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A B S T R A C T

Bryostatin 1 has attracted considerable attention both as a cancer chemotherapeutic agent and for its

unique activity. Although it functions, like phorbol esters, as a potent protein kinase C (PKC) activator, it

paradoxically antagonizes many phorbol ester responses in cells. Because of its complex structure, little is

known of its structure-function relations. Merle 23 is a synthetic derivative, differing from bryostatin 1 at

only four positions. However, in U-937 human leukemia cells, Merle 23 behaves like a phorbol ester and

not like bryostatin 1. Here, we characterize the behavior of Merle 23 in the human prostate cancer cell

line LNCaP. In this system, bryostatin 1 and phorbol ester have contrasting activities, with the phorbol

ester but not bryostatin 1 blocking cell proliferation or tumor necrosis factor alpha secretion, among

other responses. We show that Merle 23 displays a highly complex pattern of activity in this system.

Depending on the specific biological response or mechanistic change, it was bryostatin-like, phorbol

ester-like, intermediate in its behavior, or more effective than either. The pattern of response, moreover,

varied depending on the conditions. We conclude that the newly emerging bryostatin derivatives such as

Merle 23 provide powerful tools to dissect subsets of bryostatin mechanism and response.

Published by Elsevier Inc.

Contents lists available at ScienceDirect

Biochemical Pharmacology

journal homepage: www.e lsev ier .com/ locate /b iochempharm
17
18
19
20
1. Introduction

Protein kinase C (PKC) has emerged as an exciting therapeutic
target, reflecting its central role in cellular signaling, its differential
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Abbreviations: PKC, protein kinase C; DMSO, dimethylsulfoxide; ERK, extracellular

signal-regulated kinases; MEK, MAPK/ERK kinase 1; MAPK, mitogen-activated

protein kinase; JNK, cJun N-terminal kinases; PMA, phorbol 12-myristate 13-

acetate; HAART, highly active antiretroviral therapy; DAG, diacylglycerol; GFP,

green fluorescent protein; TNF-alpha, tumor necrosis factor alpha; MARCKS,

myristoylated alanine rich C kinase substrate; TACE, TNF-alpha converting enzyme;

TRAIL, TNF-related apoptosis-inducing ligand.
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regulation in a range of cancers, and the identification of natural
products or their derivatives targeted to PKC that have entered
clinical trials [1]. The PKCs comprise a family of serine/threonine
specific protein kinases, of which the classic PKC isoforms (alpha,
betaI, betaII, and gamma) respond to diacylglycerol and calcium
through their C1 and C2 domains, respectively, whereas the novel
PKC isoforms (delta, theta, epsilon, and eta) respond only to
diacylglycerol. Like most kinases, the PKCs are further regulated in a
complex fashion by phosphorylation – by other serine/threonine
and tyrosine specific protein kinases, by autophosphorylation, and
by phosphorylation by other PKC isoforms. Diacylglycerol is a
ubiquitous lipophilic second messenger, generated through the
breakdown of phosphatidylinositol 4,5-bisphosphate consequent to
activation of phospholipase C downstream of receptor tyrosine
kinases and G-protein coupled receptors, as well as indirectly
following activation of phospholipase D. Diacylglycerol recognition
occurs through the C1 domains of PKC, which function as
hydrophobic switches to bring about both PKC activation as well
as the translocation of the PKC to membranes, enhancing its access
to membrane bound substrates. Consistent with the ternary nature
of the bound complex, which comprises ligand, C1 domain, and
tatin analog Merle 23 dissects distinct mechanisms of bryostatin
rmacol (2011), doi:10.1016/j.bcp.2011.03.018
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llular membrane, emerging evidence strongly argues for the role
membrane microdomains in contributing to ligand specificity [2].
In addition to diacylglycerol, a range of complex natural

oducts of diverse structures have been identified which function
ultrapotent analogs of diacylglycerol, binding to the C1 domain.
ese include the phorbol esters (diterpenes), the bryostatins
acrocyclic lactones), the indole alkaloids such as teleocidin, the
lyacetates such as aplysiatoxin, and the iridals. A critical finding
that these ligands do not all induce similar biological responses
on binding. For example, whereas phorbol 12-myristate 13-
etate (PMA) is the paradigmatic mouse skin tumor promoter [3],
e have shown that prostratin 13-acetate and 12-deoxyphorbol
-phenylacetate are anti-tumor promoting [4], as is bryostatin 1
]. Reflecting such activities, bryostatin 1 and PEP005 (ingenol 3-
gelate) are currently the subject of numerous clinical trials as
ti-cancer agents (www.clinicaltrials.gov) and prostratin pro-

des a model for overcoming resistance of cells latently infected
ith HIV to HAART therapy [6].

Among novel PKC ligands, the bryostatins have proven to be of
rticular interest [7]. Most all of the focus has been on bryostatin
with occasional studies examining other derivatives. Although
e bryostatins function in vitro as activators of PKC, paradoxically
many cellular systems and for many biological endpoints they

il to induce the responses induced by the typical phorbol esters
d, if administered in combination with phorbol ester, block
sponse to the phorbol ester, showing that their failure to induce
ese responses is not due to instability. Mechanistic comparison
veals numerous differences that could contribute to these
posing outcomes. Bryostatin 1 shows a transient response

llowed by loss of responsiveness [8]. Bryostatin 1 may cause
ore rapid down regulation of some PKC isoforms [9,10].
yostatin 1 shows a unique pattern of down regulation of PKC
lta, with down regulation at low concentrations but protection
m down regulation at higher concentrations [11,12]. Finally,

yostatin 1 causes a distinct pattern of membrane translocation of
C delta. Whereas PMA treatment causes initial translocation to
e plasma membrane followed by subsequent distribution
tween plasma and internal/nuclear membranes, bryostatin 1
uses the initial translocation primarily to the internal mem-
anes [13,14]. A critical conceptual question is whether these
ultiple differences in biology and in mechanism are linked to the
me structural features of bryostatin 1 or whether specific
ructural features drive different aspects of biological response.

The small number and limited diversity of natural bryostatin
rivatives, together with the daunting synthetic challenge of
emical synthesis of the bryostatins, has greatly limited
derstanding of bryostatin structure-activity relations. The
citing recent advances in the chemical synthesis of bryostatin
d bryostatin analogs have now shattered this impasse [15]. In
. 1. Comparison of the structures of bryostatin 1 and Merle 23. The region of diffe

bstituents of bryostatin 1 which are lacking in Merle 23 are shown in red.

Please cite this article in press as: Kedei N, et al. The synthetic bryo
activity in the LNCaP human prostate cancer cell line. Biochem Ph
their attempts to identify which features of the bryostatin 1 were
dispensable for activity, thereby permitting the design of
bioequivalent simplified structures with correspondingly simpli-
fied synthetic routes, the Wender group argued that the A- and B-
rings of the molecule functioned as a spacer domain, whereas the
active pharmacophore resided in the lower half of the molecule
[16]. Experimental support for this view was provided through
extensive structural comparison, showing that PKC binding
activity was retained in such derivatives, and is consistent with
computer modeling, indicating that it is the lower portion of the
bryostatin structure which inserts into the binding cleft of the C1
domain [17].

