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Abstract. - We study slip avalanches in disordered materials under an increasing external load
in the framework of a fiber bundle model. Over-stressed fibers of the model do not break, instead
they relax in a stick-slip event which may trigger an entire slip avalanche. Slip avalanches are
characterized by the number slipping fibers, by the slip length, and by the load increment, which
triggers the avalanche. Our calculations revealed that all three quantities are characterized by
power law distributions with universal exponents. We show by analytical calculations and com-
puter simulations that varying the amount of disorder of slip thresholds and the number of allowed
slips of fibers, the system exhibits a disorder induced phase transition from a phase where only
small avalanches are formed to another one where a macroscopic slip appeares.

There is a large variety of non-equilibrium systems
which exhibit crackling noise, i.e. they respond to a slow
continuous external driving in the form of bursts of lo-
cal events [1]. Examples can be mentioned from earth-
quakes and fracture of disordered materials [2,3], through
Barkhausen noise in ferromagnets [4], to martensitic shape
memory alloys and plastic deformation of solids [5,6]. Dur-
ing the last decade experimental and theoretical investi-
gations revealed that the probability distributions of the
characteristic quantities of bursts have scale free behavior
with universal exponents [1, 2, 6, 7]. An intense research
has been initiated to understand the underlying mecha-
nism of the observed universality. The investigation of
simple models which grasp the crucial features of systems
exhibiting crackling noise proved to be essential. Along
this line, based on the analogy of the plastic deformation
and fracture of heterogeneous materials, recently, a mi-
cromechanical model was introduced in Ref. [7] which can
reproduce the main features of crackling noise in these
types of systems with only one tuning parameter.

In the present Letter we study the emergence of crack-
ling noise in heterogeneous materials which respond to
an increasing external load by local rearrangements with
stick-slip mechanism. We consider a fiber bundle model
[10–14] where over-stressed fibers do not break, instead
they increase their relaxed length in a slip event until they
can sustain the load. The system is driven by small load

increments giving rise to the slip of a single fiber which
may then trigger an entire avalanche of slip events due to
load redistribution in the bundle. We show by analytic
calculations and computer simulations that the load in-
crement triggering the slip bursts, furthermore, the num-
ber of slipping fibers and the total slip length of the bun-
dle are all characterized by power law distributions. We
demonstrate that the amount of disorder and the total
number of allowed slips play a crucial role in the system:
a disorder induced phase transition [1, 6, 8, 9] is obtained
from a low disorder phase where the system snaps with
macroscopic bursts to the high disorder one where only
small avalanches pop up. Our model provides an adequate
description of the micromechanics of disordered systems
which store hidden length [15], and it can also be consid-
ered as the fiber bundle analogue of the Burridge-Knopoff
model of earthquakes with an infinite range of interaction
[16].

Our model consists of N fibers assembled in parallel.
Under an increasing external load σ the fibers exhibit a
linearly elastic behavior characterized by the same Young
modulus E. The important novel element of the model is
that when the deformation ε of a fiber reaches a thresh-
old value εth the fiber does not break. Instead, its re-
laxed length increases until the load reduces to zero on
the fiber. The mechanism of relaxation is the slip of the
fiber end, or it can also be interpreted as the unfolding of
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Fig. 1: (Color online) (a) Constitutive behavior of the bun-
dle with exponentially distributed quenched failure thresholds.
σ(ε) tends to an asymptotic linear response preceded by a
longer horizontal plateau when kmax increases. The intersec-
tion of the asymptotic straight lines with the horizontal axis
indicate the remaining deformation when unloading the sys-
tem. (b) Breaking probabilities Pk(ε) for kmax = 3.

