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1. Introduction

Aczél, Maksa, Marley and Moszner [1] characterized Luce’s choice model and a con-

siderably more general class of choice models by scaling and aggregation properties.

The representations studied there were ‘uni-dimensional’ in that each object of choice

was assumed to be evaluated in terms of a single (ratio scale) value. (These were

called in [1] ‘selection models’ to emphasize that the objects of choice could be sets;

this interpretation is implicitly permitted also here, for our ‘choice models’ and ‘choice

probabilities’). In this paper we generalize those results to ‘two-dimensional’ (‘multi-

dimensional’) representations. Without our aggregation conditions, our representation

for choice between two-dimensional objects would be similar to that of [2] (Theorems

7 and 8), which deals with the binary (n = 2) case. The assumptions were different in

[2], which also contains more general models, with the relation to Luce’s choice model

less visible. We use one of their motivating examples to illustrate our approach:

Consider an experiment in which a person hears a sequence of pure tone bursts

which are all of the same frequency but of different intensities and durations, and

the person has to decide which burst is the loudest. For instance, if each pure tone

sequence consisted of 3 bursts, the person could indicate which burst was “loudest”

by saying “first” or “second” or “third”, referring thereby to the relevant component.

Assume that there are scales v, w such that each tone burst d can be specified by the

two (nonnegative) scale values v(d), w(d); for instance, v(d) might measure the tone’s

psychological intensity (‘loudness’), and w(d) the tone’s psychological (perceived) du-

ration. (Of course, the intensity and duration of two different tone bursts may oc-

casionally be perceived the same). Since such comparisons are frequently ‘noisy’, let

P (e :E) denote the probability that tone burst e is judged the loudest in the set E. A

special case of the representation that we derive in this paper has the following form:

there are non-zero constants a, b such that

P (e :E) =
v(e)aw(e)b∑

d∈E v(d)aw(d)b
. (1)

We will call a choice model with (1) as choice probability by the inelegant but de-

scriptive name “two-scale Luce model with exponents” (for the “original” Luce model

cf. [1] and (13)). Going one step further, in order to introduce our aggregation ideas,
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now suppose that we have data from m subjects for each of whom the choice prob-

ability satisfies (1), but with different scales. That is, Pi(e :E), the probability that

tone burst e is ‘chosen’ as the loudest in the set E by subject i, is of the form given in

(1) with different scales vi, wi (i = 1, . . . ,m). Now suppose that we wish to create a

representation of the performance of an ‘average’ person in this task, perhaps for use

in a clinical setting for deciding whether a particular person is performing better or

worse than one might expect ‘on average’. What form should we assume for the (prob-

abilistic) performance of this ‘average’ person? Given that each individual satisfies (1),

it seems reasonable to assume a parallel representation for the ‘average’ person. In

particular, consider the case where the ‘aggregate’ (average) choice probability P (e :E)

is of the form (1) with scale values given, for each d in E, by

v(d) =
m∏

i=1

vi(d)ci , w(d) =
m∏

i=1

wi(d)ci

(
m∑

i=1

ci = c 6= 0

)
. (2)

For ‘averaging’,
∑m

i=1 ci = 1 seems appropriate but we want to keep our considera-

tions open for possible wider interpretations of ‘aggregation’. Note on the other hand

that, since the aggregate scale values ‘collapse’ to zero if any of the component scale

values are zero, which seems unreasonable, we assume that this is not the case, that

is, the scale values and thus the choice probabilities in (1) are nonzero. This we will

suppose also for other choice probabilities.

The question seems interesting whether the choice probabilities of this ‘average’

person can be ‘aggregated’ from the choice probabilities of the m individual subjects.

To be exact, our question (which we answer affirmatively) is: can this ‘aggregate’

choice probability P (e :E) also be written as an ‘aggregate’ of the component choice

probabilities Pi(e : E) (i = 1, . . . ,m). We can do this by choosing the aggregating

formula for the P ’s as

P (e :E) =

∏m
i=1 Pi(e :E)ci∑

d∈E

∏m
i=1 Pi(d :E)ci

. (3)

Indeed we get from (1) and (2)

P (e :E) =

∏m
i=1 vi(e)

ciawi(e)
cib∑

d∈E

∏m
i=1 vi(d)ciawi(d)cib

.
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On the other hand, by formulas similar to (1) but for Pi,

∏m
i=1 Pi(e :E)ci∑

d∈E

∏m
i=1 Pi(d :E)ci

=

∏m
i=1

[vi(e)awi(e)b]
ci

[
∑

d′∈E
vi(d′)awi(d′)b]

ci∑
d∈E

∏m
i=1

[vi(d)awi(d)b]
ci

[
∑

d′∈E
vi(d′)awi(d′)b]

ci

=

∏m
i=1 vi(e)

ciawi(e)
cib∑

d∈E

∏m
i=1 vi(d)ciawi(d)cib

.

Thus we have (3).

So this ‘aggregation’ rule is plausible in that it ‘works’ both at the level of the choice

probabilities and at the level of the scale values. A major contribution of this paper

is to study ‘natural’ conditions under which the above result holds, and to consider

generalizations to other choice probabilities besides (1).

It is interesting to observe that we can define new ‘scales’ for each option e in E,

with aAi + bBi = ci (i = 1, . . . ,m), by

ṽ(e :E) =
m∏

i=1

Pi(e :E)Ai , w̃(e :E) =
m∏

i=1

Pi(e :E)Bi . (4)

Then, by (3),

P (e :E) =
ṽ(e :E)aw̃(e :E)b∑

d∈E ṽ(d :E)aw̃(d :E)b
,

which is ‘of the same form’ as (1) and as the component choice probabilities, but in

terms of ‘scales’ ṽ, w̃ that are functions of the component choice probabilities Pi(e :

E) (i = 1, . . . ,m).

In the above example, we assumed that we had data from m individuals, which

we wanted to ‘aggregate’ in some sensible fashion. We now briefly present an example

where it might be plausible to assume that all the data are from a single person, and

that the ‘aggregation’ is carried out by the person (either consciously or unconsciously).