A critical issue, however, is which structural elements confer the
unique features of bryostatin 1 biological response, rather than
simply PKC binding activity, since interest in the bryostatins as
therapeutic agents is driven by their distinct activity as compared to
the tumor promoting phorbol esters. While PKC binding activity
may be necessary for activity, we found that it was not sufficient to
confer a bryostatin 1-like pattern of biological response. The
bryostatin derivative Merle 23, which differs from bryostatin 1
only in that it lacks four substituents in the so-called ‘‘spacer
domain’’, behaved in the U-937 human leukemia cell line like a
phorbol ester, not like bryostatin 1 [18] (Fig. 1). Merle 23, like PMA,
inhibited cell proliferation and induced attachment, whereas
bryostatin 1 failed to induce either response and, in combination
with Merle 23 or PMA, antagonized the response to the latter agents.

It is very important to emphasize, however, that the U-937 cell
system is only one of the many systems in which the bryostatins
induce a distinct pattern of biological response compared to the
phorbol esters. As an initial step in developing a more robust
understanding of the relationship between structural features of
bryostatin analogs and their biology, we have characterized in
some detail the responses of Merle 23 with those to bryostatin 1
and PMA in a second system in which bryostatin 1 acts differently
from the phorbol esters. In the LNCaP human prostate cell line,
phorbol esters inhibit proliferation and induce apoptosis, whereas
bryostatin 1 has much less effect. Previous careful characterization
of this system by others has highlighted the roles of PKC delta and
tumor necrosis factor alpha in these responses, but multiple other
PKC isoforms and pathways have been implicated as well [14,19–
21]. We report here that, in this system, Merle 23 can be
bryostatin-like, phorbol ester-like, intermediate in activity be-
tween the two, or be more active than either, depending on which
specific biological or mechanistic endpoint we characterize in this
system. A crucial conclusion from our findings is that the
distinction between the actions of bryostatin 1 and phorbol ester
is not all-or-none but rather can be dissected through structural
modification. Bryostatin analogs thus should provide a powerful
platform for teasing apart these response pathways and optimizing
rence between bryostatin 1 and Merle 23 is highlighted in yellow and the specific

statin analog Merle 23 dissects distinct mechanisms of bryostatin
armacol (2011), doi:10.1016/j.bcp.2011.03.018
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ligands for the desired pattern of response. Reciprocally, as better
understanding of the interplay between the structural features of
bryostatin analogs and the patterns of response emerge, it should
become possible to better identify those molecular signatures of
specific cancers that rationally predict that a particular bryostatin
analog should be therapeutically useful.

2. Materials and methods

2.1. Materials

PMA was purchased from LC Laboratories (Woburn, MA). The
bryostatin 1 was provided by the Developmental Therapeutics
Program, NCI (Frederick, MD). Merle 23 was synthesized as
described previously [18]. The LNCaP human prostate cancer cells
and the K-562 human erythroleukemia cells, fetal bovine serum,
RPM1-1640 medium and the glutamine solution were from ATCC
(Manassas, VA). Lipofectamine, Plus reagent, Lipofectamine
RNAiMAX, precast 10% SDS gels, TNF-alpha Elisa kit, 7-aminoacti-
nomycin D (7-AAD), and Yo-Pro-1 were from Invitrogen (Carlsbad,
CA). The primary antibodies against PKC alpha (C-20), delta (C-20),
epsilon (C-15), beta (C-16 and C-18), eta (31), theta (C-18 and 1C2),
p65 (F-6), and cFos (H-125) were from Santa Cruz Biotechnology
(Santa Cruz, CA). The primary antibodies against phosphorylated
Y311 of PKC delta, p-ERK1/2, ERK1/2, JNK, MEK2, p-P38, P38,
pPKD1 (Ser744), PKD1, and pMARCKS were from Cell Signaling
(Danvers, MA), those against lamin B were from Epitomics
(Burlingame, CA), those against beta-actin were from Sigma (St.
Louis, MO) and those against anti-MEK1 were from Millipore
(Billerica, MA). The rabbit monoclonal antibody against the p-
Ser299 of PKC delta was a custom antibody developed by Epitomics
(Burlingame, CA). The horseradish peroxidase conjugated second-
ary anti-rabbit antibodies, the non-fat dry milk, and the Triton X-
100 solution were from Bio-Rad (Hercules, CA) and the ECL
(electrochemiluminescence) reagent and the films were from GE
Healthcare (Piscataway, NJ). The FITC-conjugated goat anti-rabbit
antibody and the DAPI-containing mounting medium were from
Vector Laboratories (Burlingame, CA). The PKC alpha (sc-44227
and sc-36243), PKC delta (sc-44229 and sc-36253), PKC epsilon
(sc-44228 and sc-36251) and control (sc-37007 and sc-44230)
siRNAs were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA). Poly-D-lysine coated glass coverslips were from BD
Biosciences (Bedford, MA) and the Ibi-treated dishes were from
Ibidi LLC (Verona, WI). The nuclear extraction kit from Active Motif
(Carlsbad, CA). The M-Per buffer was from Thermo Scientific
(Rockford, IL), the phosphatase and protease inhibitors, the CB1000
5-8 ampholyte premix and fluorescent pI standards used for Nano-
Pro technology were from Cell Biosciences (Santa Clara, CA).

2.2. Cell culture

LNCaP cells and K-562 cells were cultured in RPMI-1640
containing 10% fetal bovine serum and 2 mM glutamine. For LNCaP
cells experiments were performed between passage number 3 and
30. No changes in the morphology or the behavior of the LNCaP
cells were observed with increasing passage number. LNCaP cells
in each experiment were manipulated 48 h after plating.

2.3. siRNA experiments

Cells were plated on poly-D-lysine coated 6 cm dishes to reduce
the detachment of the cells after transfection with Lipofectamine
RNAiMAX. Cells were transfected with a combination of equal
amounts of two siRNAs at a final concentration of 60 nM.
Immunoblotting was performed 48 h after transfection. For cell
growth or TNF-alpha secretion cells were trypsinized 24 h after
Please cite this article in press as: Kedei N, et al. The synthetic bryos
activity in the LNCaP human prostate cancer cell line. Biochem Pha
transfection and replated onto poly-D-lysine coated 24-well plates
(80,000 cells/well for proliferation and 120,000 cells/well for TNF-
alpha secretion).

2.4. Cell growth

The confluency of LNCaP cells was followed in real time using an
Incucyte instrument (Essen Instruments, Ann Arbor, MI). Phase
contrast images of LNCaP cells plated onto 24-well plates (80,000
cells/well) were taken every 2 h by the instrument before and after
treatment for a total of 4 days. The confluency of the cells was
calculated by the instrument’s program. The proliferation of LNCaP
cells was expressed as the difference in cell confluency before and
after treatment. The Incucyte permits the monitoring in parallel of
the growth and morphology in real time of cells under multiple
treatment conditions. K-562 cells were plated in 35 mm dishes (BD
Biosciences, Bedford, MA) at a density of 1 � 105 living cells/ml and
24 h later were treated with different concentrations of the drugs
or DMSO (diluent concentration in each sample was 0.1%). After
72 h, the number of cells was counted using a Beckman particle
counter (Beckman Coulter Inc., Fullerton, CA).

2.5. Apoptosis

Apoptosis in LNCaP cells after 48 h of treatment was detected as
described previously [22].