subunits of fibers which provide some stored length [15].
The slip thresholds εith, i = 1, . . . , N are random variables
with a probability density p(εth) and distribution function
P (εth). After the slip event the fiber gets sticked again so
that it can support load and can suffer further slips. The
load kept by fiber i at a deformation ε after slipping reads
as σi = E(ε − εith) so that no hardening or softening is
assumed in the system. When a fiber slips again either
the same slip threshold is retained (quenched disorder) or
new threshold values can be drawn from the same prob-
ability distribution p(εth) (annealed disorder). The total
number of slip events kmax a fiber can suffer is a very
important parameter of the model which can vary in the
range 1 ≤ kmax < +∞. For the load redistribution follow-
ing slip events we assume an infinite range of interaction,
i.e. equal load sharing, which is ensured by the condition
that the strain ε is the same for all fibers. In the present
paper our analysis is restricted to the case of quenched
disorder so that the load of fiber i in the bundle after
ki ≤ kmax slips takes the form σi = E(ε− kiε

i
th). Further

details of the model construction can be found in Ref. [15]
including also the case of annealed slip thresholds.
Based on the assumption of equal load sharing the con-

stitutive equation of the parallel bundle can be obtained
analytically by integrating the load kept by the subsets of
fibers with different slip indices k [15]

σ(ε) = Eε [1− P (Eε)]

+

kmax−1
∑

k=1

∫ ε/k

ε/(k+1)

p(Eε1)E (ε− kε1) dε1

+

∫ ε/kmax

0

p(Eε1)E (ε− kmaxε1) dε1. (1)

Note that the integrals have to be performed over the
entire loading history of the bundle. For very large de-
formations ε → ∞, practically all fibers have suffered
kmax slips so that Eq. (1) can be rewritten as σ(ε) ∼
Eε − kmaxE

∫ ε/kmax

0
p(ε1)ε1dε1 where the integral pro-

vides the average value of the slip thresholds 〈εth〉. It
means that the bundle has an asymptotic linear behav-
ior with the initial value of the Young modulus, however,
when unloading the system σ → 0 an irreversible perma-
nent deformation remains whose maximum εmax

r value is
proportional to the average slip length 〈εth〉 and the num-
ber of slip events kmax allowed εmax

r = kmax 〈εth〉. We
note that for a finite bundle of N fibers with quenched
slip thresholds the constitutive equation Eq. (1) can be
written in a discrete form

σ(ε) = Eε− (E/N)

N
∑

i=1

ki(ε)ε
i
th, (2)

where ki(ε) denotes the number of slips suffered by fiber
i up to deformation ε.
In the explicit calculations we use Weibull distributed

threshold values εth with the probability density function

p(εth) = m
εm−1
th

λm−1
e−(εth/λ)

m

, (3)

where the parameter λ setting the scale of the thresholds
is fixed to λ = 1 in our entire study. The Weibull expo-
nent 1 ≤ m < +∞ is a very important characteristics of
the system, which controls the amount of disorder in the
slip thresholds. Increasing the value ofm from 1 to infinity
the probability density Eq. (3) varies from the exponential
distribution to the delta function of zero width. Figure 1
illustrates the constitutive curve σ(ε) of the model with ex-
ponentially distributed quenched slip thresholds (m = 1)
for several different values of kmax. It can be seen that
increasing the maximum number of breakings allowed a
plastic plateau develops, i.e. the final asymptotic linear
part of the constitutive curve is preceded by a longer and
longer horizontal plateau. The slope of σ(ε) in the asymp-
totic regime is equal to the Young modulus E = 1 of fibers.
Note that the simple form of σ(ε) in Fig. 1(a) is the con-
sequence of the monotonous behavior of the exponential
distribution, i.e. varying the value of m and kmax along
the plastic plateau σ(ε) can have a more complex func-
tional form which will be explored below. Macroscopic
failure of the system can be captured in the model by as-
suming that the fibers break after having suffered kmax

slips, which has been studied in Ref. [15]. In the present
paper we focus on the microscopic stick-slip process of the
fiber bundle with quenched slip thresholds retaining the
fibers’ stiffness after kmax slips (no breaking).
Quasi-static stress controlled loading of the fiber bun-

dle can be performed by incrementing the external load
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with a small amount δσ just to provoke the slip of a single
fiber. Since the external load σ is kept constant during
the slip, the load dropped by the slipping fiber must be
overtaken by the other ones which can give rise to further
slip events. This way a single slip induced by the load in-
crement δσ, can trigger an entire avalanche of slips, which
increases the macroscopic strain ε of the system by the
amount δε. This jerky microscopic dynamics has the con-
sequence that the deformation of the bundle has a step-
wise increase under a quasi-statically increasing external
load σ. We characterize the slip avalanches by their size ∆
defined as the number of fibers slipping in the avalanche,
and by the emerging slip length δε which is the increment
of the strain ε of the bundle. All the three quantities,
the load increment δσ which triggers the avalanche, the
avalanche size ∆, and the slip length δε are random vari-
ables so that the stick-slip process on the micro-scale can
be characterized by their probability distributions P (δσ)
P (∆), and P (δε), respectively. Note that under strain
controlled loading no slip avalanches can arise.
For simple fiber bundles where fibers break irreversibly

when the local load surpasses their threshold value, it has
recently been shown [10,11] for the case of equal load shar-
ing that the size distribution of avalanches P (∆) can be
obtained in a closed analytical form as