In a complete identification task, there is a (finite) set of stimuli E, and each f ∈ E
is assigned a unique ’correct’ response r[f ]. On each trial of the experiment, the

participant’s task is to attempt to ’correctly’ identify a presented stimulus f ∈ E by

making the response r[f ]. Then paralleling (1), the probability P (r[e]|f :E) (e, f ∈ F )

is interpreted as the probability that an option (stimulus) f ∈ E is identified as the

option (stimulus) e ∈ E, i.e., that the response r[e] is made to the stimulus f. In a
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similarity choice model or biased Luce model ([3], [4]) these probabilities are of the

form

P (r[e]|f :E) =
η(f, e)β(r[e])∑

d∈E η(f, d)β(r[d])
(5)

(often the notation PE(r[e]|f) is used), with the constraints

0 ≤ η(f, e) ≤ 1, η(f, e) = η(e, f), η(e, e) = 1, 0 ≤ β(r[e]) ≤ 1,
∑
d∈E

β(r[d]) = 1.

(6)

The usual interpretation is that η is the stimulus scale or similarity scale and β the

response scale or bias scale (it is usually denoted by b). We see that, for each fixed f

and for given scales η and β, P (r[e]|f :E) is a two-scale Luce choice probability (that

is, a two-scale Luce choice probability with exponents a = b = 1) – at least within

the bounds usually imposed upon values of the scales η and β. (Our mathematical

results apply also if the scales for η and β are assumed to be ratio scales even for very

large scale values. The issue of fitting our results to the usual formulation of similarity

choice models will be considered in section 5). A natural generalization of this repre-

sentation to the multi-component case involves m similarity and bias functions ηi, βi

(i = 1, ...,m), where each i is associated with a different ‘component’ of the options

– for instance, the (visual) objects being categorized may differ on the ‘independent’

dimensions of size, shape, and color ([5] discusses in detail the complexities caused by

the fact that even though these dimensions can be varied ‘independently’, each such

visual object must have a value on each of these dimensions). The various concepts

and results developed for the previous example then apply naturally for this exam-

ple. Of course, as in the first example, the similarity scales ηi and the bias scale βi

(i = 1, ...,m) may not depend on the components i (i = 1, ...,m), but deciding whether

this is the case or not is an empirical and statistical issue. In fact, there are quite com-

plex issues related to fitting two-scale Luce choice probabilities, their aggregates, and

our later more general representations, to empirical data (see Remark 7 below); [6] is

an excellent introduction to these issues for the similarity choice model.

Of course, one could again assume that the above model holds for each of a group

of m individuals or for a single individual on m different occasions (rather than across

m dimensions for a single individual) and consider appropriate ways to ‘aggregate’

this data. Our earlier discussion illustrated our results concerning the ‘correct’ way to
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perform such aggregation when one wishes the component and the aggregate forms to

be related in certain systematic ways.

In summary, we have illustrated representations that can be aggregated both at the

level of the scales vi, wi (or ηi, βi) and at the level of the component choice probabilities

Pi (i = 1, . . . ,m). In this paper we characterize the class of probabilistic models for

choice between ‘two-dimensional’ options that have similar aggregation properties,

where the forms of the aggregation and probabilistic choice functions are derived,

rather than assumed as they have been in the above examples.

We now discuss the relevance of the introductory examples to the remainder of the

paper and the relation of the paper to earlier work. Let E = {e1, . . . , en}, so |E| = n.

If we define functions h,K and Fj (j = 1, . . . , n) on the positive reals by

h(x, y) =xayb, (7)

Kj(z1, . . . , zn) =
zj∑n

k=1 zk

(j = 1, . . . , n), (8)

Fj(x1, y1, . . . , xn, yn) =
xa

jy
b
j∑n

k=1 x
a
ky

b
k

(j = 1, . . . , n) (9)

then (1) in the earlier example takes the form

P (ej :E) =Fj[v(e1), w(e1), . . . , v(en), w(en)]

=Kj[h(v(e1), w(e1)), . . . , h(v(en), w(en))] (j = 1, . . . , n). (10)

Equation (8) is of the form of the expression for the “original” Luce choice model (see

[1] and (13) below).

Notice the following properties (i), (ii), (iii) of these functions, with terminology for

properties (i) and (ii) generalized from their n = 2 form in [2] ((ii) further generalized

from (10) to allow n functions h1, . . . , hn which, as we will later prove, have to be

equal). These equations are meant for arbitrary µ, ν, λ, xj, yj, zj > 0 (j = 1, . . . , n),

though smaller intervals would do.

(i) “Conjoint Weber Type II”:

Fj(µx1, νy1, . . . , µxn, νyn) = Fj(x1, y1, . . . , xn, yn) (j = 1, . . . , n);
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(ii) “Simple Scalability”:

Fj(x1, y1, . . . , xn, yn) = Kj(h1(x1, y1), . . . , hn(xn, yn)) (j = 1, . . . , n);

(iii) “Homogeneity of Degree 0”:

Kj(λz1, . . . , λzn) = Kj(z1, . . . , zn) (j = 1, . . . , n).

The homogeneity (iii) looks similar to (i) and will turn out to be related to it

through (ii).

In this paper we develop aggregation conditions which, with (i), (ii), (iii) and under

some simple regularity conditions, imply a choice model which includes (1) as partic-

ular case. Then we give conditions which characterize just (1). This characterization

will also show why powers and not other functions figure in (1). This is related to

considering v and w as ratio scales.

2. Definitions, Assumptions, Equations

We will call choice probability and denote by P (e : E) the probability of choosing

(selecting) an element (option) e from an n-element (1 < n <∞) subset E of a global

set R of options. We exclude elements which are impossible to choose. Thus,

0 < P (e :E) < 1 (11)

and, of course, ∑
e∈E

P (e :E) = 1. (12)

We now formally define this and further concepts required in this paper (inter-

spersed with remarks).

Definition 1. Let R be a set and S the set of its finite subsets, where both R and

every E ∈ S has at least two elements, and D = {(e :E)|E ∈ S, e ∈ E} ⊆ R× S. The

pair (R,P ) consisting of the set R and of the function P : D →]0, 1[ is a choice model.

The function value P (e :E) (e ∈ E, E ∈ S) is a choice probability, e is an option.
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Remark 1. While here we required that R have at least two elements, a later as-

sumption will imply that it has uncountably infinite elements (see Definition 3, Remark

4).