2.6. Measurement of TNF-alpha

180,000 cells/well were plated into 24-well plates and treated
48 h later with the indicated concentrations of the drugs. TNF-alpha
levels in the supernatants were measured with ELISA following
the manufacturer’s instructions (Invitrogen, Carlsbad, CA).

2.7. Immunostaining of PKC delta

LNCaP cells seeded onto poly-D-lysine coated coverslips 48 h
later were treated with the indicated concentrations of PMA,
bryostatin 1, Merle 23 or their combination for 1 h. The cells were
fixed with acetone, permeabilized with 0.1% Triton X-100, and
blocked with 1% bovine serum albumin (Sigma, St. Louis, MO) in
phosphate buffered saline (PBS) (Mediatech. Inc., Manassas, VA).
After staining with anti-PKC delta primary and FITC conjugated
secondary antibodies the coverslips were mounted onto micro-
scope slides using DAPI-containing mounting medium and
examined in a Zeiss LSM 510 confocal microscopy system (Carl
Zeiss Inc, Thornwood, NY) with an Axiovert 100 M inverted
microscope operating with a 25 mW argon laser tuned to 488 nm.
Cells were imaged with a 63 � 1.4 NA Zeiss Plan-Apochromat oil
immersion objective and with varying zooms (1.4–2). For more
detailed description of the method see Supporting information.

2.8. Immunoblotting

Immunoblotting of LNCaP cell total lysates or nuclear extracts
was performed as described earlier [23]. Nuclear lysates were
prepared using the nuclear extraction kit from Active Motif
(Carlsbad, CA) following the instructions provided.

2.9. Nano-Pro technology

LNCaP cells were lysed with M-Per buffer containing phospha-
tase and protease inhibitors. Lysates were mixed with CB1000 5-8
ampholyte premix and fluorescent pI standards before being loaded
into the NanoPro1000 system (Cell Biosciences, Santa Clara, CA) for
analysis. Nano-Pro is an automated capillary based iso-electric
tatin analog Merle 23 dissects distinct mechanisms of bryostatin
rmacol (2011), doi:10.1016/j.bcp.2011.03.018

http://dx.doi.org/10.1016/j.bcp.2011.03.018
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cusing (IEF) immunoassay system developed by Cell Biosciences
anta Clara, CA). Iso-electric focusing was performed in capillaries
led with a mixture of cell lysate (in this study, approximately
–20 ng protein), fluorescently labeled pI standards, and ampho-

tes and locked into place by using UV light followed by
munoprobing with anti-Erk1/2, anti-MEK1, anti-MEK2 or anti-
K antibodies. The signal was visualized by ECL and was captured
a CCD camera. The digital image is analyzed and quantified with
mpass software (Cell Biosciences, Santa Clara, CA). For more
tailed information see the Supporting information.

10. Translocation of GFP-tagged PKC isoforms in LNCaP cells

Translocation of PKC isoforms in LNCaP cells plated on ibi-treated
shes was evaluated as described before [23]. Supporting
formation contains a more detailed description of the experiment.

11. Statistical analysis

Statistical significance was determined using the Student’s
o-tailed t-test.

Results

1. Depending on conditions, Merle 23 can resemble either bryostatin

r PMA in its effects on growth, apoptosis, and TNF-alpha secretion of

CaP cells

We have previously described that Merle 23 behaves like PMA
d not like bryostatin 1 in inhibiting the growth of U-937

ukemia cells and inducing their attachment s [18]. To extend our
mparison of the actions of bryostatin 1 and Merle 23, we have
w examined the behavior of Merle 23 in the human
ythroleukemia cell line K-562 and the LNCaP human prostate
ll line. In the K-562 cells used previously for testing bryostatin 1
e compounds [24], it is established that PMA inhibits, while
yostatin 1 has only limited effects on cell growth [25]. In LNCaP
lls that are well characterized for the biological responses
duced by different PKC ligands, PMA inhibits cell growth and
duces TNF-alpha secretion and apoptosis, whereas bryostatin 1
ils to do so [14,20]. In K-562 cells, similarly to U-937 cells, Merle

was PMA-like for inhibiting cell growth in a dose dependent
anner (Fig. 1A).

In contrast to the results in the U-937 and K-562 leukemia cells,
the LNCaP cells Merle 23 resembled bryostatin 1 and not PMA,
ither inhibiting cell growth (Fig. 2B) nor inducing apoptosis (Fig.
). Cell cycle analysis gave similar results (Supplementary Figure
). In addition, although Merle 23 caused a measurable increase
TNF-alpha secretion compared to bryostatin 1 (p = 0.006), this

fect was very much less than that for PMA (Fig. 2D). Like
yostatin 1, the action of Merle 23 was dominant over that of

A, indicating that the lack of effect was not because of instability
Merle 23 under the assay conditions. The combination of Merle
with PMA prevented the inhibition of cell growth (Supplemen-

ry Figure 1A) and the induction of apoptosis (Supplementary
gure 1B) by PMA.

On the other hand, the pattern of behavior of Merle 23 relative
bryostatin 1 and PMA depended very much on the specific

nditions. Motivated by our mechanistic analysis, described
rther below, showing differences among the compounds in the
tes of PKC isoform down regulation, we examined the effect of
o well characterized proteasome inhibitors, lactacystin and MG-
2, on the pattern of response. We found that both proteasome

hibitors shifted the response of the LNCaP cells to Merle 23 from
yostatin-like to PMA-like. In the presence of the proteasome
hibitors at concentrations that did not have any effect on vehicle
Please cite this article in press as: Kedei N, et al. The synthetic bryo
activity in the LNCaP human prostate cancer cell line. Biochem Ph
treated control cells, Merle 23 caused comparable inhibition of cell
growth as did PMA (Fig. 2E). Bryostatin 1 was also affected but to a
much more modest degree. TNF-alpha secretion by PMA was
increased by the proteasome inhibitors and the effects of Merle 23
and PMA became similar, whereas the level of TNF-alpha induced
by bryostatin 1 remained very low (Fig. 2F). Multiple mechanisms
must contribute to the induction of TNF-alpha secretion in
response to PMA, as evidenced by the biphasic nature of the dose
response curve (Fig. 2D). Lactacystin eliminated most of the
biphasic pattern of induction by PMA or Merle 23, while there was
still a suggestion of biphasic induction for bryostatin 1 (Supple-
mentary Figure 1D).

These findings afford two clear conclusions. First, the pattern of
response to Merle 23 relative to bryostatin 1 and PMA is not
uniform for a single biological endpoint but depends on the cell
type. In the U-937 and K-562 human leukemia cells Merle 23 is
PMA-like, inhibiting cell growth (Fig. 2A and [18]), but in the LNCaP
cells Merle 23 is bryostatin-like, failing to inhibit cell growth.
Second, the pattern of response of Merle 23 within a single cell type
can be modulated by other agents. In the LNCaP cells, Merle 23
shifted from bryostatin-like to PMA-like in the presence of a
proteasome inhibitor.