P (∆) ≈ e∆√
2π∆3/2

∫ εc

0

p(ε)
1− a(ε)

a(ε)
e∆[a(ε)−ln a(ε)]dε. (4)

Here a(ε) denotes the average number of fibers which
break as a consequence of a single fiber failure induced
by the external load increment at the deformation ε. The
integration over ε is carried out up to the critical point
εc of the system where catastrophic collapse occurs. The
dominating contribution to the integral is provided by the
vicinity of the maximum of the exponent of the integrand
ψ(ε) = a(ε) − ln a(ε), which is obtained at a = 1. Af-
ter Taylor expansion of a(ε) and of the exponent ψ(ε)
about the maximum the asymptotics of the size distribu-
tion P (∆) reduces to the power law form

P (∆) ∼ ∆−τ . (5)

The exponent τ = 5/2 proved to be universal for a broad
class of disorder distributions where the macroscopic con-
stitutive curve σ(ε) of the system has a single quadratic
maximum [10,11, 14].
In order to understand the dynamics of slip avalanches

in our model, first the sequence of slipping events has to be
analyzed. The probability Pk(ε) that a randomly selected
fiber in the bundle has suffered exactly k slips up to the
deformation ε can be obtained analytically as

P0(ε) = 1− P (ε), (6)

Pk(ε) = P

(

Eε

k

)

− P

(

Eε

k + 1

)

, 1 ≤ k < kmax,

Pkmax
= P

(

Eε
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Fig. 2: Constitutive curves σ(ε) and average number of induced
slips a(ε) for a fixed kmax = 3 varying the value of m (a, b),
and for a fixed m = 5.0 varying the value of kmax (c, d). Note
that mc

3 ≈ 1.918.

where P denotes the cumulative distribution of the slip
thresholds. The functional form of Pk(ε) is presented in
Fig. 1(b) for m = 1 and kmax = 3. From the above equa-
tions one can determine the probability density pk+1

k (ε) of
events that a fiber which has suffered k slips until the de-
formation ε was reached, will slip again due to the strain
increment dε

pk+1
k (ε) =

1

k + 1
p

(

ε

k + 1

)

, 0 ≤ k < kmax, (7)

where p is the original probability density of the slip
thresholds. When the external load is increased by the
amount δσ at the deformation ε to provoke the slip of a
single fiber i which has already slipped k times, the strain
increment δε = δεk arising due to load redistribution after
the slip can be obtained from the constitutive equation of
finite bundles Eq. (2). Keeping the load σ fixed during the
slip, the strain increment reads as δεk = εith/N = ε/(kN).
It follows that the average number of fibers a(ε) which
slip as a consequence of a single slip can be determined as
a(ε) = N

∑kmax−1
k=0 δεkp

k+1
k (ε) which leads to the form

a(ε) = ε

kmax
∑

k=1

1

k2
p

(

Eε

k

)

. (8)

It is important to emphasize that the derivative of the
constitutive equation σ(ε) of Eq. (1) can be expressed in
terms of a(ε) as

dσ

dε
= E

[

1−
kmax
∑

k=1

ε

k2
p

(

Eε

k

)

]

= E [1− a(ε)] , (9)

which show that the constitutive curve σ(ε) has extrema
at locations εc where the average number of induced slips
becomes unity a(εc) = 1. It also follows from Eq. (9) that
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at the extremal points of a(ε) the constitutive curve σ(ε)
has an inflexion point d2σ/dε2 = 0.