Definition 2. A choice model, two functions v, w : R → ]0,∞[ and two nonzero

numbers a, b form a two-scale Luce model with exponents if (1), that is

P (e :E) =
v(e)aw(e)b∑

d∈E v(d)aw(d)b

holds. If a = b = 1 then we have a two-scale Luce model. The functions v and w are

the scales, v(e), w(e) are scale values.

Remark 2. Here and throughout the paper the scales v and w are given; otherwise

not only could the exponents be immerged into v and w but the two scales could be

replaced by a single scale u = vawb and we would have the original (one-scale) Luce

model (cf. [1] and (8))

P (e :E) =
u(e)∑

d∈E u(d)
. (13)

Notice, however, that, if the choice probabilities can be represented in the form (1)

with scales v, w, they can equally well be represented by scales γv, δw with arbitrary

constants γ > 0, δ > 0.

As we said in the Introduction, our purpose in this paper is to determine those

scale-dependent (two-scale, see Definition 4) families of choice probabilities for which

formulae like (10)

P (ej :E) =Fj[v(e1), w(e1), . . . , v(en), w(en)]

=Kj[h1(v(e1), w(e1)), . . . , hn(v(en), w(en))] (j = 1, . . . , n) (14)

hold, where both the scales and the probabilities can be aggregated. This means that,

in analogy to (2) and (3), equations of the form

v(ej) =G1 [v1(ej), . . . , vm(ej)] , w(ej) = G2 [w1(ej), . . . , wm(ej)] ,

P (ej :E) =Hj [P1(e1 :E), . . . , Pm(e1 :E), . . . , P1(en :E), . . . , Pm(en :E)] ,
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(j = 1, . . . , n) are satisfied, where the component probabilities satisfy equations anal-

ogous to (14) with the same Fj (j = 1, . . . , n):

Pi(ej :E) =Fj[vi(e1), wi(e1), . . . , vi(en), wi(en)]

=Kj[h1(vi(e1), wi(e1)), . . . , hn(vi(en), wi(en))]

(i = 1, . . . ,m; j = 1, . . . , n). (15)

These equations, with assumptions linked to vi, wi and their combinations hj(vi, wi)

being ratio scales, will lead to functional equations, from which we will endeavor to

determine the functions hj, Kj (and thus Fj; j = 1, . . . , n) obtaining in passing also

the general forms of G1, G2 and, under further restrictions, Hj (j = 1, . . . , n). The

variables in these equations will go through the set IR++ of positive numbers, because

we will deal with nonatomic scales (in analogy to nonatomic Kolmogorov probability

spaces, see e.g. in [7]). These are such that the scales can assume any positive value.

(We will make further assumptions in Definitions 3 and 4).

A nonatomic pair of scales is a triple (R, v, w), where R is a set and v, w : R→ IR++

are scales (functions) such that for every pair (x, y) ∈ IR2
++ there exists an e ∈ R for

which x = v(e), y = w(e).

Remark 3. Nonatomicity has the following consequence. For each (2n)-tuple

(x1, y1, . . . , xn, yn) ∈ IR2n
++ for which (xj, yj) 6= (xk, yk) if j 6= k (that is, the same

(xj, yj) pair does not occur more than once) there exist (e1, . . . , en) ∈ Rn such that

xj = v(ej), yj = w(ej) (j = 1, . . . , n). The italicized exclusion was necessary be-

cause otherwise E may not have n distinct elements; in particular it may have just

one element – but we excluded singletons (cf. (11)). Therefore we will need here

(as in [1]) a somewhat stronger condition, the n-nonatomicity which postulates the

existence of different (distinct) elements ej 6= ek even if xj = xk, yj = yk thus

v(ej) = xj = xk = v(ek), w(ej) = yj = yk = w(ek) (j 6= k). This is not unex-

pected: For instance, ej, ek might be two different cars that a person considers equal

in safety (xj = v(ej) = v(ek) = xk) and equal in road handling (second dimension

yj = w(ej) = w(ek) = yk); see also the example in the Introduction about equal

perceived intensity and duration for different tone bursts.

We define now the n-nonatomicity formally.
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Definition 3. An n-nonatomic pair of scales is a quadruple (R, v, w, n), where R is

a set, v, w : R → IR++ are scales (functions) and n > 1 is an integer such that for

every (2n)-tuple (x1, y1, ..., xn, yn) of positive numbers there exist n distinct elements

e1, ..., en of R for which xj = v(ej), yj = w(ej) (j = 1, ..., n).

Remark 4. While the n-nonatomicity assumption clearly implies that the global set

R is uncountably infinite, the choice is always done from finite subsets E of R (as

is appropriate for applications in psychology and elsewhere). The papers [8] and [9]

discuss the use (and misuse) of nonatomicity in related problems without explicitly

defining this concept.

Remark 5. Of course, there may exist not only ej 6= ek of the same set E with equal

scale values but to a 2n-tuple of positive reals there may also exist two (or more) n-

tuple(s) (e1, ..., en), (e′1, . . . , e
′
n) in Rn such that, for the same (x1, y1, . . . , xn, yn) ∈ IR2n

++

simultaneously xj = v(ej) = v(e′j), yj = w(ej) = w(e′j) (j = 1, . . . , n) hold. The last

part of the next definition refers to this situation.

Definition 4. Let n > 1 be an integer. An n-nonatomic two-scale family of choice

probabilities (a two-scale model for short) is a 5-tuple (R,P, v, w, n), where (R,P ) is

a choice model with only n element subsets E of R considered and (R, v, w, n) is an

n-nonatomic pair of scales such that, whenever for two subsets E = {e1, . . . , en} and

E ′ = {e′1, . . . , e′n} of R we have v(ej) = v(e′j) and w(ej) = w(e′j) (j = 1, . . . , n) then

also P (ej :E) = P (e′j :E ′) (j = 1, . . . , n).