3.2. Role of individual PKC isoforms in biological response to Merle 23

in the LNCaP cells

Among PKC isoforms, PKC alpha, delta and epsilon are the
predominant isoforms expressed in LNCaP cells, whereas PKC beta,
eta, and theta are undetectable [14,20] (and data not shown). PKC
delta has been suggested to be the major isoform in the LNCaP cells
responsible for the inhibition of cell growth and for TNF-alpha
secretion upon PMA treatment [21,26], although a role for PKC
alpha [19,27] and for PKC epsilon in the inhibition of growth has
also been suggested [28]. To verify the isoform(s) responsible for
the different biological effects of the compounds under our specific
assay conditions, we first examined the effect of PKC inhibitors.
Gö6976 is known to inhibit the activity of classical PKC isoforms
(PKC alpha in LNCaP cells) and of PKDs [29]; Gö6983 inhibits the
activity of all PKC isoforms but not that of PKD1 [30]. The general
PKC inhibitor Gö6983 but not Gö6976 blocked the inhibition of cell
growth by PMA (Fig. 3A). These results argue that the activity of
one or more of the novel PKC isoforms (PKC delta or epsilon) is
critical in the inhibition of growth by PMA and suggest a defect in
the activation of the relevant novel PKC(s) by Merle 23 and
bryostatin 1.

As a second approach to define the role of specific PKC isoforms,
we examined the effect of isoform knockdown by siRNA treatment.
To achieve effective knockdown without undue toxicity and
detachment of cells, we needed to modify the plating conditions of
the LNCaP cells to use poly-D-lysine coated plates. Under these
conditions, we were able to efficiently suppress expression of PKC
alpha, delta, and epsilon individually (Supplementary Figure 2). As
described above, we had observed that the bryostatin-like or the
PMA-like behavior of Merle 23 was subject to modulation. For the
LNCaP cells on the poly-D-lysine coated plates, we found that Merle
23 was intermediate between PMA and bryostatin 1, causing a
partial suppression of growth (compare controls without siRNA,
Fig. 3B). This response was thus somewhat different from what we
observed on the cells plated under standard conditions. Knock-
down of PKC delta by siRNA largely (65%) prevented the growth
inhibition induced by PMA and prevented the partial inhibition
observed for Merle 23 (Fig. 3B). Treatment with scrambled siRNA
or siRNA against PKC alpha or epsilon had no effect.

The PKC isoform dependence of TNF-alpha secretion was
similar to that for cell growth but not identical. Here, Gö6976, the
inhibitor of the classic PKC isoforms, caused a 47% reduction in
statin analog Merle 23 dissects distinct mechanisms of bryostatin
armacol (2011), doi:10.1016/j.bcp.2011.03.018
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Fig. 2. Biological responses induced by PMA, bryostatin 1 and Merle 23 in K-562 and LNCaP cells. (A) The effect of PMA, bryostatin 1, and Merle 23 on K-562 cell growth. 72 h

after treatment with DMSO as control or of the indicated concentrations of the different drugs the number of cells was counted by a particle counter. Values represent the

mean � S.E.M. of three independent experiments. Merle 23 1000 nM versus PMA 1000 nM, p = 0.71; versus bryostatin 1 1000 nM, p = 0.013. (B) The effect of PMA, bryostatin 1, and

Merle 23 on cell growth represented by the difference in confluency of the cells before treatment and 72 h later. Confluency was calculated by the Incucyte instrument from phase

contrast images taken every 2 h during the experiment. Values represent the mean � S.E.M. of four independent experiments. Merle 23 1000 nM versus PMA 1000 nM, p = 0.0036;

versus bryostatin 1 1000 nM, p = 0.82. (C) Apoptosis induced by PMA, bryostatin 1, and Merle 23 was detected by FACS analysis of 7-AAD and Yo-Pro stained cells after 48 h

treatment. Values represent the mean � S.E.M. of three independent experiments. Merle 23 1000 nM versus PMA 1000 nM, p = 0.0038; versus bryostatin 1 1000 nM, p = 0.37. (D)

TNF-alpha secreted into the supernatant of LNCaP cells treated for 24 h with PMA, bryostatin 1, and Merle 23 was measured by ELISA. Values represent the mean � S.E.M. of three

independent experiments. 1000 nM PMA versus 10 nM PMA, p = 0.0007. (E) The effect of proteasome inhibitors lactacystin (2 mM) and MG-132 (1 mM) on cell growth in the

presence of vehicle (DMSO) or 100 nM PMA, bryostatin 1 or Merle 23 was determined by Incucyte as described for (A). Values represent the mean � S.E.M. of five independent

experiments. Merle 23 + Lactacystin and Merle 23 + MG-132 versus PMA + Lactacystin and PMA + MG-132, p = 0.52 and 0.88, respectively; bryostatin 1 versus PMA, both in the

presence of MG-132, p < 0.0009. (F) The effect of proteasome inhibitors lactacystin (2 mM) and MG-132 (1 mM) on TNF-alpha secretion induced by 24-h treatment with 100 nM

PMA, bryostatin 1 or Merle 23. Values represent the mean � S.E.M. of four independent experiments. PMA versus PMA + MG-132, p = 0.0016; PMA + MG-132 versus Merle 23 + MG-

132, p = 0.53; bryostatin 1 versus PMA, both in the presence of MG-132, p = 0.0065.
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response to PMA (Fig. 3C). Likewise, a similar reduction was
observed upon suppression of PKC alpha by siRNA (Fig. 3D). For
comparison, suppression of PKC delta caused a 77% reduction in
PMA-induced TNF-alpha secretion. We conclude that, under our
experimental conditions, PKC delta is the predominant PKC
isoform mediating the responses to PMA for growth and for
TNF-alpha secretion but that PKC alpha also makes a contribution
to the latter response. The most straightforward prediction is that
the failure or reduced effectiveness of Merle 23 or bryostatin 1 to
induce these responses reflects defects in their abilities to activate
or maintain in an activated state PKC delta (and PKC alpha), at least
within a specific target region.

3.3. Changes in the signaling downstream of PKC in response to Merle

23, PMA and bryostatin 1

To better compare the effects of Merle 23 with bryostatin 1 and
PMA we characterized the time and dose dependence of their
Please cite this article in press as: Kedei N, et al. The synthetic bryos
activity in the LNCaP human prostate cancer cell line. Biochem Pha
actions on proximate targets in PKC signaling pathways and on PKC
isoforms (next section). We quantitatively determined the
activation of MAPK pathways (MEK/ERK and JNK phosphorylation)
using Nano-Pro technology and we detected phosphorylation of
the known PKC substrates MARCKS and PKD1 by immunoblotting.
The Nano-Pro technology separates the individual phosphoryla-
tion states of a protein and allows quantitative comparison of their
levels [31]. We detected these changes early, at 30 min after
treatment, at 60 min, when the penetration of the compounds is
more complete, and at 150 min, to evaluate the duration of signal
activation. Merle 23 showed a pattern similar to that of PMA and
bryostatin 1 at 30 min for increasing the level of P-ERK1, PP-ERK1
and P-ERK2 (Fig. 4A), as well as for phosphorylation of JNK, MEK1
and MEK2 (Supplementary Figure 3 A–C) but was somewhat less
potent (e.g. 1.7-, 3.5-, and 3.1-fold less potent relative to bryostatin
1 for P-ERK1, PP-ERK1, and P-ERK2, respectively, fold differences
calculated from EC50 values). At 150 min, phosphorylation of ERK1/
2 and JNK in response to bryostatin 1 had returned to the basal
tatin analog Merle 23 dissects distinct mechanisms of bryostatin
rmacol (2011), doi:10.1016/j.bcp.2011.03.018
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Fig. 3. Evaluation of the role of individual PKC isoforms in the biological effects of PMA, bryostatin 1 and Merle 23 using PKC inhibitors or siRNA. (A) The effect of PKC inhibitors