Our calculations revealed that varying the amount of
disorderm and the number of allowed slip events kmax the
statistics of avalanches exhibits a very complex behavior.
Starting from Eqs. (1,8,9) we can determine analytically
the phase diagram of the system on the m − kmax plane
which classifies all possible functional forms of the con-
stitutive curves σ(ε) and of avalanche size distributions

P (∆). Writing a(ε) in the form a(ε) =
∑kmax

k=1 ak(ε), it
can be seen that each term ak(ε) = (ε/k2)p(Eε/k) has a
single maximum at the strain εck where εckp(Eε

c
k/k) = −1

holds. It follows that if a1 has a maximum at εc1 with the
value ac1, then the maxima of the other terms ak(ε) are
placed equidistantly as εck = kεc1 with decreasing values
ack = ac1/k. Due to the overlap of the functions ak(ε), the
consecutive maxima of a(ε) do not coincide with that of
ak(ε), however, the equidistant spacing and the decreas-
ing sequence survive. For the case of Weibull distributions
the above analysis results in εck = kλ and ack = m/(ke),
where e is the base of natural logarithm. It can be seen
that for kmax = 1, when only a single slip is allowed,
at the critical Weibull exponent mc

1 = e the constitutive
curve σ(ε) has an inflexion point at the position εc1 where
a(ε) has a maximum with the value a(εc1) = 1. Similarly,
for any kmax ≥ 1 one can find an mc

kmax
value of the

Weibull exponent, where the constitutive curve has an in-
flexion point with the properties dσ/dε|εckmax

= 0 and
d2σ/dε2|εckmax

= 0, where at the same time a(εckmax
) = 1

and da/dε|εckmax
= 0 hold.

The phase diagram of the system is presented in Fig.
3, where the decreasing line represents the mc

kmax
curve

which was determined numerically. Note that for kmax =
1 the critical Weibull exponent is mc

1 = e and mc
kmax

→ 1
holds for kmax → +∞. In order to obtain the asymptotics
of the size distribution of slip avalanches P (∆) analyti-
cally from Eq. (4) for parameters along the mc

kmax
curve,

the Taylor expansion of a(ε) and ψ(ε) about εckmax
has to

be continued beyond the first order terms. Following the
derivations of Ref. [14] the first non-vanishing terms are
a(ε) ≃ 1 +C1(ε− εckmax

)2 and ψ(ε) ≃ 1 +C2(ε− εckmax
)4,

which result in a power law asymptotics P (∆) ∼ ∆−τ

with the exponent τ = 9/4. A similar behavior was found
in Ref. [14], where a different physical mechanism led to a
similar constitutive curve of the system.

The parameter regime of m and kmax below the mc
kmax

curve of Fig. 3 defines the high disorder phase of the model,
where σ(ε) is monotonically increasing dσ/dε > 0 and the
maximum of a(ε) is always smaller than 1. Figure 2(a, b)
illustrates the constitutive behavior σ(ε) and the average
number of induced slips a(ε) for kmax = 3 varying the
value of m, where the critical disorder parameter is mc

3 ≈
1.918. Since the minimum value of the derivative dσ/dε
Eq. (9) is positive in the high disorder phase, the avalanche
size distribution P (∆) behaves as in simple fiber bundles
when the loading process was stoped at a deformation εm

m=e

m
c

kmax

Fig. 3: (Color online) Phase diagram of the system. The de-
creasing line indicates the mc

kmax
curve which separates the

POP and SNAP regimes.

before the critical point of macroscopic failure [10]. Hence,
for m < mc

kmax
from Eq. (4) the size distribution of bursts

takes the form

P (∆) ∼ ∆−τe−[a(εm)−1−ln a(εm)]∆, (10)

i.e. the power law regime of exponent τ = 9/4 is followed
by an exponential cutoff, where in our case εm is the posi-
tion of the inflexion point of the constitutive curve. Since
in the high disorder phase of the model only relatively
small avalanches pop up away from the phase boundary,
we call this phase as POP phase, following the terminol-
ogy of Ref. [6]. Figure 4(a) presents the size distribution
of slip avalanches P (∆) obtained by computer simulations
for kmax = 7 at different m values in the range m ≤ mc

7.
A high quality power law behavior can be observed with a
diverging cutoff as approaching the critical point m→ mc

7

in agreement with the above derivation.
In the low disorder regime, above the mc

kmax
curve of

Fig. 3, the constitutive curve can have local maxima along
the plateau regime. It follows from the above derivation
that at a given value of kmax the number of maxima of σ(ε)
is one if the value ofm falls in the intervalmc

kmax
< m < e.

