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Á. Nagya and C. Amovillib

a Department of Theoretical Physics, University of Debrecen, H–4010 Debrecen, Hungary,b

Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, Via Risorgimento 35, 56126
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Abstract

Higher-order cusp relations are derived for the pair density of the ground

and the excited states of atoms, ions or molecules. Both electron-nucleus and

electron-electron coalescences are studied.

I. INTRODUCTION

Cusp relations have turned to be extremely useful in studying exact properties of several

quantities, such as the wave function, the electron density or the kinetic energy density.

They are associated with the singularity of the Coulomb potential. The nature of the

cusp was first studied by Kato [1]. Electron-electron coalescence was studied for the wave

function by Kolos and Roothaan [2], Roothaan and Kelly [3] and Pack and Brown [4]. Cusp

conditions were derived for the electron density [5], the first-order density matrix [6], the

uniform electron gas [7,8] and the density matrices [9,10]. Three-particle coalescence were

also studied [11–13]. Cusp relations were derived for the density for highly excited-states

[14]. The curvature of the electron density in the ground state was studied by Esquivel et

al. [15,16] and the generalization for excited states was also presented [17]. Nuclear cusp

conditions for the energy density were obtained by March et al. [18]. Relations between the
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derivatives for the many-electron wave functions at the cusp were derived by Rassolov and

Chipman [19] and expressions between the derivatives of the densities were also derived for

both the ground and the excited states [20].

The pair density has become very important as it is the key quantity of the pair density

functional theory [21–32]. In this paper new cusp relations are presented for the pair density

both for the ground and the excited states. These expressions include the first and the third

derivatives.

In the following section the higher order nuclear cusp relations are summarized [20].

In section 3 higher-order electron-electron cusp relations are derived for the ground- and

excited-state wave functions. Section 4 presents higher-order cusp conditions for the pair

density. The last section is devoted to illustrative examples and discussions.

II. HIGHER-ORDER NUCLEAR CUSP RELATIONS FOR THE GROUND- AND

EXCITED-STATE WAVE FUNCTIONS

First, the higher-order nuclear cusp relations derived earlier [20] are summarized. The

total Hamiltonian can be written as

Ĥ = Ĥ1 + Ŵ + Ĝ , (1)

where

Ĥ1 = −1

2
∇2

1 −
Zα

r1
, (2)

Ŵ = −
∑

β 6=α

Zβ

|r1 − Rβ|
+

N∑

j 6=1

1

|r1 − rj|
. (3)

and

Ĝ = −
N∑

i=2

∑

β 6=α

Zβ

|ri − Rβ|
+

1

2

N∑

i=2

N∑

j 6=i

1

|ri − rj|
− 1

2

N∑

i=2

∇2
i −

N∑

j 6=1

Zα

rj
. (4)

We will study the wave function in the vicinity of the nucleus α and the origin of the

coordinate system is placed at the nucleus α. In this paper only two-particle coalescence
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is studied. As we consider the case where |r1| = r1 is small, smaller than r2, the following

expansion can be used in W

1

|r1 − r2|
=
∑

l,m

4π

2l + 1

rl
1

rl+1
2

Y ∗
lm(Ω1)Ylm(Ω2) . (5)

So the expansion of W has the form

W =
∑

l,m

rl
1WlmY ∗

lm(Ω1) , (6)

where Wlm depend on r2, ..., rN but do not depend on r1.

Wlm = − 4π

2l + 1


∑

β 6=α

Zβ
Ylm(Ωβ)

Rl+1
β

−
∑

j>1

Ylm(Ωj)

rl+1
j


 . (7)

Ylm are the spherical harmonics. The operator G acts only on r2, ..., rN .

The most general expansion of the antisymmetric wave function around the nucleus α is

Φ =
∞∑

l=0

m=l∑

m=−l

rl
1χlm(r1, X)Ylm(Ω1) , (8)

where X stands for the coordinates σ1, r2, σ2, ..., rN , σN . We note in passing that the anti-

symmetry of the wave function in (8) is retained only with the full summation over l from

zero to infinity.