Gö6976 (2 mM) and Gö6983 (2 mM) on cell growth in the presence of vehicle (DMSO) or 100 nM PMA, bryostatin 1 or Merle 23 was determined by the Incucyte as described

for Fig. 2A. Values represent the mean � S.E.M. of thtee independent experiments. PMA versus PMA + Gö6983, p = 0.0091; PMA versus PMA + Gö6976, p = 0.44. (B) The effect of

different siRNAs on cell growth. Cells were transfected with the indicated siRNAs as described in Section 2 and were treated 48 h later with DMSO as control or 300 nM PMA,

bryostatin 1 or Merle 23 for 48–60 h. Confluency was determined by the Incucyte. Values represent the mean � S.E.M. of seven independent experiments. Co = control, non-treated

cells; scr = scrambled siRNA; a, d, e si = siRNA against PKC alpha, delta and epsilon isoforms, respectively. p values for Merle 23 control versus DMSO, PMA and bryostatin1 control

are 0.0015, 0.0046 and 0.010, respectively; p values for delta siRNA versus control for PMA and Merle 23 are p < 0.0001 and 0.014; all p values for PMA and Merle 23 between control

and alpha or epsilon siRNAs are >0.5. (C) The effect of PKC inhibitors Gö6976 (2 mM) and Gö6983 (2 mM) on TNF-alpha secretion induced by 10 nM PMA, bryostatin 1 or Merle 23.

Secretion of TNF-alpha into the supernatants was measured by ELISA 24 h after treatment. Values represent the mean � S.E.M. of three independent experiments. PMA versus

PMA + Gö6976, p = 0.0005. (D) The effect of different siRNAs on TNF-alpha secretion. Cells transfected with the indicated siRNAs as described in Section 2 were treated 48 h later

with DMSO as control or 10 nM PMA, 100 nM bryostatin 1 or 100 nM Merle 23 for 24 h. TNF-alpha secreted into the supernatant was measured by ELISA. Values represent the

mean � S.E.M. of three independent experiments. For abbreviations see legend above. PMA versus PMA + alpha siRNA, p = 0.0006.
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vel. In contrast, response to PMA and to Merle 23 was more
stained, indicating that Merle 23 was more PMA-like than
yostatin-like for these endpoints in the LNCaP cells. Similar
anges in ERK1/2 phosphorylation at 30, 60 and 150 min were
tected by conventional immunoblotting (Fig. 4B–4D) (We also

ied to measure phosphorylation of p38 MAPK but were unable to
t a reliable signal). In addition to the change in the extent of
osphorylation with time, it was also evident that the potency of

erle 23 and PMA was shifted to the left at 150 min compared to
min (about 7.8-fold increase in potency for Merle 23 and about

9-fold for PMA (bryostatin 1 could not be evaluated because of
e lack of response at 150 min) (Fig. 4A), suggesting that at 30 min
e effect of Merle 23 or PMA had not reached a steady state,
hether due to slow penetration or whether due to lack of balance
tween phosphorylation and dephosphorylation.
Merle 23 also induced similar levels of phosphorylation at
min of two well known PKC substrates, MARCKS and PKD1, as

d PMA and bryostatin 1, but Merle 23 was less potent, at least for
D1 phosphorylation (Fig. 4B). The 60 min (Fig. 4C) and 150 min

ig. 4D) incubation times revealed that for these responses, as for
EK/ERK and for JNK phosphorylation, the effect of bryostatin 1
as the most transient; that of Merle 23 and PMA was less so.

At 60 min another PKC activation dependent signal, expression
the immediate early gene product cFos [32], became detectable.
with the other signaling responses, Merle 23 was somewhat less
tent than PMA and bryostatin 1 for inducing cFos expression and

as intermediate in its duration of response (Fig. 4C and D,
pplementary Figure 4A and 4B). The PMA-induced signal was
Please cite this article in press as: Kedei N, et al. The synthetic bryo
activity in the LNCaP human prostate cancer cell line. Biochem Ph
sustained, detectable up to 8 h (Supplementary Figure 4B), and the
response induced by bryostatin 1 had already decreased at
150 min and was almost undetectable at 6 h (Supplementary
Figure 4A). We conclude that, for a number of these downstream
responses in LNCaP cells, Merle 23 showed a duration of response
intermediate between those of bryostatin 1 and PMA. Its duration
tended, however, to be closer to that of PMA than to that of
bryostatin 1 and it clearly could not be characterized as bryostatin
1-like. Previously, sustained activation or ERK [20] and/or JNK
signaling [33,34] were proposed as underlying mechanisms for the
apoptotic effect of phorbol esters in LNCaP cells.

3.4. The effect of Merle 23 on the phosphorylation, down-regulation

and subcellular localization of different PKC isoforms

Next, we evaluated the effects of Merle 23 on the phosphoryla-
tion, down-regulation, and translocation of PKC isoforms and
compared these responses with those to PMA and to bryostatin 1,
with particular focus on PKC delta. For PKC delta, phosphorylation
at Ser299 has been described as reflecting the activated state of the
enzyme [35]. Phosphorylation of PKC delta at Tyr 311 has been
shown to alter its activity and behavior [36–38], although its
specific role in most responses remains unclear. We find that at all
time points Merle 23 was appreciably less potent than either PMA
and bryostatin 1 for activation of PKC delta, as reflected by
phosphorylation at Ser299, while the PMA and bryostatin 1
responses were almost indistinguishable (30 min, Fig. 4B; 60 min,
Fig. 4C; 150 min, Fig. 4D; 6 h, Supplementary Figure 4A). For
statin analog Merle 23 dissects distinct mechanisms of bryostatin
armacol (2011), doi:10.1016/j.bcp.2011.03.018
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Fig. 4. Activation of PKC-responsive signaling pathways in LNCaP cells after treatment with PMA, bryostatin 1 or Merle 23. (A) ERK1/2 activation was quantitatively measured

using Nano-Pro technology as described in Section 2 in total cell lysates treated for 30 and 150 min with the indicated concentrations of PMA (0.1–1000 nM), bryostatin 1

(0.1–1000 nM) or Merle 23 (0.1–10000 nM). Red line: pp-ERK1, black line: pp-ERK2; green line: p-ERK1. Data represent the mean � S.E.M. of three independently performed

experiments. At 150 min the ppERK1 signal induced by Merle 23 was significantly different from that of bryostatin 1 (p = 0.012). (B–D) Changes in signaling detected by

immunoblotting in total cell lysates from cells treated for 30 min (B), 60 min (C) or 150 min (D) with the indicated concentrations (1–1000 nM) of PMA, bryostatin 1, or Merle 23.

