞
n × L∞

m . Set

z = z(v, w) := A(w −G′(ẑ)Bv) +Bv,
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where A is given in (R∗
2), which implies

G′(ẑ)
(
A(w −G′(ẑ)Bv)

)
−
(
w −G′(ẑ)Bv

)
∈ T

(
G(ẑ)|σ∞(Q)

)
.

Hence, by (3.6),

〈
w∗, G′(ẑ)

(
A(w −G′(ẑ)Bv)

)
−
(
w −G′(ẑ)Bv

)〉
≤ 0.

Due to this inequality and (R∗
2), we obtain

〈w∗, G′(ẑ)z〉+ 〈v∗, H ′(ẑ)z〉
=

〈
w∗, G′(ẑ)

(
A(w −G′(ẑ)Bv)

)
+
(
G′(ẑ)Bv − w

)
+ w

〉

+
〈
v∗, H ′(ẑ)

(
A(w −G′(ẑ)Bv)

)
+H ′(ẑ)(Bv)

〉
≤ 〈w∗, w〉+ 〈v∗, v〉 .

Substituting z = z(w, 0) and z = z(0, v) into (3.7), respectively, we get that

p∑
i=0

λiF
o
i (ẑ;A(w)) + 〈y∗,K ′(ẑ)A(w)〉+ 〈w∗, w〉 ≥ 0(3.9)

for w ∈ L∞
m , and

p∑
i=0

λiF
o
i

(
ẑ;A(−G′(ẑ)Bv) +Bv

)
+
〈
y∗,K ′(ẑ)

(
A(−G′(ẑ)Bv) +Bv

)〉
+ 〈v∗, v〉 ≥ 0

(3.10)

for v ∈ L∞
n .

Replacing w and v by (−w) and (−v), respectively, in the above inequalities, we
also get lower estimates for the linear functionals w∗ and v∗. Using the Π-continuity
assumptions of (R∗

2), (R
∗
3), and (R∗

4), we obtain that v∗ and w∗ are Π-continuous
at the origin. Then, by the Hewitt–Yosida decomposition theorem [27], there exist
ϕ ∈ L1

m and ψ ∈ L1
n such that

〈w∗, w〉 =
∫

Ω

〈ϕ(t), w(t)〉 dµ(t) and 〈v∗, v〉 =
∫

Ω

〈ψ(t), v(t)〉 dµ(t)(3.11)

for all w ∈ L∞
m and v ∈ L∞

n , respectively. Clearly, these equations reduce (3.7) to
(3.4).

Using Corollary 2.7 and (3.11), the second-order necessary condition (3.8) now
reduces to (3.5).

Since by (3.11) the functional w∗ is represented by the L1
m-function ϕ, then [21,

Theorem 9] and (3.6) yield that the first equation of (3.3) holds true. Furthermore,
by replacing z = y in (3.7) and by using the criticality of y, we obtain the second
equations of (3.2) and (3.3). Therefore, the proof of the theorem is completed.
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