In certain highly excited states the spherical average of the derivative of the wave function

is zero at a nucleus: χ00(0, X) = 0. This is the case where there is no s electrons. To include

this case and the even more special cases where

χlm(0, X) = 0 , (9)

l > 0 we rewrote Eq. (8) as

Φ =
∑

m

rl
1χlm(r1, X)Ylm(Ω1) +

∑

l′>l

∑

m′

rl′

1 χl′m′(r1, X)Yl′m′(Ω1) , (10)

where l is the smallest integer for which χlm is not zero. In the second term in Eq. (10) the

summation should go only for l′ > l. Such highly excited atoms have been observed. E.g.

2p3 4S state of negative He ion and of Li I, Be II, B III and C IV ions [33].
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The function χlm can be expanded as

χlm(r, X) = a
(0)
lm(X) + a

(1)
lm(X)r + a

(2)
lm(X)r2 + a

(3)
lm(X)r3 + ... (11)

Substituting expressions (10), (11) and (6) into the Schrödinger equation ĤΦ = EΦ mul-

tiplying it with the spherical harmonics Y ∗
lm(Ω1), integrating on the polar angles Ω1 and

equating the coefficients of rl−1, rl, rl+1 separately to zero, we arrive at the system of equa-

tions

Zαa
(0)
lm(X) + (l + 1)a

(1)
lm(X) = 0 (12)

(2l + 3)a
(2)
lm(X) + Zαa

(1)
lm(X) −

(
Ĝ + W̄ − E

)
a

(0)
lm(X) = 0 (13)

3(l + 2)a
(3)
lm(X) + Zαa

(2)
lm(X) −

(
Ĝ + W̄ − E

)
a

(1)
lm(X) = 0 (14)

where W̄ = (4π)−1/2W00 is constant. Combining these equations we are led to the relations

for the terms alm

a
(1)
lm(X) = − Zα

l + 1
a

(0)
lm(X) (15)

a
(2)
lm(X) =

1

2l + 3

[
Z2

α

l + 1
+ Ĝ + W̄ − E

]
a

(0)
lm(X) (16)

and

a
(3)
lm(X) = − Zα

3(l + 1)(l + 2)

[
(3l + 4)a

(2)
lm(X) − Zα

l + 1
a

(0)
lm(X)

]
. (17)

If l = 0 the relations of Rassolov and Chipman [19] can be recovered. In the following section

the electron-electron cusp relations are derived.

III. HIGHER-ORDER ELECTRON-ELECTRON CUSP RELATIONS FOR THE

GROUND- AND EXCITED-STATE WAVE FUNCTIONS

Now, we turn to the electron-electron coalescence and derive electron-electron cusp rela-

tions. We proceed similarly as we did in the previous section. The same total Hamiltonian

can be now be rewritten as

4



Ĥ = Ĥ12 + Û + K̂ , (18)

where

Ĥ12 = −∇2
r12

+
1

r12
, (19)

Û = −
∑

α

Zα

(
1

|r1 − Rα|
+

1

|r2 − Rα|

)
+

N∑

j=3

(
1

r1j
+

1

r2j

)
, (20)

K̂ = −1

4
∇2

R − 1

2

N∑

j=3

∇2
i −

N∑

i=3

∑

α

Zα

|ri − Rα|
+

1

2

N∑

i,j=3
i6=j

1

rij

(21)

and

r12 = r1 − r2 , R =
1

2
(r1 + r2) . (22)

Now, we expand the wave function and the potential Û around r12 = 0

Φ =
∞∑

l′≥l

m′=l∑

m′=−l

rl′

12γl′m′(r12, X)Yl′m′(Ω12) (23)

and

U =
∑

l′,m′

rl′

12Ul′m′Y ∗
l′m′(Ω12) , (24)

where in this section X stands for the coordinates σ1, σ2,R, r2, ..., rN , sN and