Under stress controlled loading a macroscopic avalanche
appears resulting in a horizontal jump when the maxi-
mum of σ(ε) is reached. Consequently, this phase of the
model is called SNAP phase [6]. At very low disorder
m > e the constitutive curve has a local maximum already
at kmax = 1 and further maxima occur with decreasing
height accompanied by a similar oscillating behavior of
a(ε) as kmax increases. This feature can be observed in
Figures 2(c, d), which present the behavior of σ(ε) and a(ε)
for m = 5 varying the value of kmax. In the SNAP phase
the distribution of avalanche sizes P (∆) is determined by
the first maximum of σ(ε) which has a quadratic shape.
Consequently, similarly to the case of simple fiber bundles,
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a)

b)

Fig. 4: (Color online) (a) Size distribution of slip avalanches
P (∆) in the POP phase for kmax = 7 varying the amount of
disorder m. A high quality power law behaviour is obtained
with a diverging cutoff as the phase boundary is approached
m → mc

7 ≈ 1.572. (b) Comparison of avalanche size distribu-
tions in the POP and SNAP phases. Excellent agreement is
obtained with the analytic predictions.

P (∆) has a power law functional form P (∆) ∼ ∆−τ with-
out cutoff regime but with an exponent τ = 5/2 higher
than in the POP phase [10, 11, 14]. Burst size distribu-
tions of the POP and SNAP phases are compared in Fig.
4(b), where nice agreement can be observed with the ana-
lytic predictions.
In order to understand the transition from the POP to

the SNAP phase when the amount of disorderm is varied,
we further analyze the burst size distribution Eq. (10). For
the specific case of kmax = 1 we have a(εm) = ac1, where
ac1 = m/e converging to 1 when the amount of disorder is
decreased in the POP phase m → mc

1 = e. After Taylor
expanding the terms in the exponential function of Eq.
(10) about mc

1, we obtain the form

P (∆) ∼ ∆−τe−∆/∆0, (11)

where the characteristic burst size has a power law diver-
gence

∆0 ∼ (mc
kmax

−m)−ν (12)

with the cutoff exponent ν = 2. The exact proof is for
kmax = 1 but our numerical calculations revealed that the
analytic results Eqs. (11,12) hold for all values of kmax in
the POP phase. In order to numerically verify the above
analytic predictions, we assume that the cutoff avalanche
size ∆0 is proportional to the average size of the largest
avalanche ∆0 ∼ 〈∆max〉. Figure 5(a) presents 〈∆max〉 ob-
tained by computer simulations of a bundle of N = 107

fibers with kmax = 7 varying the Weibull exponent m in
a broad range. It can be seen that approaching the phase
boundary mc

kmax
from the POP phase 〈∆max〉 diverges,

i.e. it exhibits a sharp maximum in the finite system. Fig-
ure 5(b) presents the same data as a function of the dis-
tance from the critical pointmc

7, where a power law behav-
ior is evidenced with an exponent ν = 2.05±0.05 in a good
agreement with Eq. (12). The results imply that varying

b)a)

c) d)

Fig. 5: The average size of the largest avalanche 〈∆max〉 (a)
and the average largest slip length 〈δεmax〉 (c) as a function of
the Weibull exponent m below the critical point mc

7. The same
quantities are presented in (b, d) as a function of the distance
from the critical point (mc

7 −m).

the amount of threshold disorder the bundle of stick-slip
fibers undergoes a disorder induced phase transition from
the high disorder phase where small avalanches pop up to
the low disorder one where macroscopic avalanches snap
the system [1, 6, 8].
In spite of the complexity of the behavior of avalanche

sizes, computer simulations revealed a universal functional
form for both the distribution of the slip length P (δε) and
for the load increments P (δσ). The total slip length, i.e.
the strain increment δε occurred during an avalanche of
size ∆ reads as δε = (1/N)(εi1th + εi2th + · + εi∆th ), where

ε
ij
th denotes the slip threshold of fibers taking part in the
avalanche. The distribution of slip length P (δε) is pre-
sented in Fig. 6(a) for several values of m. It can be ob-
served that P (δε) exhibits a universal power law behavior