Remark 6. The last requirement, where n has an essential role, implies that there

exist functions Fj : IR2n
++ →]0, 1[ such that

P (ej :E) = Fj(v(e1), w(e1), . . . , v(en), w(en)) (j = 1, . . . , n)

for every n-element subset E of R. We need the last assumption and n-nonatonicity

so that equations like (14) make sense and that our later functional equations hold

on suitable domains. We will call (F1, . . . , Fn) the generating system of the choice

probability P . As already mentioned, we will suppose that P and Pi (i = 1, ...,m)

have the same generating system.
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We generalize (1), (2) and (3) to the following aggregation equations (cf. [1]):

P (ej :E) =Fj [v(e1), w(e1), . . . , v(en), w(en)] , (16)

Pi(ej :E) =Fj [vi(e1), wi(e1), . . . , vi(en), wi(en)] , (17)

v(ej) =G1 [v1(ej), . . . , vm(ej)] , w(ej) = G2 [w1(ej), . . . , wm(ej)] , (18)

P (ej :E) =Hj [P1(e1 :E), . . . , Pm(e1 :E), . . . , P1(en :E), . . . , Pm(en :E)] , (19)

here i = 1, . . . ,m and j = 1, . . . , n. Substituting (18) into (16) on one hand and (17)

into (19) on the other gives, in view of the nonatomicity, a system of n functional

equations. The fact that the scales and the probabilities depending on them by (16)

and (17) are invariant (covariant) under linear transformations (ratio scales) give 2n+2

others. Finally (11) and (12) generate one more equation and n inequalities.

As in [1], however, there would be far too many solutions for practical use and this

system is far too weak to characterize the “two-scale Luce model with exponents” or

even halfway reasonable generalizations. So two further specifications are needed. The

first links Hj more closely to Fj, at the same time introducing two more scale values

depending on the choice probabilities:

ṽ(ej :E) = Φ1[P1(ej :E), . . . , Pm(ej :E)], w̃(ej :E) = Φ2[P1(ej :E), . . . , Pm(ej :E)]

(j = 1, . . . , n), (20)

(cf. (4) and [1]) to which (16) should also apply:

P (ej :E) = Fj[ṽ(e1 :E), w̃(e1 :E), . . . , ṽ(en :E), w̃(en :E)] (j = 1, . . . , n) (21)

(the more specific Eq. (21) with (20) will replace (19)).The second (“simple scalability”

(ii)) we know already (see (14)). We repeat it here to point out that it establishes a

link between the two original sets of scales within Fj:

P (ej :E) =Fj[v(e1), w(e1), . . . , v(en), w(en)]

=Kj(h1[v(e1), w(e1)], . . . , hn[v(en), w(en)]) (j = 1, . . . , n). (22)

We list now the assumptions linked to vi, wi and the combinations hj(v, w) of v

and w being ratio scales (i = 1, . . . ,m; j = 1, . . . , n). There exist functions M1, M2
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such that

G1[γ1v1(e1), . . . , γmvm(em)] =M1(γ1, . . . , γm)G1[v1(e1), . . . , vm(em)], (23)

G2[δ1w1(e1), . . . , δmwm(em)] =M2(δ1, . . . , δm)G2[w1(e1), . . . , wm(em)]. (24)

Also

Fj[µv(e1), νw(e1), . . . , µv(en), νw(en)] = Fj[v(e1), w(e1), . . . , v(en), w(en)]

(j = 1, . . . , n),

(“conjoint Weber type II” [2]), which translates for Kj and hj into

Kj(h1[µv(e1), νw(e1)], . . . , hn[µv(en), νw(en)])

= Kj(h1[v(e1), w(e1)], . . . , hn[v(en), w(en)]) (j = 1, . . . , n). (25)

Furthermore there exists a function N such that

Kj(λh1[v(e1), w(e1)], . . . , λhn[v(en), w(en)])

= N(λ)Kj(h1[v(e1), w(e1)], . . . , hn[v(en), w(en)]) (j = 1, . . . , n). (26)

holds. Finally, the obvious equation (12) and inequalities (11) translate, in view of

(16), into
n∑

j=1

Fj[v(e1), w(e1), . . . , v(en), w(en)] = 1, (27)

0 < Fj[v(e1), w(e1), . . . , v(en), w(en)] < 1 (j = 1, . . . , n). (28)

We introduce, for the sake of brevity, the notation (permitted by the n-nonatomicity)

xj = v(ej), yj = w(ej), zj = hj(xj, yj), xij = vi(ej), yij = wi(ej)

(i = 1, . . . ,m; j = 1, . . . , n). (29)

(The scale values and thus these variables are supposed to be positive). So, by (22),

(27), (28) and (29),
n∑

j=1

Kj(z1, . . . , zn) = 1, (30)

0 < Kj(z1, . . . , zn) < 1 (j = 1, . . . , n). (31)

12



From (26) and (30) N(λ) ≡ 1, thus

Kj(z1, . . . , zn) = Kj(λz1, . . . , λzn) = Kj

(
z1∑n

k=1 zk

, . . . ,
zn∑n

k=1 zk

)
(j = 1, . . . , n).

(32)

Also, by (19), (20) and (21), with sij = Pi(ej :E) ∈ IR++ (not all values in IR++ need

to be assumed):

Hj(s11, . . . , sm1, . . . , s1n, . . . , smn)

= Fj[Φ1(s11, . . . , sm1),Φ2(s11, . . . , sm1), . . .Φ1(s1n, . . . , smn),Φ2(s1n, . . . , smn)]

(j = 1, . . . , n). (33)

We conclude by stating our regularity assumptions. About G1 and G2 we suppose

only that they are locally bounded (on an m-dimensional interval, no matter how small)

and that G1(x, . . . , x) is not constant. With (23) and (24) this gives (cf. [10] and [1])

G1(x1, . . . , xm) = C
m∏

i=1

xci
i ,

m∑
i=1

ci 6= 0, G2(y1, . . . , ym) = D
m∏

i=1

ydi
i .