Ulm =
4π

2l + 1

(
1

2

)l

1

2

N∑

j=3

1

|R− rj|l+1

(
Ylm( ̂rj − R) + Ylm( ̂R− rj)

)

−
∑

α

1

|Rα − R|l+1

(
Ylm( ̂Rα − R) + Ylm( ̂R − rα)

)]
. (25)

We note in passing that if we take the ground state or low-lying excited state than l = 0.

l 6= 0 only when we considering an excited state with no s-electrons. The function γlm can

now be expanded as

γlm(r12, X) = b
(0)
lm(X) + b

(1)
lm(X)r12 + b

(2)
lm(X)r2

12 + b
(3)
lm(X)r3

12 + ... (26)
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Substituting expressions (23), (26) and (25) into the Schrödinger eguation multiplying it

with the spherical harmonics Y ∗
lm(Ω12), integrating on the polar angles Ω12 and equating the

coefficients of rl−1
12 , rl

12, rl+1
12 separately to zero, we arrive at the relations:

b
(1)
lm(X) =

1

2(l + 1)
b
(0)
lm(X) (27)

b
(2)
lm(X) =

1

2l + 3

[
1

4(l + 1)
+

1

2
(K̂ + Ū − E)

]
b
(0)
lm(X) (28)

and

b
(3)
lm(X) =

1

6(l + 1)(l + 2)

[
(3l + 4)b

(2)
lm(X) − 1

4(l + 1)
b
(0)
lm(X)

]
. (29)

where Ū = (4π)−1/2U00. For l = 1 the p-wave condition of Rassolov and Chipman [19] can

be recovered. It also describes a case of two electrons in a triplet state.

IV. HIGHER-ORDER CUSP RELATIONS FOR THE DERIVATIVES OF THE

PAIR DENSITY

The pair density n can be easily calculated from the wave function (10) by integrating

|Φ|2 for all coordinates except r1 and r2:

n(r1, r2) =
N(N − 1)

2

∫
|Φ(r1, dσ1, r2, dσ2r3, dσ3, ..., rN , dσN)|2dσ1dσ2dr3dσ3...drNdσN . (30)

Now, n is averaged for the polar angles r̂1

n̄(r1, r2) =
1

4π

∫
dr̂1n(r1, r̂1, r2). (31)

Substituting Eq. (10) into Eq. (31) we obtain

n̄(r1, r2) =
∑

m

r2l
1 χ̃lm(r1, r2)

2 +
∑

m,l′,m′;l′>l

r2l′

1 χ̃l′m′(r1, r2)
2 , (32)

where χ̃2
lm is obtained after integrating χ2

lm for the coordinates of N − 2 electrons

χ̃2
lm =

N(N − 1)

2

∫
χ2

lmdQ . (33)
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Q stands for all the coordinates of N − 2 electrons. For highly excited states the functions

ηl(r1, r2) are introduced with the definition

ηl(r1, r2) =
n̄(r1, r2)

r2l
1

. (34)

Eqs. (32) and (34) lead to

ηl =
∑

m

χ̃2
lm +

∑

l′,m′;l′>l

r
2(l′−l)
1 χ̃2

l′m′ . (35)

For r1 = 0 ηl takes the form

ηl(0, r2) =
∑

m

χ̃2
lm(0, r2) =

N(N − 1)

2

∑

m

∫
[a0

lm]2dQ . (36)

Differentiating Eq. (35) with respect to r1 and making use of Eq. (15) we arrive at

d

dr1
ηl(r1, r2)

∣∣∣∣∣
r1=0

= −2
Zα

l + 1
ηl(0, r2) . (37)

The second derivative can be expressed as

d2

dr2
1

ηl(r1, r2)