Actin levels were evaluated as controls for equal protein loading. Data in (B)–(D) are representative of three independent experiments.
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inducing tyrosine phosphorylation at Y311, all three compounds
showed large differences from one another. PMA induced a strong
and sustained phosphorylation, Merle 23 induced a weaker and
more transient phosphorylation, while the phosphorylation
induced by bryostatin 1 was very weak and transient, detectable
only at 30 min (Fig. 4B–D, Supplementary Figure 4A). Merle 23
becomes even more PMA-like when the more extensive down-
regulation of PKC delta is taken into account by normalizing the Tyr
311 phosphorylation results to total PKC delta levels (Supplemen-
tary Figure 4C, see below for discussion of down-regulation of PKC
delta). Of particular note, the central role for PKC delta in the action
of PMA for inhibiting cell growth and inducing TNF-alpha
secretion, as evidenced both from the literature and from our
own studies described above, lead to the strong prediction that
bryostatin 1 and Merle 23 should be defective in PKC delta
activation, at least for some cellular subcompartment. The results
for S299 phosphorylation argue that this is not the case, at least at
earlier times, for total PKC delta, and for sufficient concentrations
of the two ligands.

Down-regulation subsequent to ligand binding is a potential
feedback mechanism for PKC, curtailing activation of PKC
signaling pathways [39–42]. It also provides one surrogate
Please cite this article in press as: Kedei N, et al. The synthetic bryos
activity in the LNCaP human prostate cancer cell line. Biochem Pha
measure for ligand interaction in cases for which reagents for
direct detection of PKC isoform activation are not available. In the
LNCaP cells, down-regulation in response to phorbol ester
treatment is typically observed between 4 and 24 h [20]. We
find that Merle 23, bryostatin 1, and PMA show clearly distinct
patterns of down-regulation of the PKC isoforms, as measured in
whole cell lysates. Merle 23 was unique in being the most efficient
for down-regulating PKC delta (detectable already at 6 h), but the
least efficient for down-regulating PKC alpha. It was PMA-like for
down-regulating PKC epsilon and PKD1 (Fig. 5 and Supplementary
Figure 4A). Bryostatin 1, on the other hand, induced biphasic
down-regulation of PKC delta, as has been described for it
previously in multiple cell lines [11,12]. It was the most potent
and efficient in down-regulating PKC alpha, and it was the least
potent in down-regulating PKC epsilon and PKD1. PMA seemed to
be equally potent for down-regulation of all PKC isoforms and of
PKD1. The different patterns of down-regulation of PKC isoforms
by Merle 23 as compared to bryostatin 1 and PMA argues that
Merle 23 cannot be simply regarded as lying somewhere on a
continuum of activity between bryostatin 1 and PMA. Rather,
Merle 23 is a unique compound with a unique spectrum of effects
on down-regulation.
tatin analog Merle 23 dissects distinct mechanisms of bryostatin
rmacol (2011), doi:10.1016/j.bcp.2011.03.018
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The data are representative of at least three independent experiments.
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Translocation of PKCs from cytoplasm to different membrane
ructures including plasma membrane, nuclear membrane, and
itochondria is another hallmark of their activation [13,14,19,40].
is of functional importance, since the subcellular localization of
Cs determines the available substrates, the partner proteins
. 6. Analysis of different PKC isoforms in the nuclear enriched fraction from LNCaP ce

forms in the nuclear-enriched subcellular fraction of LNCaP cells treated for 60 min w

aluated as controls for equal protein loading. The levels of proteins in the total cell ly

riched subcellular fraction of LNCaP cells treated for 6 h with the indicated concentra

ual protein loading. The levels of proteins in the total cell lysates are presented in Sup

termined by immunoblotting in the total lysates (C) or nuclear enriched fractions (D) o

ne or in combination with 2 mM lactacystin for 6 h. Results are representative of t

Please cite this article in press as: Kedei N, et al. The synthetic bryo
activity in the LNCaP human prostate cancer cell line. Biochem Ph
with which they can form complexes, their posttranslational
modifications and their fate (such as tyrosine phosphorylation or
ubiquitination followed by degradation). In addition to examining
PKC isoform levels and phosphorylation in total cell lysates as a
function of time and dose of Merle 23, bryostatin 1, or PMA, as
described above, we also looked at a nuclear enriched membrane
subfraction, prepared under conditions optimized for evaluating
nuclear translocation of transcription factors (Active Motif,
Carlsbad, CA). This fractionation revealed further differences
between ligands beyond those observed in the total lysates.

Merle 23 induced a pattern different from that of either PMA or
bryostatin 1 for the translocation of PKCs to the nuclear enriched
subcellular fraction (Fig. 6A and B, compare with Fig. 4C and
Supplementary Figure 4A for total lysates). Merle 23, similarly to
PMA, induced translocation of PKC alpha and epsilon in a dose
dependent manner, albeit with lower potency than PMA, while
bryostatin 1 induced only a partial translocation at 60 min. On the
other hand Merle 23, like bryostatin 1, failed to efficiently
translocate PKC delta and PKD1 (Fig. 6A). (Note that part of the
total PKC delta is already in this subcellular fraction without any
treatment unlike PKC alpha, epsilon or PKD1) (Fig. 6A, B, D). At 6 h
the differences were even more pronounced. For PKC alpha and
epsilon Merle 23 is PMA-like but for PKC delta and PKD1, especially
pPKD1, Merle 23 is more bryostatin 1-like (Fig. 6B).

The amount of PKCs present in any of the subcellular fractions,
including nuclear enriched fractions, depends not only on the
efficiency of translocation but also on the amount of total protein,
lls after treatment with PMA, bryostatin 1 or Merle 23. (A) Detection of different PKC

ith the indicated concentrations of PMA, bryostatin 1 or Merle 23. Lamin B levels were

sates are presented in Fig 4C. (B) Detection of different PKC isoforms in the nuclear-

tions of PMA, bryostatin 1 or Merle 23. Lamin B levels were evaluated as controls for

plementary Figure 4A. (C and D) The levels of the PKC isoforms or other proteins were

f LNCaP cells treated with the indicated concentrations of PMA, bryostatin 1, Merle 23

hree independent experiments.

statin analog Merle 23 dissects distinct mechanisms of bryostatin
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especially at later time points (6 h) when some of the isoforms such
as PKC alpha and PKC delta may be significantly down-regulated.
When the proteasome inhibitor lactacystin was co-administered
with Merle 23, down-regulation of PKC delta was prevented and
the amount of PKC delta in the total cell lysates (Fig. 6C) and
nuclear extracts (Fig. 6D) was increased. In contrast, treatment
with lactacystin had little effect on nuclear PKC delta in the
presence of bryostatin 1 and PMA. As shown in Fig. 2D and E,
cotreatment with the proteasome inhibitors lactacystin and MG-
132 converted the more bryostatin-like effects of Merle 23 to more
PMA-like for cell growth and TNF-alpha secretion, with much
lesser effects on bryostatin 1. These results focus attention on the
PKC delta present in the nuclear-enriched fraction as contributing
to induction of these biological responses. It should be emphasized,
however, that proteasome inhibitors have many effects. Lactacys-
tin partially prevented the bryostatin 1 induced down-regulation
of PKC alpha and increased the level of PKC alpha present in the
nuclear-enriched fraction at 6 h (Fig. 6C and D). In addition, the
proteasome inhibitors will necessarily affect many cellular
processes in addition to down-regulation of PKCs [43].