Also h1, . . . , hn will be supposed locally bounded and nonconstant. We may assume,

without loss of generality, that

G1(1, . . . , 1) = G2(1, . . . , 1) = 1, hj(1, 1) = 1 (j = 1, . . . , n). (34)

So C = D = 1, and we have

G1(x1, . . . , xm) =
m∏

i=1

xci
i ,

m∑
i=1

ci 6= 0, G2(y1, . . . , ym) =
m∏

i=1

ydi
i , (35)

In addition to these very weak conditions, we assume (cf. [1]) that Kj is injective in

the following sense:[
Kj(z1, . . . , zn) = Kj(z

′
1, . . . , z

′
n) (j = 1, . . . , n) and

n∑
k=1

zk =
n∑

k=1

z′k

]
imply zj = z′j (j = 1, . . . , n). (36)

Notice that (32) allows us to bring the sum of variables in Kj to 1, which we need so

that the number of equations on both sides of the implication (36) be equal (to n− 1,

remember (30)).

13



Substituting (33) and (17) into (19) and (18) into (16), and equating the two

expressions thus obtained for P (ej :E) (j = 1, . . . , n) we get, in terms of the notation

(29), the system of functional equations

Fj[G1(x11, . . . , xm1), G2(y11, . . . , ym1), . . . , G1(x1n, . . . , xmn), G2(y1n, . . . , ymn)]

= Fj(Φ1[F1(x11, y11, . . . , x1n, y1n), . . . , F1(xm1, ym1, . . . , xmn, ymn)],

Φ2[F1(x11, y11, . . . , x1n, y1n), . . . , F1(xm1, ym1, . . . , xmn, ymn)],
...

Φ1[Fn(x11, y11, . . . , x1n, y1n), . . . , Fn(xm1, ym1, . . . , xmn, ymn)],

Φ2[Fn(x11, y11, . . . , x1n, y1n), . . . , Fn(xm1, ym1, . . . , xmn, ymn)])

(j = 1, . . . , n), (37)

which looks at first sight quite formidable.

The question is, whether (cf. (1) and (9))

Fj(x1, y1, . . . , xn, yn) =
xa

jy
b
j∑n

k=1 x
a
ky

b
k

(j = 1, . . . , n) (38)

with (35) and with aptly chosen Φ1 and Φ2 are the only solutions of the above equa-

tions. The answer is negative but we determine the general solutions F1, . . . , Fn un-

der these assumptions and also the auxiliary functions G1, G2, H1, . . . , Hn, Φ1,Φ2,

K1, . . . , Kn, h1, . . . , hn and M1,M2 (we have already N = 1). Then we characterize

the “two-scale Luce model with exponents” (38) by one additional supposition.

3. Solutions

Theorem 1. If (25), (32), (36) hold, the hj’s are locally bounded but not constant in

either variable and hj(1, 1) = 1 (j = 1, . . . , n) then, for all j ∈ {1, . . . , n},

hj(x, y) = xayb (x > 0, y > 0) (39)

for some nonzero constants a, b.

Eq. (39) is, of course, the same as (7). Accordingly, we will write

h(x, y) = hj(x, y) = xayb. (40)

14



Proof: Eqs. (25) and (32) imply that

Kj

(
h1(µx1, νy1)∑n

k=1 hk(µxk, νyk)
, . . . ,

hn(µxn, νyn)∑n
k=1 hk(µxk, νyk)

)

= Kj

(
h1(x1, y1)∑n

k=1 hk(xk, yk)
, . . . ,

hn(xn, yn)∑n
k=1 hk(xk, yk)

)
(j = 1, . . . , n).

Thus it follows from (36) that

hj(µxj, νyj)∑n
k=1 hk(µxk, νyk)

=
hj(xj, yj)∑n

k=1 hk(xk, yk)
(j = 1, . . . , n),

that is,

hj(µxj, νyj)

hj(xj, yj)
=

∑n
k=1 hk(µxk, νyk)∑n

k=1 hk(xk, yk)
= Q(x1, . . . , xn, y1, . . . , yn, µ, ν) (j = 1, . . . , n).

On the right end Q carries no subscript because the middle term does not depend on j.

On the other hand, the term on the left does not depend upon xl, yl (l 6= j). Writing

the same string of equations for different j’s,the middle term and thus Q remains the

same but j varies on the left. So Q cannot depend on any xj, yj and we get

hj(µxj, νyj)

hj(xj, yj)
= Q̃(µ, ν) (j = 1, . . . , n),

that is,

hj(µx, νy) = Q̃(µ, ν)hj(x, y) (j = 1, . . . , n).

The general locally bounded nonconstant solution of this equation (see e. g. [10]) is

given by Q̃(µ, ν) = µaνb and by (39). This concludes the proof of Theorem 1.

From (22) and (39) we have

Fj(x1, y1, . . . , xn, yn) = Kj(x
a
1y

b
1, . . . , x

a
ny

b
n) (j = 1, . . . , n). (41)

Notice that, while we used (32) to get (41), conversely, the (41) form of “simple

scalability” ((ii) in section 1) and the “conjoint Weber type II”, that is (i), imply

homogeneity of degree 0 ((32), (iii)):

Kj(µ
aνbxa

1y
b
1, . . . , µ

aνbxa
ny

b
n) =Fj(µx1, νy1, . . . , µxn, νyn)

= Fj(x1, y1, . . . , xn, yn) =Kj(x
a
1y

b
1, . . . , x

a
ny

b
n) (j = 1, . . . , n).
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Now, substituting (41) into (37) and applying (35) and (36), we get∏m
i=1 x

aci
ij y

bdi
ij∑n

k=1

∏m
i=1 x

aci
ik y

bdi
ik

=
Φ[Kj(x

a
11y

b
11, . . . , x

a
1ny

b
1n), . . . , Kj(x

a
m1y

b
m1, . . . , x

a
mny

b
mn)]∑n

k=1 Φ[Kk(xa
11y

b
11, . . . , x

a
1ny

b
1n), . . . , Kk(xa

m1y
b
m1, . . . , x

a
mny

b
mn)]

(j = 1, . . . , n), (42)

where (cf. (40))

Φ(t1, . . . , tm) =h(Φ1(t1, . . . , tm),Φ2(t1, . . . , tm)]

= Φ1(t1, . . . , tm)aΦ2(t1, . . . , tm)b. (43)

Since on the right hand side of (42) every xil figures with exponent a, multiplied

by yb
il to give xa

ily
b
il, also the products of powers of xil and yil on the left hand side can

only be xa
ily

b
il or its powers. Thus we have to have

di = ci (i = 1, . . . ,m), d =
m∑

i=1

di =
m∑

i=1

ci = c 6= 0 (44)

and, by (35),

G1(z1, . . . , zm) = G2(z1, . . . , zm) = G(z1, . . . , zm) =
m∏

i=1

zci
i , c =

m∑
i=1

ci 6= 0, (45)

(cf. (2)) which defines G.