∣∣∣∣∣
r1=0

= 2

[
1

2l + 3

[(
Z2

α

(l + 1)2
(4l + 5) − 2E

)
ηl(0, r2)

+ 2 (Wl(0, r2) + Gl(0, r2))] + ηl+1(0, r2)] , (38)

where

Wl(0, r2) =
N(N − 1)

2

∑

m

∫
a0

lmW̄a0
lmdQ . (39)

Gl(0, r2) =
N(N − 1)

2

∑

m

∫
a0

lmĜa0
lmdQ . (40)

In Eq. (38) we used the notation

ηl+1(0) =
N(N − 1)

2

∑

m

∫
dQ|a(0)

l+1m(X)|2. (41)

It means that there is a contribution from the 0 order part of χl+1. Thus, while the first

derivative of ηl at the cusp can be expressed with the atomic number of the nucleus considered

and the value of η at the cusp, the second derivative includes the energy, the potential at
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the nucleus, the integral of the operator G and the ηl+1(0), too. So there is a contribution

from the l + 1 terms.

The third derivative of ηl (Eq. (35)) takes the form

d3

dr3
1

ηl(r1, r2)

∣∣∣∣∣
r1=0

=
4Zα

(l + 1)(l + 2)(2l + 3)
{2(3l + 5)[Eηl(0, r2) − (Wl(0, r2) + Gl(0, r2))]

− 4l + 7

l + 1
Z2

αηl(0, r2)

}
− 12

Zα

l + 2
ηl+1(0, r2) . (42)

From Eqs. (37)- (42) we arrive at a relation between the function η and its first and

third derivatives:

η′′′
l (0, r2) =

2Zα

(l + 1)(l + 2)

{
−(3l + 5)η′′

l (0, r2) +
4(2l + 3)Z2

α

(l + 1)2
ηl(0, r2) + 4ηl+1(0, r2)

}
. (43)

Eq. (43) gives the dependence of the third derivative of the pair density at the nucleus on

the lower derivatives.

Now, we turn to the electron-electron cusp relations. With the definition

ξl(r12,R) =
n̄(r12,R)

r2l
12

. (44)

and using Eq. (27) we obtain

ξl(0,R) =
∑

m

χ̃2
lm(0,R) =

N(N − 1)

2

∑

m

∫
[b0

lm]2dQ . (45)

The derivative of Eq. (44) with respect to r12 leads to

d

dr1
ξl(r12,R)

∣∣∣∣∣
r12=0

=
1

l + 1
ξl(0,R) . (46)

The second derivative can be expressed as

d2

dr2
12

ξl(r12,R)

∣∣∣∣∣
r12=0

=

2

[
1

2l + 3

[(
4l + 5

(l + 1)2
− E

)
ξl(0,R) + (Ul(0,R) + Kl(0,R))

]
+ ξl+1(0,R)

]
, (47)

where

Ul(0,R) =
N(N − 1)

2

∑

m

∫
b0
lmŪb0

lmdQ . (48)
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Kl(0,R) =
N(N − 1)

2

∑

m

∫
b0
lmK̂b0

lmdQ . (49)

The third derivative takes the form

d3

dr3
12

ξl(r12,R)

∣∣∣∣∣
r12=0

= − 2

(l + 1)(l + 2)(2l + 3)
{(3l + 5)[Eξl(0,R) − (Ul(0,R) + Kl(0,R))]

− 4l + 7

4(l + 1)
ξl(0,R)

}
+

6

l + 2
ξl+1(0,R) . (50)

Eqs. (45)- (47) and (50) lead to a relation between the function η and its first and third

derivatives:

d3

dr3
12

ξl(r12,R)

∣∣∣∣∣
r12=0

=
1

(l + 1)(l + 2)

{
(3l + 5)

d2

dr2
12

ξl(r12,R)

∣∣∣∣∣
r12=0

− 2l + 3

(l + 1)2
ξl(0,R) − 4ξl+1(0,R)