The nuclear enriched fractionation protocol was one optimized
to evaluate translocation of transcription factors to the nucleus.
We therefore examined translocation of p65 and cFos, members of
the NFkB and AP1 family of transcription factors respectively,
which are prominently involved in PKC signaling [44]. Merle 23,
PMA, and bryostatin 1 induced similar translocation of p65 and
cFos to the nuclear enriched fraction (Fig. 6A). The duration of the
response to Merle 23 was similar to that for PMA, while the effect
of bryostatin 1 was very transient as indicated by the low p65 and
cFos levels in this fraction at 6 h (Fig. 6B).

Although lacking in resolution, translocation of exogenously
expressed, GFP-labeled PKC isoforms provides a real time
measure of their response to ligands. GFP-PKC alpha and GFP-
PKC epsilon translocate to the plasma membrane; GFP-PKC delta,
on the other hand, shows a complex pattern of translocation to the
plasma membrane and internal membranes both as a function of
time and of the ligand, for which hydrophobicity is one critical
determinant [13,14]. Of particular relevance, we had reported that
in Chinese hamster ovary cells PMA caused initial translocation of
GFP-PKC delta to the plasma membrane, with subsequent
equilibration to internal membranes, especially the nuclear
membrane but not inside the nucleus, whereas bryostatin 1
already at early times caused the translocation to internal
membranes [13].

In the present study with the LNCaP cells, we have also used
immunostaining of endogenous PKC delta (Fig. 7A) as well as
overexpression of exogenous GFP-PKC delta (Fig. 7B). We find the
expected difference between PMA and bryostatin 1 for transloca-
tion of PKC delta with both methods. PKC delta localized mainly to
the plasma membrane after PMA treatment, while it localized
mostly to cytoplasm and to internal membranes, including nuclear
membrane, after treatment with bryostatin 1. As for many
biological responses (inhibition of cell growth and apoptosis
(Supplementary Figure 1A and 1B)) the effect of bryostatin 1 for
translocation was dominant over that of PMA (Fig. 7A). Merle 23
was different from both PMA and bryostatin 1 for the pattern of
endogenous PKC delta localization as it showed staining in the
cytoplasm and some in the plasma membrane (Fig. 7A). For the
translocation of overexpressed GFP-PKC delta, Merle 23 induced
translocation mostly to internal membranes, resembling bryosta-
tin 1 (Fig. 7B). The results obtained with the two different methods
thus gave somewhat different results for Merle 23, presumably
reflecting the influences of fixation or of the expression level of PKC
delta. Nonetheless, overall the findings for localization again
suggest that Merle 23 is intermediate between PMA and bryostatin
1 in its behavior.
Please cite this article in press as: Kedei N, et al. The synthetic bryos
activity in the LNCaP human prostate cancer cell line. Biochem Pha
4. Discussion

Taming of the bryostatin chemistry has been a pressing
objective. First, bryostatin 1 is a natural product, available only
in vanishingly small quantities upon isolation from Bugula neritina

[7]. The limited availability of bryostatin 1 has thus impacted both
clinical trials and mechanistic analysis. A practical synthesis could
alleviate this issue of supply. Second, synthesis of simplified
structural derivatives could identify which parts of the complex
structure of bryostatin 1 are essential for activity and which are
dispensable, potentially identifying bioequivalent analogs that
could be made more readily. While this objective in the first
instance has been directed at simplified derivatives based on the
bryostatin structure as a template, the extension of this objective
could be to adapt those essential structural features to other high
affinity PKC ligand templates such as the DAG-lactones, which are
synthetically much more accessible.

These intense synthetic efforts are now yielding structures for
probing of bryostatin structure activity relations, albeit for the
most part as yet in very limited quantities. Initial analysis has used
either binding to PKC or inhibition of leukemia cell growth,
typically of the K-562 leukemia cells [16,17]. The conclusion from
these studies was that the A- and B-rings of bryostatin 1 were
simply a ‘‘spacer domain’’, restricting the conformation of the
lower portion of the molecule so that it bound with high affinity to
the binding cleft of the C1 domain of PKC, but was otherwise
uninvolved.

In marked contrast to this concept of the A- and B-rings as a
spacer domain, we reported that Merle 23, which only differs from
bryostatin 1 in its less extensive functionalization on these two
rings, acted like a phorbol ester in the U-937 human leukemia cells
and failed to show the unique pattern of biological activity of
bryostatin 1[18]. In this system, further structure activity analysis
has shown that Merle 27, which restores the C-7 acetate
substituent missing from Merle 23, still behaved like PMA [45],
whereas both Merle 28, lacking the C30 carbomethoxy group from
the B-ring of bryostatin 1 [46] and Merle 30, lacking the C9-
hydroxyl group from the A-ring [47] displayed bryostatin-like
biology in these cells. In initial studies, this latter compound was
also bryostatin-like for proliferation and TNF-alpha secretion in the
LNCaP cells, although it was not characterized in further detail
[47]. All the compounds were potent for binding to PKC.

These studies unambiguously demonstrated a critical role for
the A- and B-ring substituents of the bryostatin 1 in conferring the
unique pattern of biological response, at least for the two
endpoints examined and for the U-937 cells. Here, we confirmed
that Merle 23 behaves in the K-562 leukemia cell line like it does in
the U-937 cells. A separate issue was the generality of this
conclusion over a broader range of cellular responses as well as
over aspects of the signaling pathways directly coupled to
bryostatin 1 action, namely regulation of PKC isoforms and those
downstream responses closely linked to their activity.

The initial system we chose to address this broader issue was
that of the LNCaP human prostate cancer cells. Multiple groups
have shown that PMA and bryostatin behave differently in this
system, with PMA inhibiting cell growth and inducing apoptosis
whereas bryostatin is much less effective for doing so. Such
studies, moreover, have already characterized in some detail
relevant signaling pathways involved in these responses to
phorbol ester and started to define the role of individual PKC
isoforms. These responses include sustained activation of the p38,
JNK MAPK cascade [33,34,48], sustained membrane-translocation
of PKC alpha resulting in sustained activation of the ERK MAPK
cascade [20], and inhibition of the AKT pathway [48]. PKC delta
mediated RhoA, ROCK activation leading to transcriptional
activation of p21CIP1 [49], and membrane localized, activated
tatin analog Merle 23 dissects distinct mechanisms of bryostatin
rmacol (2011), doi:10.1016/j.bcp.2011.03.018
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Fig. 7. Localization of PKC delta in LNCaP cells following treatment with PMA, bryostatin 1 or Merle 23. (A) Subcellular localization of endogenous PKC delta in LNCaP cells