In view of di = ci, with the notation zij = xa
ijy

b
ij (i = 1, . . . ,m; j = 1, . . . , n), (42)

becomes simpler:∏m
i=1 z

ci
ij∑n

k=1

∏m
i=1 z

ci
ik

=
Φ[Kj(z11, . . . , z1n), . . . , Kj(zm1, . . . , zmn)]∑n

k=1 Φ[Kk(z11, . . . , z1n), . . . , Kk(zm1, . . . , zmn)]
(j = 1, . . . , n). (46)

The following has been proved in [1].

Lemma. Equations (30), (31), (32), (36), (46) and c =
∑m

i=1 ci 6= 0 are satisfied and

Φ(t, . . . , t) is continuous and strictly monotonic if, and only if, the function ϕ, given

by

ϕ(t) = Φ(t, . . . , t)
1
c (47)

is the inverse of a continuous, strictly monotonic function ψ satisfying

0 ≤ inf
0<z<∞

ψ(z) <
1

n
< sup

0<z<∞
ψ(z) (48)
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and Kj is of the form

Kj(z1, . . . , zn) = ψ[zjL(z1, . . . , zn)] (j = 1, . . . , n), (49)

where w = L(z1, . . . , zn) is the unique solution of

n∑
j=1

ψ(zjw) = 1,

thus
n∑

j=1

ψ(zjL(z1, . . . , zn)) = 1, (50)

and L is homogeneous of degree (−1):

L(λz1, . . . , λzn) = λ−1L(z1, . . . , zn). (51)

We reformulate equation (46) of this Lemma as follows. Up to notation, (46) is

the same as (42) [even (44) di = ci; (i = 1, . . . ,m) followed from (42)]. We put both

sides of (42) into Kj, apply (44) and (32), and choose

Φ1(t1, . . . , tm)aΦ2(t1, . . . , tm)b = Φ(t1, . . . , tm) =
m∏

i=1

ϕ(ti)
ci . (52)

This tranforms (46), that is (42), into

Kj

[
m∏

i=1

(xa
i1y

b
i1)ci , . . . ,

m∏
i=1

(xa
iny

b
in)ci

]

= Kj

(
m∏

i=1

ϕ[K1(xa
i1y

b
i1, . . . , x

a
iny

b
in)]ci , . . . ,

m∏
i=1

ϕ[Kn(xa
i1y

b
i1, . . . , x

a
iny

b
in)]ci

)
(j = 1, . . . , n). (53)

We trust that the reader noticed that the strange looking Eq. (53) is really (37) with

(41), (52) and (45) taken into account, the latter originating from (23) and (24) through

(35) and (44).

It may seem that we chose (52) arbitrarily. But it has been proved in [1] (Appendix

B) that, in (46) for n > 2 this is the only possible Φ, while for n = 2 the general Φ is

given by

Φ(t1, . . . , tm) = T (t1, . . . , tm)
m∏

i=1

ϕ(ti)
ci
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where T is an arbitrary function satisfying

T (1− t1, . . . , 1− tm) = T (t1, . . . , tm) (ti ∈]0, 1[; i = 1, . . . ,m) (54)

(for T ≡ 1 we get (52) again), cf. also Remark 8.

Thus we have proved the following.

Theorem 2. The general solution of the system (30), (31), (32), (36) and (53) of

functional equations with continuous strictly monotonic ϕ is given by (49), where ψ =

ϕ−1 has to satisfy (48) and L given by (50) has the property (51). For n = 2 we get the

same solution if, in (53) each
∏m

i=1 ϕ[Kj]
ci term is mulpiplied by a T which satisfies

(54) but is otherwise arbitrary.

From the Lemma and from (41) we get

Fj(x1, y1, . . . , xn, yn) = ψ[xa
jy

a
jL(xa

1y
b
1, . . . , x

a
ny

b
n)] (j = 1, . . . , n), (55)

which, by (16) and (17), gives explicit expressions for P (ej : E) and Pi(ej : E) (i =

1, . . . ,m; j = 1, . . . , n).

All these results can be summarized, as they concern the probabilities and scales,

in the following main theorem.

Theorem 3. Assume the following. [A]: (R,P, v, w, n) and (R,Pi, vi, wi, n) (i =

1, . . . ,m; m > 1) are nonatomic two-scale n-families of choice probabilities with the

same generating system (F1, . . . , Fn) (i. e. (16), (17) and (27), (28) hold). [B]: There

exist functions H1, . . . , Hn, ṽ, w̃, Φ1,Φ2, M1,M2, N, injective functions K1, . . . , Kn, in

the sense (36) and locally bounded nonconstant functions h1, . . . , hn, G1, G2 with

h1(1, 1) = . . . = hn(1, 1) = G1(1, . . . , 1) = G2(1, . . . , 1) = 1

such that x 7→ G1(x, . . . , x) is nonconstant and equations (18)–(26) are satisfied.

Then the following statements hold.

(a) There exist nonzero real numbers a, b, a continuous strictly monotonic function

ψ which satisfies (48) and a function L satisfying (50) and (51) such that, for all
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E = {e1, . . . , en} ∈ S,

P (ej :E) =ψ(v(ej)
aw(ej)

bL[v(e1)aw(e1)b, . . . , v(en)aw(en)b]), (56)

Pi(ej :E) =ψ(vi(ej)
awi(ej)

bL[vi(e1)awi(e1)b, . . . , vi(en)awi(en)b]) (57)

(i = 1, . . . ,m; j = 1, . . . , n).

(b) Furthermore, there exist real numbers c1, . . . , cn with nonzero sum such that

v(ej) =
m∏

i=1

vi(ej)
ci , w(ej) =

m∏
i=1

wi(ej)
ci , (j = 1, . . . , n).