P (δε) ∼ δε−φ, (13)

where the value of the exponent φ = 2.25± 0.05 was ob-
tained numerically independently of m and kmax. Simi-
larly to the avalanche size ∆, the characteristic slip length
defined as the average value of the largest slip length
〈δεmax〉 is sensitive to the precise shape of σ(ε) in the
vicinity of the extremal points. It can be observed in Fig.
5(c) that 〈δεmax〉 has a sharp maximum approaching the
phase boundary from the POP phase and a power law di-
vergence of the type of Eq. (12) is evidenced in Fig. 5(d).
The critical exponent ν ≈ 2 proved to be the same as for
the characteristic burst size. Figure 6(b) presents that the
distribution of load increments has a power law decay

P (δσ) ∼ δσ−α, (14)

where the value of the exponent is universal α = 2, it does

p-5



Z. Halász and F. Kun

10
-6

10
-2

10
2

10
6

10
-8

10
-6

10
-4

10
-2

1

. . . .
.
.
.
.
.
.
.

. . . .
.
.
.
.
.
.
.
.

. . . .
.
.
.
.
.
.
.

.

.

.

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

1

10
-1

10 10
3

10
5

.....
.
.
.
.
.

. . . .
.
.
.
.
.
.
.
. .

..
..

...
..

.
.
.
.

P
(δ

σ
)

δσ

k
max

= 7

m = 1.200

m = 1.500

m = 1.570

m = 2.000

m = 2.500

m = 10.00

m = 30.00

m = 50.00

P
(δ

ε
)

δε

k
max

= 7

m = 1.200

m = 1.500

m = 1.570

m = 2.000

m = 2.500

m = 30.00

m = 50.00

∼ δε
−2.25

∼ δσ−2.0

(a) (b)

Fig. 6: (Color online) Probability distribution of slip length
P (δε) of avalanches (a) and the distribution of load increments
P (δσ) which trigger the avalanches (b) for different values of the
Weibull exponent m. Universal power law behavior is obtained
in both cases.

not depend neither on m nor on kmax. It has to be em-
phasized that the asymptotics of the distribution P (δσ) is
determined by the beginning of the loading process where
large load increments are required to drive the system.
The reason of universality is that the low stress regime of
the loaded system is insensitive to the parameters m and
kmax.

In summary, we studied the statistics of slip avalanches
in a fiber bundle model where overstressed fibers can re-
lax in a series of stick slip events. We showed that on the
macro-scale the stick-slip mechanism leads to plastic be-
havior with a permanent deformation remaining after the
load is released. On the micro-scale single slips induced
by external load increments trigger bursts which give rise
to a step-wise strain increase. The distribution of load
increments and of slip length exhibit a universal power
law behavior with exponents independent of the model’s
parameters. The size distribution of bursts proved to be
sensitive to the amount of disorder and to the number of
fibers’ slips. Our calculations revealed that at high enough
disorder only small avalanches pop up, while at low dis-
order macroscopic avalanches can snap the system. We
set up the phase diagram of the model and showed that
the transition between the POP and SNAP phases is
analogous to disorder induced phase transitions. Besides
the theoretical interest, our calculations provide insight
into the statistics of restructurings of systems with hid-
den length such as biomaterials. Our study was restricted
to the case of Weibull distributions where the amount of
disorder can be represented by the exponent m. Gen-
eralization to other distributions defined over an infinite
domain is straightforward using the standard deviation as
a measure of disorder. The value of the critical exponents
τ, ν, φ, and α do not have any dependence on the func-
tional form of the disorder distribution.

It has been shown in Ref. [6] that the mode of external
driving has a crutial effect on the critical non-equilibrium
steady states in slowly driven bistable heterogeneous sys-
tems with controllable disorder: changing the driving from
soft to hard a crossover is obtained from the classical
order-disorder universality class to the quenched Edwards-
Wilkinson class of SOC type. I our investigations of the
avalanche statistics only stress controlled loading was con-
sidered, which corresponds to the perfectly soft driving of
Ref. [6]. Our phase diagram of Fig. 3 can be considered as
an extension of the zero softness part of the phase diagram
of Ref. [6] with the additional degree of freedom of varying
the number of allowed slip events under an infinite range
of interaction. It is very interesting to extend our study
to vary the mode of driving which is currently in progress.
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