}
. (51)

V. ILLUSTRATIVE EXAMPLES AND DISCUSSION

The cusp relations derived above are now illustrated on two simple examples. Consider

first two electrons in a bare nuclear field with charge Z. The electrons are in the 2p (l =

1, m = 0) excited state with antiparallel spins. Then the spatial part of the wave function

is symmetric:

Ψ(r1, r2) = φ2p(r1)φ2p(r2) , (52)

where

φ2p(r) = cre−Zr/2Y1m(Ω) . (53)

c is a constant. We can readily obtain the pair density averaged for the polar angles Ω1:

n̄(r1, r2) = f(r2)r
2
1e

−Zr1 , (54)

where

f(r2) = c4r2
2e

−Zr2|Y1m(Ω2)|2
1

4π
. (55)
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Then we define the function η1 as

η1(r1, r2) =
n̄(r1, r2)

r2
1

. (56)

Eqs. (54) and (56) lead to the result

η1(r1, r2) = f(r2)e
−Zr1 . (57)

Consequently,

η1(0, r2) = f(r2). (58)

We can immediatelly calculate the first derivative of the function η1 and take its value at

r1 = 0:

d

dr1

η1(r1, r2)

∣∣∣∣∣
r1=0

= −Zf(r2) = −Zη1(0, r2) , (59)

with complete agreement with Eq.(37) as l = 1. The second and third derivatives at r1 = 0

are:

d2

dr2
1

η1(r1, r2)

∣∣∣∣∣
r1=0

= Z2f(r2) = Z2η1(0, r2) (60)

and

d3

dr3
1

η1(r1, r2)

∣∣∣∣∣
r1=0

= −Z3f(r2) = −Z3η1(0, r2) . (61)

We can readily check that Eqs. (58)- (61) satisfy Eq. (43).

As a second example consider two electrons confined by a harmonic potential [34]. This

harmonium (or Hooke’s atom) is described by the Hamiltonian

Ĥ = −1

2
∇2

1 +
1

2
ω2r2

1 −
1

2
∇2

2 +
1

2
ω2r2

2 +
1

r12
. (62)

After introducing the intracular and extracular coordinates (22) we immediatelly notice

that the center-of-mass equation is the well-known three-dimensional oscillator solution.

The relative motion of the two electrons is characterized by the Schrödinger equation
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[
−1

2
∇2

12 +
1

2
ω2

rr
2
12 +

1

2r12

]
φ(r12) = ε′φ(r12) , (63)

where ωr = ω/2 and ε′ = ω[2(l + n) + 1]/4. Analytical solution can be given e.g. for n = 2

and arbitrary l with the energy ε′ = (2l+5)/[8(l+1)]. The electrons have antiparallel spins.

Then the spatial part of the wave function is symmetric:

Ψ(r12,R) = φ(r12)ζ(R), (64)

where ζ(R) is the wave function of the center-of-mass motion. The wave function of the

relative motion then takes the form

φ(r12) =
u(r12)

r12
Ylm(r̂12), (65)

where

u(r12) = rl+1
12

[
1 +

r12

2(l + 1)

]
e−

r
2
12

8(l+1) . (66)

Making use of Eqs. (31) we obtain

n̄(r1, r2) = r2l
12

[
1 +

r12

2(l + 1)

]2

e−
r
2
12

4(l+1)
|ζ(R)|2

4π
. (67)

Then we define the function ξ1 as

ξl(r12,R) =
n̄(r12,R)

r2l
12

. (68)

Eqs. (67) and (68) lead to the result

ξl(r12,R) =

[
1 +

r12

2(l + 1)

]2

e
−

r
2
12

4(l+1)
|ζ(R)|2

4π
. (69)

At the electron-electron coalescence

ξl(0,R) =
|ζ(R)|2

4π
. (70)

We can immediatelly calculate the first derivative of the function ξl and take its value at

r12 = 0:
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d

dr1

ξl(r12,R)