We have determined also the auxiliary functions:

Corollary. Assumptions [A] and [B] imply also the following:

(c) For the functions N , M1,M2, G1, G2, h1, . . . , hn, K1, . . . , Kn we have N(λ) ≡
1 (λ > 0),

M1(τ1, . . . , τm) = M2(τ1, . . . , τm) =
m∏

i=1

τ ci
i (τ1, . . . , τm > 0),

G1(z1, ..., zm) = G2(z1, ..., zm) =
m∏

i=1

zci
i ,

hj(x, y) = xayb (x, y > 0; j = 1, . . . , n),

and

Kj(z1, . . . , zn) = ψ[zjL(z1, . . . , zn)] (zj > 0; j = 1, . . . , n).

(d) Finally, the functions Hj (j = 1, . . . , n) are given by (33), where for Φ1 and Φ2 we

have

Φ1(t1, . . . , tm)aΦ2(t1, . . . , tm)b =
m∏

i=1

ϕ(ti)
ci , (58)

if n > 2 and

Φ1(t1, . . . , tm)aΦ2(t1, . . . , tm)b = T (t1, . . . , tm)
m∏

i=1

ϕ(ti)
ci , (59)

if n = 2. Here ϕ is the inverse function of ψ, tj ∈]0, 1[ (j = 1, . . . ,m) and T is an

arbitrary function satisfying (54).

Somewhat intricate calculations show that the converse of Theorem 3 and Corollary

holds too:
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Proposition. If (a), (b), (c), (d) hold then also [A], [B], in particular equations

(16)–(28) are satisfied.

Remark 7. One may ask the following question. If an experiment has been done,

in which various choice probabilities Pi (i = 1, ...,m) have been measured, how can

it be ascertained whether there exist appropriate functions ψ and L, and real num-

bers a, b such that (57) hold. Theorem 3 shows that in principle this could be done

by recognizing from the experimental data that each probability depends only upon

the corresponding scale values, more exactly upon their power products, and that the

P1, ..., Pm can be combined (aggregated) into a probability which has the same prop-

erty. This aggregation should be implemented in two steps: first taking a function

of P1(ej :E), . . . , Pm(ej :E) (the same function for j = 1, . . . , n), then combining the

results into what will be the aggregated probability [this is done with the functions Φ

and Kj cf. (43), (33), (41), (40), and (19)]. A method of finding a, b, ψ and L may be

based again on noticing that Pi(ej : E) depends only upon vi(ek)awi(ek)b(k = 1, . . . , n),

that is

Pi(ej :E) = Kj[vi(e1)awi(e1)b, . . . , vi(en)awi(en)b] = Kj(z1, . . . , zn),

which yields a, b. One could possibly also notice that, with an external function ϕ, the

expression zj = v(ej)
aw(ej)

b may be extracted from ϕ ◦Kj (same j) so:

ϕ[Kj(z1, . . . , zn)] = zjL(z1, . . . , zn) (j = 1, . . . , n).

The requirement, that (57) should hold, gives

ψ = ϕ−1 and L(z1, . . . , zn) =
ϕ[Kj(z1, . . . , zn)]

zj

.

If the last expression is the same for all j ∈ {1, . . . , n} and L is homogeneous of degree

−1 then we have the representations (57), (56) and we know also what a, b, ψ and L

in it are.

The above process may require, however, too much guesswork. It will therefore

probably be as (or, possibly, more) feasible to test these ideas by attempting to fit

data with the representation (57). We only touch on the relevant model fitting issues

here; as indicated earlier, related issues are discussed in detail in [4], [6], [11], [12],
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and in [13]. In the present paper (also in this Remark) we have assumed and continue

to assume that the scales vi, wi (i = 1, ...,m) are known; the model fitting issues are

similar, though more complex, when the scales have also to be estimated from data.

We also continue to assume that only the Pi (i = 1, ...,m) are observable, i.e., we want

to fit the data with a representation that satisfies (57) and thus can be aggregated

into a P as represented in (56). Again, the model fitting issues are similar, though

more complex, when P is also observable.

First we consider the case where we have data only for one set E. Note that (57)

implies that, for every ej, ek in E and for i = 1, ...,m,

ψ−1[Pi(ej :E)]

ψ−1[Pi(ek :E)]
=
vi(ej)

awi(ej)
b

vi(ek)awi(ek)b
.

Thus one should search for the ‘best fitting’ function ψ and parameters a, b, using

traditional and newly developing techniques. (For instance, one might compare the

fit of ψ(t) = t (corresponding to a two-scale Luce model with exponents) to that of

ψ(t) = t + t1/2). Once one has the ‘best fitting’ function ψ̃, the estimate L̃ of L can

be taken to be the solution of

n∑
j=1

ψ̃[zjL̃(z1, ..., zn)] = 1.

Our task is easier when we have data for (at least) two sets E,E ′ with two (or

more) common elements, say ej, ek. Then, for (57) to hold, we must have

ψ−1[Pi(ej :E)]

ψ−1[Pi(ek :E)]
=
ψ−1[Pi(ej :E ′)]

ψ−1[Pi(ek :E ′]
.

When ψ(t) = t, we have an observable property of the representation. In general, we

can first determine the function ψ that gives the ‘best fit’ to equality for these (and

similar) ratios, then turn to the estimation of the exponents a, b and of the function

L.

Remark 8. On the other hand, as mentioned, while (58), (59) and (43) determine Φ,

even ignoring T there is some arbitrariness left for Φ1 and Φ2: even if Φ1(t1, . . . , tm) =∏m
i=1 t

Ai
i , Φ2(t1, . . . , tm) =

∏m
i=1 t

Bi
i , we have only aAi + bBi = ci (i = 1, . . . ,m) as

restriction. Notice, however, that already in the calculations in section 1 we used the

function Φ = Φa
1Φb

2 for aggregation, rather than the individual functions Φ1,Φ2.
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Actually, we could write (37) as (cf. (53))

Kj(h1[G1(x11, . . . , xm1), G2(y11, . . . , ym1], . . . , hn[G1(x1n, . . . , xmn), G2(y1n, . . . , ymn])

= Kj[ Φ(K1[h1(x11, y11), . . . , hn(x1n, y1n)], . . . , K1[h1(xm1, ym1), . . . , hn(xmn, ymn)]),
...