60 min after treatment with the indicated concentrations of PMA, bryostatin 1, Merle 23 or the combination of 100 nM PMA and 10, 100, 1000 nM bryostatin 1. The

immunostaining was performed as described in Section 2. (B) Translocation of GFP-PKC delta in LNCaP cells. LNCaP cells plated on ibidi treated dishes for better attachment

were transfected to express GFP-PKC delta and 24 h later were treated with 1000 nM PMA, bryostatin 1 or Merle 23. The translocation of GFP-PKC delta was detected by

confocal microscopy in real time with images taken every 30 s. Images of two representative cells taken at 0, 5 and 20 min are shown. The data presented in each panel are

representative of four independently performed experiments.
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C delta caused activation of TACE, release of the death factors
AIL and TNF alpha, and downstream activation of the extrinsic
optotic cascade and activation of JNK, p38 MAPK and caspases
1,50]. Additionally, phorbol ester was reported to cause
tivation of the intrinsic apoptotic pathway by phosphorylation
BAD independently of Akt, ERK or p90RsK [51]; it induced

wnregulation of ATM resulting in activation of ceramide
nthase and ceramide release [52]; and led to nuclear accumula-
n of phosphorylated p53 [53]. The involvement of PKC isoforms
Please cite this article in press as: Kedei N, et al. The synthetic bryo
activity in the LNCaP human prostate cancer cell line. Biochem Ph
in these responses is complex. PKC alpha and delta are described as
contributing to the apoptosis induced by phorbol ester [19–21],
whereas PKC alpha was thought to play the major role for another
class of PKC ligands, the DAG-lactones [27]. In the case of
bryostatin 1, the overexpression (individually) of either PKC alpha
[20] or PKC epsilon [28] has been reported to change its behavior to
now act like PMA. While the responses of the LNCaP cells to PKC
activation must thus be highly complex, suggesting that differ-
ences in ligand action may be found at multiple levels, the LNCaP
statin analog Merle 23 dissects distinct mechanisms of bryostatin
armacol (2011), doi:10.1016/j.bcp.2011.03.018
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Table 1
Summary of the biological responses induced by PMA, bryostatin1 and Merle 23 in LNCaP cells.

PMA Bryostatin 1 Merle 23

Biological responses

Inhibition of growth + � � or +/�*

Apoptosis + � � or +/�*

Secretion of TNF-alpha + � +/�
+ Lactacystin ++ � ++

Signaling pathways

ERK1/2, JNK +/sustained +/transient +/intermediate

AP1 and NFKB activation (nuclear cFos and p65) +/sustained +/transient +/intermediate

Activities on PKCs PMA Bryostatin 1 Merle 23

a d e a d e a d e

Phosphorylation of PKC delta at 1 h

Ser 299 + + +

Tyr 311 + � + +/�
Down-regulation of different PKCs

6 h +/� � � ++ +/�y � � + �
24 h + + + ++ +y � + ++ y +

Subcellular localization

Endogenous PKCs in the nuclear enriched fraction

30 min + + + +/� � +/� + +/� +/�
6 h + + + +/� � � + � +

Endogenous PKC delta Plasma membrane Internal membranes Plasma and internal membranes

Translocation of GFP-PKC delta Plasma membrane Mostly internal membranes Mostly internal membranes

* When cells plated onto poly-D-lysine coated plates.
y Biphasic.
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system promised the opportunity, at the very least, to obtain rich
comparative signatures of the actions of Merle 23, PMA, and
bryostatin 1. It should be emphasized, however, that the pattern of
response of the LNCaP cells is not representative of more
aggressive prostate cancer cells. It is well established that prostate
cancer cell lines such as PC-3 or DU145 do not show growth
inhibition in response to PMA [22,54]. Our goal rather was to use
the LNCaP system to develop insights into the behavior of Merle 23.

Our findings provide a very clear conclusion regarding Merle 23.
Depending on the response, Merle 23 can be bryostatin-like, PMA-
like, intermediate in its behavior, or have greater effect than either.
Our findings show that the four missing substituents on the A- and
B-rings, which distinguish Merle 23 from bryostatin 1, are not
required for all of the differential responses to bryostatin 1. On the
other hand, for the majority of endpoints examined (Table 1),
Merle 23 indeed much more resembled PMA than it did bryostatin
1. Furthermore, the behavior of Merle 23 is dependent on the
cellular context, as illustrated by the effect of the proteasome
inhibitors or of different plating conditions. We conclude that there
is not a single pharmacophore conferring a bryostatin-like as
distinct from a phorbol ester-like pattern of response.

The diversity of patterns of response at the biological level is
entirely consistent with the diversity of the pattern of effects of
Merle 23, PMA, and bryostatin 1 on their proximal targets, the PKC
isoforms. As shown previously in LNCaP cells and in many other
cellular systems, bryostatin 1 was very efficient in down-
regulating PKC alpha [9,10,40] and it induced a biphasic down-
regulation of PKC delta [11,12] with almost no effect on PKC
epsilon and PKD1. Merle 23 was uniquely potent for down-
regulating PKC delta, was the least potent for down-regulating PKC
alpha and was very similar to PMA for PKC epsilon and PKD1.
Likewise, the three compounds had distinct effects for transloca-
tion of different PKC isoforms, as measured by subcellular
fractionation. Merle 23, like PMA and unlike bryostatin 1, induced
translocation of PKC alpha and PKC epsilon to the nuclear enriched
subcellular fraction. On the other hand, like bryostatin 1 and unlike
PMA, Merle 23 failed to induce translocation of PKC delta to the
same compartment. While our nuclear enriched subcellular
fraction may include contributions from other membrane frac-
Please cite this article in press as: Kedei N, et al. The synthetic bryos
activity in the LNCaP human prostate cancer cell line. Biochem Pha
tions, the critical observation is that the patterns of distribution
driven by the three ligands are distinct. Finally, the three
compounds had distinct actions on the patterns of regulatory
phosphorylation of PKC delta. All caused phosphorylation at
Ser299, a regulatory site which reflects enzyme activation. On the
other hand, bryostatin 1 was virtually unable to induce tyrosine
phosphorylation at Y311, whereas Merle 23 was almost as effective
as PMA. Phosphorylation at this site is thought to influence both
stability and specificity [36–38]. Our studies highlight the
appreciation that ligands for C1 domains cannot be understood
simply at the level of binding affinity for some PKC isoforms. Their
relative affinities at PKC isoforms with potentially opposite
biological effects, such as PKC delta and epsilon, their differential
localization to membrane compartments or subcompartments,
and the complex feedback among their targets can all contribute to
very different outcomes.

While our goal in the LNCaP cells was to conduct a broad-based
comparison of Merle 23 with PMA and bryostatin 1, rather than to
resolve the complex mechanisms underlying the regulation of
growth and apoptosis by such agents in the LNCaP cells, our data
are largely consistent with the suggestion of Kazanietz, using
somewhat different experimental conditions [14], that failure to
properly localize activated PKC delta is an important contributor to
the pattern of response for TNF-alpha secretion and inhibition of
proliferation in this system. Thus, levels of PKC delta in the nuclear
enriched fraction mirrored the responses to PMA, bryostatin 1, and
Merle 23 both in the presence and absence of the proteasome
inhibitors. In the case of Merle 23, down-regulation of PKC delta
may make a larger contribution to the loss of PKC delta in this
compartment; in the case of bryostatin 1, failure of the existing PKC
delta to localize may be more important. Our analysis provided less
support for the suggestion that plasma membrane localization of
PKC delta was critical, at least under our conditions.

At this very early stage of exploration of the structure activity
relations of bryostatin analogs, the richness of opportunity for
identification of novel spectra of response is already apparent.
Myalgia is the limiting toxicity that has emerged for bryostatin 1,
whereas it has not been described for other PKC targeted drugs
[55]. The diversity of patterns of response provides encouragement
tatin analog Merle 23 dissects distinct mechanisms of bryostatin
rmacol (2011), doi:10.1016/j.bcp.2011.03.018
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at designed analogs of bryostatin can be developed possessing a
ecific spectrum of the desired bryostatin attributes. Additionally,
we develop more detailed insights into the effects of such

rivatives on signaling pathways, it may be possible to better
atch specific derivatives with those specific cancers in which
ese pathways are relevant.
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