∣∣∣∣∣
r12=0

=
|ζ(R)|2

4π

1

l + 1
=

ξl(0,R)

l + 1
. (71)

with complete agreement with Eq.(46). The second and third derivatives at r12 = 0 are:

d2

dr2
12

ξl(r12,R)

∣∣∣∣∣
r12=0

= −|ζ(R)|2
4π

l

2(l + 1)2
(72)

and

d3

dr3
12

ξl(r12,R)

∣∣∣∣∣
r12=0

= −|ζ(R)|2
4π

3

2(l + 1)2
(73)

We can readily check that Eqs. (70)- (73) satisfy Eq. (51).

Note that in both examples the term ηl+1 = 0 in Eqs. (43) and (51). It is the consequence

of the fact that both electrons have the same azimuthal quantum number l. In these example

we can see the importance of the generalization of the relations for the values of l > 0.

As a further example we could take three electrons in a bare Coulomb potential −Z/r.

Suppose we have an excited state of symmetry 4Su for a configuration 2p3, the spatial part

of the wavefunction is factorized and we have

Ψ(1, 2, 3) =
1√
6

∣∣∣∣∣∣∣∣∣∣

φ1(1) φ1(2) φ1(3)

φ2(1) φ2(2) φ2(3)

φ3(1) φ3(2) φ3(3)

∣∣∣∣∣∣∣∣∣∣

(74)

where the φj are H-like 2p orbitals with m = 0,±1. The pair density is

n(1, 2) = 1
2
[φ1(1)2φ2(2)2 + φ2(1)2φ1(2)2

+ φ1(1)2φ3(2)2 + φ3(1)2φ1(2)2 + φ2(1)2φ3(2)2 + φ3(1)2φ2(2)2

−2(φ1φ2)(1)(φ1φ2)(2) − 2(φ1φ3)(1)(φ1φ3)(2) − 2(φ2φ3)(1)(φ2φ3)(2)]

(75)

Finally we can average over the polar angle Ω1 getting

n̄(r1, r2) ∝ r2
1e

−Zr1

[
φ1(r2)

2 + φ2(r2)
2 + φ3(r2)

2
]

= cr2
1r

2
2e

−Z(r1+r2) (76)

and the cusp conditions are easily verified.
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The pair density is a very important quantity. It has a fundamental role in describing

electron systems. Contrary to the electron density it is not easy to give adequate approxi-

mation to the pair density. Exact relations for the pair density can be helpful to judge the

quality of an approximation. The cusp relations presented above have the charming feature

that they are valid not only for the ground state but arbitrary excited states, too.

The pair density is the key quantity of the pair density functional theory. It was shown

[21,22] that the problem of an arbitrary system with even electrons can be reduced to a

two-particle problem. It means an enormous simplification as we always have to solve a

two-particle equation independently of the number of electrons. This remarkable result has

the drawback that we do not know the exact form of the Pauli potential. Exact relations

and theorems play a very important role in the density functional theory as they proved

to be useful in improving the accuracy of approximate energy functionals. We believe that

these relations are also very useful in the pair density functional theory. We have proved

[21,22] that the unknown Pauli potential can be constructed from the pair density. Therefore

these new exact relations might be useful in inventing accurate approximations for the Pauli

potential.

In conclusion, it is stated that there exist higher-order cusp relations for the pair den-

sity. These relations are derived both for the electron-nucleus and the electron-electron

coalescences and they are valid both for the ground and the excited states of atoms, ions or

molecules.
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[20] Á Nagy and K. D. Sen, J. Chem. Phys. 115, 6300 (2001).
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T. Short, D. Sonnek, E. Träbert, G. Möller, V. Ludwig, P. H. Heckmann, J. H. Blanke

and K. Brand, Phys. Rev. A 39, 3964 (1989); E. Träbert, P. H. Heckmann, J. Doerfert
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