Φ(Kn[h1(x11, y11), . . . , hn(x1n, y1n)], . . . , Kn[h1(xm1, ym1), . . . , hn(xmn, ymn)])]

(j = 1, . . . , n), (60)

which has the advantage of containing Φ rather than Φ1 and Φ2, although it does not

look simpler than (37). But the symmetry in having both Φ1 and Φ2 as counterparts

of G1 and G2 may be attractive, even though it turns out eventually that G1 = G2

(but in general Φ1 6= Φ2). Ultimately the choice between (37) and (60) is a matter of

taste.

Remark 9. The above Proposition shows that without adding further assumptions

to [A] and [B] one cannot restrict Φ1,Φ2, T and ψ,L more closely than by (58), (59),

(54) and by (48), (50), (51), respectively. One further restriction will complete the

characterization of two-scale Luce models with exponents in the next section.

4. Characterization of the “Two-Scale Luce Model

with Exponents”

In order to get (38), that is (9), characterized, we aim to obtain ϕ(t) = t because then

ψ(s) = s, so that (55) reduces to

Fj(x1, y1, . . . , xn, yn) = xa
jy

b
jL(xa

1y
b
1, . . . , x

a
ny

b
n) (j = 1, . . . , n). (61)

Summing from 1 to n we get, in view of (27),

1 =
n∑

k=1

xa
ky

b
kL(xa

1y
b
1, . . . , x

a
ny

b
n),

that is,

L(xa
1y

b
1, . . . , x

a
ny

b
n) =

1∑n
k=1 x

a
ky

b
k

,
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so that (61) indeed becomes (38):

Fj(x1, y1, . . . , xn, yn) =
xa

jy
b
j∑n

k=1 x
a
ky

b
k

, (j = 1, . . . , n).

If ϕ(t) = t then Φ(t1, . . . , tm) given by (52) will be, cf. (45),

Φ(t1, . . . , tm) =
m∏

i=1

tci
i = G(t1, . . . , tm). (62)

Conversely, if (62) holds then, by(47) and (44),

ϕ(t) = Φ(t, . . . , t)
1
c = tΣci/Σci = t.

[As we saw before Theorem 2, (52) and thus (62) is a possible choice for n = 2 and

the only choice for n > 2]. So we have the following.

Theorem 4. The choice probabilities in the “two-scale Luce model with exponents”,

that is those given by (1) or equivalently by (9), and only these satisfy, in addition to

the conditions in Theorem 2 or Theorem 3, also Φ = G.

Remark 10. Till now we supposed that G1(x, . . . , x) is not constant, that is, see

(45),
∑m

i=1 ci 6= 0. Conversely,
∑m

i=1 ci = 0 means that G1(x, . . . , x) is constant. But

G1(x1, . . . , xm) should not be constant, that is, cp 6= 0 should hold for at least one p.

In this case, everything else in Theorem 4 being unchanged, one gets instead of (38)

the equation

Fj(x1, y1, . . . , xn, yn) =
Cjx

a
jy

b
j∑n

k=1Ckxa
ky

b
k

(j = 1, . . . , n), (63)

where C1, . . . , Cn are positive constants (the proof uses a method similar to that in

section 4 of [1]).

The representation in (63) has interesting psychological interpretations. The form

indicates that the ordinal position of an option e in the set E affects its representation

– in particular, option ej in position j has a ‘weighting’ parameter Cj placed in front

of its (e. g. overall) scale value v(ej)
aw(ej)

b. Returning to the noise burst example

in section 1, one could think of the stimuli ej (j = 1, . . . , n), as being presented in

temporal order, with ej being presented before ej+1 for j = 1, . . . , n−1. The weight Cj
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then might be interpreted as a bias to report the stimulus in position j as louder than

its scale values would indicate; alternatively, Cj might be interpreted as a memory

effect, with stimuli at different positions in the sequence not being equally represented

relative to their scale values.

5. Conclusion. Open problem

In this paper we have extended results in [1] to the aggregation of two-scale homo-

geneous, simply scalable, conjoint Weber type II families of choice probabilities. The

further extension to more than two components is routine. The proofs required us to

assume that the representations are simply scalable (Eq. (22)) in order that we can use

an appropriate injectivity condition (Eq. (36)). The essence of the injectivity condition

used in this paper (and in [1]) is that (certain combinations of) the parameters of the

model are identifiable from the data. It would be of interest to develop results that do

not require the use of simple scalability as a means to get to an appropriate injectivity

condition.

Consider, for instance, the following generalization of the “similarity choice model”

(5):

P (r[ej]|ek :E) = Fj[η(ek, r[e1]), β(r[e1]), . . . , η(ek, r[en]), β(r[en])] (j, k = 1, . . . , n)

(64)

(E = {e1, . . . , en}), where the scales η and β satisfy (cf. (6))

0 ≤ η(ej, ek) ≤ 1, η(ej, ek) = η(ek, ej), η(ej, ej) = 1,

0 ≤ β(r[ej]) ≤ 1,
n∑

k=1

β(r[ek]) = 1 (j, k = 1, . . . , n). (65)

Assume that the model is “identifiable” (cf. [12]) in the sense that, if

Fj[η(ek, r[e1]), β(r[e1]), . . . , η(ek, r[en]), β(r[en])]

= Fj[η
′(ek, r[e1]), β′(r[e1]), . . . , η′(ek, r[en]), β′(r[en])]

for all j, k = 1, . . . , n and for the scales η, β and η′, β′ satisfying (65), then

η(ej, ek) = η′(ej, ek) and β(r[ej]) = β′(r[ej]) (j, k = 1, . . . , n).
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Notice that this property resembles, but also differs from, the injectivity (36). The

‘similarity choice model ’ (5) is a model “identifiable” in the sense just stated (cf. e.g.

[4]). It is an open problem what the general “identifiable” solutions of a system of

equations for Fj (j = 1, . . . , n) in (64), corresponding to (37) (or to (60)), are – and

what should be supposed, for adjusting the number of equations to the number of

parameters (scale values), in place of an analogue of the simple scalability (22) and

such properties of the functions hj (j = 1, . . . , n) therein as (25) and (26). Closely

related questions are considered in [12].
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